Brief analysis of Redaman Banking Malware (v0.6.0.2)
Sample

j peppermalware.com/2019/11/brief-analysis-of-redaman-banking.htmi

"final_balance”: 166295,
n_tx": 4,

“uncontirmed n_tx": @,
“final_r ox": 4,

"tarefsr [
{
"tx_hash™: “FFcaficYestcecOf7odefcac20bacte2c@is M c97eRi02ccs4esbass fLbes 23",

“block height™: 587674,

93 = 147

On36755 = 0xBf93
8f =143

bEJ:lEE—I E3l|
Virtuak: |016asadc Display format: | Byte ~ Ngut
ce =206 = : -
Previous I
Jlhaeade 31 28 35 2= 32 30 35 2e 31 34 37 e 31 34 .’~"2IIFE 2048 147 143
J01faesachk 00 26 00 00 0O 01 00 00 00 1S 00 00 00 E3 Ef
Miemon |
a934522c93", Virtuak |01ebl0af Display format: | Byte v Mext
Previous
[016b1028 31 38 35 2= 32 30 35 2e 31 34 36 2e 39 32 00 |1£5 205146 92|
92 =146
On23698 = 0x5¢92 —— I
Se= BZ—I
conf: 3-1Q-@3T1@:02:187",
"double_spend™: false
b
1
ha =185

Redaman is a well-known banking malware, discovered around 2015. Recently | have been
analyzing a recent version of the malware (0.6.0.2, not sure if latest version, probably one of
the newest). This malware uses some interesting tricks probably introduced in these recent

versions. In this post | share some notes about the analysis.

o Original Packed Sample: 2b251483ed7705c60ee12b561280a1fc
o Unpacked Sample (dll): 2a298a650050eb89041548e57d72f726
¢ Virustotal First Submission: 2019-10-11 10:35:13

e Related links:

Analysis

e 1. Anti-analysis tricks
o 1.1. C2 encoded into bitcoin transactions
o 1.2. Checks machine name vs user name
o 1.3. Encrypted strings
o 1.4. Unpacked module needs correct argument to work properly
o 1.5. Checks for typical sandboxes files, directories, processes...

1/13

http://www.peppermalware.com/2019/11/brief-analysis-of-redaman-banking.html
https://www.hybrid-analysis.com/sample/b1b2d242c4d43e15ba66c7ae9c8bb317c7d8dcacacb5005f368c554ec844b035
https://app.any.run/tasks/67a9a525-267b-45b1-9642-5032d5b428aa

o 1.6. Checks for security products

o 1.7. Disable Safeboot
e 2. Bot commands and malware capabilities
e 3. Yararules
e 4. List of encrypted strings

1. Anti-analysis tricks

1.1. C2 encoded into bitcoin transactions

This trick, discovered by checkpoint and explained in this post, is really interesting. The
malware gets the C2 addresses from the bitcoin blockchain. The malware doesn't carry C2
addresses into the binary. It carries (in the list of encrypted strings) some urls of some
services offering APlIs related to bitcoin blockchain:

e "viabtc.com"
"/res/btc/transactions/addressv2?address="
+ "api.blockcypher.com"
o "/v1/btc/main/addrs/"
o "?limit=10"
¢ "blockchain.info"
"/rawaddr/"
¢ "blockchain.coinmarketcap.com"
o "/api/address?address="
o "&symbol=BTC&start=1&limit=10"

Additionally, it carries another encrypted string with the C2 schema, a bitcoin address and
the C2 uri:

"http://1AN9ALZUgqYzFQGDXvMY5j1c7PGMMGYqUde/index.php”

Then, the malware composes the blockchain API url, and queries the transactions for the
given bitcoin address, for example:

https://api.blockcypher.com/v1/btc/main/addrs/1N9ALZUgqYzFQGDXvMY5j1c7PGMMGYqU
de?limit=10

(Find a copy of the json response here: https://pastebin.com/rCIpF2F2)

The malware uses some fields of this json response (exactly the values of the transactions)
to compose the C2 addresses, as explained in the following image (click on the image to

2/13

https://research.checkpoint.com/2019/ponys-cc-servers-hidden-inside-the-bitcoin-blockchain/
https://api.blockcypher.com/v1/btc/main/addrs/1N9ALZUgqYzFQGDXvMY5j1c7PGMMGYqUde?limit=10
https://pastebin.com/rC9pF2F2

expand):

The threat actor only needs to perform some new transaction with the given bitcoin address
to update the C2 list.

This is quite interesting. A malware could be keeping all kind of information and configs in
the blockchain. It could use these APIs such as api.blockcypher.com, etc... or it could
download the blockchain to get all the transactions directly from the blockchain and recover
all the needed information.

A domain can be sinkholed, but, using this method, it would be hard to forbid the malware to
get updates.

1.2. Checks machine name vs user name

This is another trick, quite aggresive, that | hadn't seen before. Basically, the malware gets
tthe computer name and the user name. It removes the "-PC" suffix from the computer name,
the in compares the computer name (without -PC) with the username (uppercase). If they
are the same, exit.

3/13

https://1.bp.blogspot.com/-9All5mMV0E4/XhDfXHb8uKI/AAAAAAAAAi4/i_wlR5DcbkQqpTkPwXbkSzXi8R-u57JmwCLcBGAsYHQ/s1600/_c2fromtransaction.png

Frequently, real usual users' machines have computer names like DESKTOP-JMP240S,
etc... | suppose with this aggresive trick the malware tries to avoid being executed in
sandboxes, AV emulators, etc...

1.3. Encrypted strings

As explained at welivesecurity' article, the malware decrypts the strings that it is going to use
by using a custom rc4 algorithm.

Here, Im just going to explain how | got the decrypted urls directly from memory and Im
going to share the script that | used to add IDA comments automatically. | used the following
Windbg commands to dump all the decrypted strings and their positions in the strings' table:

bp <base_unpacked_mod> + 291F5 (at this point, strings were decrypted a moment
ago)

Print decrypted ascii strings:

for ($t0=0;@%$t0<0x18b;r $t0=@%$t0+1){ .printf "%d ",4*@$t0; da poi
(<base_unpacked mod>+2C93C+4*@$t0); .printf "\r\n"; }

Print decrypted unicode strings:

for ($t0=0;@%t0<0xb6;r $t0=@$%$t0+1){ .printf "%d ",4*@$t0; du poi
(<base_unpacked mod>+2CF68+4*@$t0); .printf "\r\n"; }

4/13

https://1.bp.blogspot.com/-sb5GEfFqqUg/Xg527OCycMI/AAAAAAAAAgA/5XtYhK5OWegOFePjwPje4K_AMSlY8Bp1wCLcBGAsYHQ/s1600/computername_trick.png
https://www.welivesecurity.com/wp-content/uploads/2017/02/Read-The-Manual.pdf

With these commands, i got the list of strings (ascii and unicode), and | used the following

IDA python script to set comments foreach part of the code where these strings are being
used:

1.4. Unpacked module needs correct argument to work properly

Once the malware is unpacked, the real redaman dll is launched with rundll32 and
DlIGetClassObject method is called, and an argument is given:

rundll32 <redaman dll path>, DIIGetClassObject <password>

The given password needs to be correct, if it is not correct, the encrypted strings cant be
decrypted and the malware exits.

1.5. Checks for typical sandboxes files, directories, processes...

It checks for the following files or directories at c:\ or d:\ : cuckoo, fake_drive, strawberry, tsl,
targets.xls, perl, wget.exe

5/13

mov byte ptr [eax], 'c’
lea eax,

call sub_ 483578

mow byte ptr [eax+l],
lea

call

mow

lea

maw

call

lea

call ub 4

mov byte ptr [eax], 'd’
lea eax, [ebp+ 3
call sub_483578

mov byte ptr [eax+l],
lea B

call

mon
Mo 1, 1

Mo dword ptr‘ [=i
Mo dword ptr‘ [5
push ebp
mov eax, esi
call sub_4149C8
pop ecx

al, al
] loc_414BC4
Mo dword ptr‘ [=i
mov dword ptr [
mow dword ptr [5
push ebp
mov eax, es
call sub 4149C8
pop ecx
test al, al
jnz loc_414BC4
MoV dword ptr
Mo dword ptr
mowv dword ptr

It checks for the following names in the own module name: myapp.exe, self.exe, t.exe

6/13

https://1.bp.blogspot.com/-_7El5ANyTPM/Xg6PIGPoQcI/AAAAAAAAAgM/TgksqTUBwNYZriWry6IttlHpGv7KRUz9gCLcBGAsYHQ/s1600/check_files_c_d.png

m o
=
=

[S s 1]
t =

tModuleFileName WowReverthows

| CO B i

m Mmoo

o

mow
call
Mo
lea
call
mow
lea
call
Mo
Mo
lea
lea
call
mow
mow
call
jz
Mo
Mo
Mo
lea
lea
call
Mmoo
Mo
call
jz
Mo
mov
xor

eax, eax
loc_414CES
[ebp+var_24]
[ebpt+var_26]
[ebp+var_1C]
[ebptvar_18]
eax, [ebptva
edx, [ebp+

[ebp+var
[ebptvar_
[ebp+var_
2aX,

7/13

https://1.bp.blogspot.com/-VseTClwkdpM/Xg6P5fEwN4I/AAAAAAAAAgY/JpEZxPVfp7cPQLi_40o4Sohk-hILmlo6wCLcBGAsYHQ/s1600/check_own_module_name.png
https://1.bp.blogspot.com/-E6vAzWEquhU/Xg6Qy6w_cpI/AAAAAAAAAgk/ZGIC8AbWnIInTtkU3mCNyJsWwnfCup1aACLcBGAsYHQ/s1600/check_banned_processes.png

1.6. Checks for security products

Redaman uses the WbemScripting.SWbemLocator API to search for intalled security
products:

mow
mow

call

mow

lea

call

mov s [ebpt
lea eax, [ebptvs
call sub_4847E4
lea

call

test

jz

push

Mo

Mo

call

pop
test

jnz
push
mav
mav
call
pop
test
jz

mav
add

push

mav x, d
add W, h
push >

1.7. Disable Safeboot

8/13

https://1.bp.blogspot.com/-Ll9iLaZ2r-U/Xg8u48d0rOI/AAAAAAAAAhE/ZceSPSSE-YISWbsbCFDFCnNAkUsoqjHegCLcBGAsYHQ/s1600/securityproducts.png

The malware deletes the current safeboot value:

2. Bot commands and malware capabilities

| recommend to read the welivesecurity' article to learn about the protocol and encryption
used by Redaman banking malware.

It looks in the newer versions of the malware they have introduced a much longer list of
commands that the bot can receive from the C2 and execute. This is the complete list (each
command and name is quite self-explanatory):

e keylogger.last-data
» keylogger.last-wnd-caption
» keylogger.last-exe-path
o botnet-prefix

e botnet-id

e cc.connect-interval
¢ scan-files

¢ post-install-report
e cc.url

e modules.

¢ modules-data.

e del-module

e unload

e uninstall

¢ uninstall-lock

o find-files

e download

e shutdown

e reboot

e CC

e get-cc

¢ botnet-id

9/13

https://1.bp.blogspot.com/-uIVVlXCRFrw/Xg8uKI0mq9I/AAAAAAAAAg8/Tlkn_CHuuD4scnIcE9dDzTwbdHvkVGWVwCLcBGAsYHQ/s1600/safebootdelete.png
https://www.welivesecurity.com/wp-content/uploads/2017/02/Read-The-Manual.pdf

Additionally, in the list of encrypted strings, the malware carries a list of strings to match
against the browser window name. In case of match, it is a target site (most of them bank
websites) to steal credentials from. This is the list of urls of the analyzed sample:

prefix
connect-interval
hosts-add
hosts-clear
dbo-scan
cfg-set-str-a
cfg-set-str-w
cfg-set-dw
cfg-get-str-a
cfg-get-str-w
cfg-get-dw
cfg-del-param
screenshot
dns

set-dns
get-dns
kill-process
Ipe-runas-flags

scards.monitoring-interval

auto-elevate

reload

scard-off
modules-off
dbo-detector-off
multiinstance-off
keylogger-off
dns-servers-changed
hosts-file-changed
video.refresh-interval
video-start
video-stop

del-files

online.payment.ru
bankline.ru
/ic/login.zhtml
/servlets/ibc

10/13

faktura.ru

liclient/

ibank2

bco.vtb24.
bo.vtb24.

dbo.vtb.
elbrus.raiffeisen
elba.raiffeisen
handybank.
wupos.westernunion
online.sberbank.
minbank.ru
e-plat.mdmbank.
link.alfabank
click.alfabank
ib.avangard
ibc.vuzbank.
ibc.ubrr.
my.modulbank.
online.centrinvest.
cb.mtsbank.
vbo.mkb.

i.ospb.ru

i.vtb.ru

bc.rshb.
/vpnkeylocal
sci.interkassa
ibank.mmbank.
blockchain.info
/wallet/

cb.asb.by
bps-sberbank.by
dbo2.bveb.by
ibank.bsb.by
corporate.bgpb.by
ibank.alfa-bank.by
ibank.belinvestbank.by
ib2.ideabank.by
client.paritetbank.by
ibank.priorbank.by
client.mybank.by
online.stbank.by

11/13

client.belapb.by

Unk

SberBank_PC

BSS

BSS PC
iBank2_PC
Faktura
PCB
InterPro
RosBank
SBBO
INIST
Inversion
Interbank
iBank2
BiCrypt
VTB24

1C

SGB
Raiffeisen
HandyBank
Wu
SB_Fiz
CFT
WinPost
SBIS
CiBank
QiwiCashier
ISCC
WebMoney
xTC

iFOBS
TRANSAQ
OSMP
MinBank
SFT

MDM
ALBO
Alfa_Fiz
Avangard
Intercassa
Amikon

12/13

e Vuzbank

e UBRR

e ModulBank
e Centrinvest
e MTSBank
« MKB

e EL CLI

e BSPB

e |[VTB

e RSHB
 Infocrypt

e MMBank

e Blockchainlnfo
e HBClient
e ASB

« BPS _SB

« BVEB

e BSB

« BGPB

e ALBO BY
o Bellnvest
e |deaBank
o Paritet

e PriorBank
e MyBank

e StBank

o BelAPB

e scDBO

e AvestCSP

3. Yara rules

4. List of encrypted strings

13/13

