
1/8

Chrome 0-day exploit CVE-2019-13720 used in Operation
WizardOpium

securelist.com/chrome-0-day-exploit-cve-2019-13720-used-in-operation-wizardopium/94866/

Authors

 AMR

 GReAT

Executive summary

Kaspersky Exploit Prevention is a component part of Kaspersky products that has
successfully detected a number of zero-day attacks in the past. Recently, it caught a new
unknown exploit for Google’s Chrome browser. We promptly reported this to the Google
Chrome security team. After reviewing of the PoC we provided, Google confirmed there was

https://securelist.com/chrome-0-day-exploit-cve-2019-13720-used-in-operation-wizardopium/94866/
https://securelist.com/author/amr/
https://securelist.com/author/great/


2/8

a zero-day vulnerability and assigned it CVE-2019-13720. Google has released Chrome
version 78.0.3904.87 for Windows, Mac, and Linux and we recommend all Chrome users to
update to this latest version as soon as possible! You can read Google’s bulletin by clicking
here.

Kaspersky endpoint products detect the exploit with the help of the exploit prevention
component. The verdict for this attack is Exploit.Win32.Generic.

We are calling these attacks Operation WizardOpium. So far, we have been unable to
establish a definitive link with any known threat actors. There are certain very weak code
similarities with Lazarus attacks, although these could very well be a false flag. The profile of
the targeted website is more in line with earlier DarkHotel attacks that have recently
deployed similar false flag attacks.

More details about CVE-2019-13720 and recent DarkHotel false flag attacks are available to
customers of Kaspersky Intelligence Reporting. For more information, contact:
intelreports@kaspersky.com.

Technical details

The attack leverages a waterhole-style injection on a Korean-language news portal. A
malicious JavaScript code was inserted in the main page, which in turn, loads a profiling
script from a remote site.

Redirect to the exploit landing page

The main index page hosted a small JavaScript tag that loaded a remote script from
hxxp://code.jquery.cdn.behindcorona[.]com/.

The script then loads another script named .charlie.XXXXXXXX.js. This JavaScript checks if
the victim’s system can be infected by performing a comparison with the browser’s user
agent, which should run on a 64-bit version of Windows and not be a WOW64 process; it
also tries to get the browser’s name and version. The vulnerability tries to exploit the bug in
Google Chrome browser and the script checks if the version is greater or equal to 65 (current
Chrome version is 78):

https://chromereleases.googleblog.com/2019/10/stable-channel-update-for-desktop_31.html
https://securelist.com/the-darkhotel-apt/66779/
http://10.10.0.46/mailto:intelreports@kaspersky.com
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/11/01122729/WizardOpium_CVE-2019-13720_01.png


3/8

Chrome version checks in the profiling script (.charlie.XXXXXXXX.js)

If the browser version checks out, the script starts performing a number of AJAX requests to
the attacker’s controlled server (behindcorona[.]com) where a path name points to the
argument that is passed to the script (xxxxxxx.php). The first request is necessary to obtain
some important information for further use. This information includes several hex-encoded
strings that tell the script how many chunks of the actual exploit code should be downloaded
from the server, as well as a URL to the image file that embeds a key for the final payload
and RC4 key to decrypt these chunks of the exploit’s code.

Exploitation chain – AJAX requests to xxxxxxx.php

After downloading all the chunks, the RC4 script decrypts and concatenates all the parts
together, which gives the attacker a new JavaScript code containing the full browser exploit.
To decrypt the parts, the previously retrieved RC4 key is used.

One more version check

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/11/01122743/WizardOpium_CVE-2019-13720_02.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/11/01122755/WizardOpium_CVE-2019-13720_03.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/11/01122805/WizardOpium_CVE-2019-13720_04.png


4/8

The browser exploit script is obfuscated; after de-obfuscation we observed a few peculiar
things:

1. Another check is made against the user agent’s string – this time it checks that the
browser version is 76 or 77. It could mean that the exploit authors have only worked on
these versions (a previous exploitation stage checked for version number 65 or newer)
or that other exploits have been used in the past for older Chrome versions.

Obfuscated exploit code

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/11/01122818/WizardOpium_CVE-2019-13720_05.png


5/8

2. There are a few functions that operate on the browser’s built-in BigInt class, which is
useful for doing 64-bit arithmetic inside JavaScript code, for example, to work with
native pointers in a 64-bit environment. Usually, exploit developers implements their
own functions for doing this by working with 32-bit numbers. However, in this case,
BigInt is used, which should be faster because it’s implemented natively in the
browser’s code. The exploit developers don’t use all 64 bits here, but instead operate
on a smaller range of numbers. This is why they implement a few functions to work with
higher/lower parts of the number.

Snippet of code to work with 64-bit numbers

3. There are many functions and variables that are not used in the actual code. This
usually means that they were used for debugging code and were then left behind when
the code was moved to production.

4. The majority of the code uses several classes related to a certain vulnerable
component of the browser. As this bug has still not been fixed, we are not including
details about the specific vulnerable component here.

5. There are a few big arrays with numbers that represent a shellcode block and an
embedded PE image.

The analysis we have provided here is deliberately brief due to vulnerability disclosure
principles. The exploit used a race condition bug between two threads due to missing proper
synchronization between them. It gives an attacker an a Use-After-Free (UaF) condition that
is very dangerous because it can lead to code execution scenarios, which is exactly what
happens in our case.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/11/01122829/WizardOpium_CVE-2019-13720_06.png


6/8

The exploit first tries to trigger UaF to perform an information leak about important 64-bit
addresses (as a pointer). This results in a few things: 1) if an address is leaked successfully,
it means the exploit is working correctly; 2) a leaked address is used to know where the
heap/stack is located and that defeats the address space layout randomization (ASLR)
technique; 3) a few other useful pointers for further exploitation could be located by
searching near this address.

After that it tries to create a bunch of large objects using a recursive function. This is done to
make some deterministic heap layout, which is important for a successful exploitation. At the
same time, it attempts to utilize a heap spraying technique that aims to reuse the same
pointer that was freed earlier in the UaF part. This trick could be used to cause confusion
and give the attacker the ability to operate on two different objects (from a JavaScript code
perspective), though in reality they are located in the same memory region.

The exploit attempts to perform numerous operations to allocate/free memory along with
other techniques that eventually give the attackers an arbitrary read/write primitive. This is
used to craft a special object that can be used with WebAssembly and FileReader together
to perform code execution for the embedded shellcode payload.

First stage shellcode

Payload description

The final payload is downloaded as an encrypted binary (worst.jpg) that is decrypted by the
shellcode.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/11/01122845/WizardOpium_CVE-2019-13720_07.png


7/8

Encrypted payload – worst.jpg

After decryption, the malware module is dropped as updata.exe to disk and executed. For
persistence the malware installs tasks in Windows Task Scheduler.

The payload ‘installer’ is a RAR SFX archive, with the following information:

File size: 293,403
 MD5: 8f3cd9299b2f241daf1f5057ba0b9054

 SHA256: 35373d07c2e408838812ff210aa28d90e97e38f2d0132a86085b0d54256cc1cd

The archive contains two files:

File name: iohelper.exe
 MD5: 27e941683d09a7405a9e806cc7d156c9

 SHA256: 8fb2558765cf648305493e1dfea7a2b26f4fc8f44ff72c95e9165a904a9a6a48

File name: msdisp64.exe
 MD5: f614909fbd57ece81d00b01958338ec2

 SHA256: cafe8f704095b1f5e0a885f75b1b41a7395a1c62fd893ef44348f9702b3a0deb

Both files were compiled at the same time, which if we are to believe the timestamp, was
“Tue Oct 8 01:49:31 2019”.

 The main module (msdisp64.exe) tries to download the next stage from a hardcoded C2

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/11/01122905/WizardOpium_CVE-2019-13720_08.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/11/01152326/WizardOpium_CVE-2019-13720_code.png


8/8

server set. The next stages are located on the C2 server in folders with the victim computer
names, so the threat actors have information about which machines were infected and place
the next stage modules in specific folders on the C2 server.

More details about this attack are available to customers of Kaspersky Intelligence
Reporting. For more information, contact: intelreports@kaspersky.com.

IoCs

behindcorona[.]com
code.jquery.cdn.behindcorona[.]com
8f3cd9299b2f241daf1f5057ba0b9054
35373d07c2e408838812ff210aa28d90e97e38f2d0132a86085b0d54256cc1cd
27e941683d09a7405a9e806cc7d156c9
8fb2558765cf648305493e1dfea7a2b26f4fc8f44ff72c95e9165a904a9a6a48
f614909fbd57ece81d00b01958338ec2
cafe8f704095b1f5e0a885f75b1b41a7395a1c62fd893ef44348f9702b3a0deb
kennethosborne@protonmail.com

Google Chrome
JavaScript
Proof-of-Concept
Targeted attacks
Vulnerabilities and exploits
Watering hole attacks
Website Hacks
Zero-day vulnerabilities

Authors

 AMR

 GReAT

Chrome 0-day exploit CVE-2019-13720 used in Operation WizardOpium

Your email address will not be published. Required fields are marked *

http://10.10.0.46/mailto:intelreports@kaspersky.com
https://securelist.com/tag/google-chrome/
https://securelist.com/tag/javascript/
https://securelist.com/tag/proof-of-concept/
https://securelist.com/tag/targeted-attacks/
https://securelist.com/tag/vulnerabilities-and-exploits/
https://securelist.com/tag/watering-hole-attacks/
https://securelist.com/tag/website-hacks/
https://securelist.com/tag/zero-day-vulnerabilities/
https://securelist.com/author/amr/
https://securelist.com/author/great/

