Dynamic Imports and Working Around Indirect Calls -
Smokeloader Study Case

B m.alvar.es/2019/10/dynamic-imports-and-working-around.html

When reversing malware it is common to find an injected payload loading references to
external resources (DLL functions). This happens for two main reasons:
1. The hosting process does not have all resources necessary to the execution of the
injected payload,;
2. Making reversing engineering the malware trickier since the dumped segment will have
all calls pointing to a meaningless address table.

This article explains how to revert this trick and get back AP/ call names annotations in an
IDApro database. A sample of Smokeloader was used for illustrating the ideas described in
this post.

This article is divided in three main parts:
1. Explaining the observed technique;
2. How it works; and
3. How to circumventing it in order to facilitate reversing.

First of all, shout out to Sergei Frankoff from Open Analysis for this amazing_video tutorial on
this same topic which inspired me to write about my analyses. Regards also to Mark Lim who
also wrote a very interesting_article about labelling indirect calls in 2018. His article uses
structures instead of patching the code (which is also a good approach) but | think it lacks
important details and | will try to cover these points in here.

Examples presented in this article were extracted from the following Smokeloader sample:

Filename: pOn36i2d.exe

MD5: a8cc396b6f5568e94f28ca3381c7fadf

SHA1: 12948e36584e1677e80f78b8cc5c20576024¢13f

SHA256: 17b548f9c8077f8ba66b70d55¢c383f87f92676520e2749850e555abb4d5f80a5
Size: 215.5 KB (220672 bytes)

Type: PE32 executable for MS Windows (GUI) Intel 80386 32-bit

Explaining what is going on in the first stage (packer/crypter) is out of scope; this article
focuses on characteristics found in the final payload. This sample injects the main payload in
"explorer.exe" as it is possible to observe in this AnyRun sandbox analysis.

Figure 01 shows how the code looks immediately after the execution control passes to the
injected code.

1/19


https://m.alvar.es/2019/10/dynamic-imports-and-working-around.html
https://www.hex-rays.com/products/ida/
http://security.neurolabs.club/2019/08/smokeloaders-hardcoded-domains-sneaky.html
https://www.openanalysis.net/
https://www.youtube.com/watch?v=hM2Zvsak3GM
https://twitter.com/peta909
https://findingvulns.blogspot.com/2018/04/using-ida-pro-debugger-and-idapython.html
https://app.any.run/tasks/c3ab622a-8c68-42c8-aeb7-bf88226983cc/

EIP EDX 55 [push ebp
SBEC mov ebp,esp
84D 08 mov ecx,dword ptr ss:[ebp+8] [ebp
EE 04000000 €3l <__main= 1)
SD pop ebp
C2 0400 ret 4
56 push esi ma
8BFLl moyv esi,ecx
ES 28000000 |E&1) <_ lead_libraries= (2)
84c0 test al,al
74 13 je 2F1872
57 push edi
BF ES030000 |mov edi,3ES
Ga 0a push &
FF96 AEQEDQO(EEM dword ptr ds:[esi+EAE] (3)
4F dec edi
75 F5 jne 2F1865
EE 02 jmp 2F1874
SE pop esi
c3 ret
SBCE mov ecx,es]
ES 38060000 |EEV) ZFLEB6
8BCE mov ecx,esi
EE Al020000 |EEl 2Fle23
5F pop edi
i 51 push ecx o
4 002F1884 64:41 3000000mov eax,dword ptr Il: [30]
&l nN7e18gA £ mueh Ak Al e

[ Hide FrU

EAX  76483C33
EBX  0Q0ZEQOOQO
EC 00000000
EDx  0Q02FL544
EBF  00A4FF94
ESP 00A4FFEC
ESI 00000000
EDI 00000000

EIP 002F1844

EFLAGS  000102:
ZF1 PF 1 AF I
OF 0 SF O DF I
CFO TFO IF:

LastError Q000
LastStatus cO00

Gs 0000 Fs 003
ES 0023 Ds 002
cs 001l 55 002

ST(O) 000000000

=k o T A TaTaTaTalaTatatyll

Figure 01 - Smokeloader's final payload.

Three points were marked in this code snip (1, 2 and 3). The first point (1) is the call to the
main function (located at 0x002F1853). This function expects to receive an address through
ECX register. This address points to a data segment where all temporary structures will be

stored.

The third point (3) is an indirect call to an address stored in register ES/ plus offset OxEAE.
The debugger was not able to resolve this address since the "memory segment" pointed by

ESl is not set at this point of the execution (/nstruction Pointer pointing to 0x002F1844). This

pattern usually is an indicator that this code will dynamically resolve and import

external resources to a specific address table (in this case stored in what we called "data

segment"). This is an interesting technique because this table can be moved around by
changing the address stored in ES/ as long as offsets are preserved. In this code ES/ is set
to "0x002E0000" which is the address of a read-and-write memory segment created during

the first stage. Figure 02 shows the region pointed by the offset OXEAE which is empty at this

point of the execution.

2/19


https://1.bp.blogspot.com/-v7-nyrwPHmw/XbBhxlCTdHI/AAAAAAAAbfM/X-G6l_ns7DQxs4Pulkuq8lSUjtn6gu5CQCLcBGAsYHQ/s1600/Screenshot%2B2019-10-23%2Bat%2B16.20.24.png

002EQESE
D0ZEQESE
002EQEAE
002EQEBE
002EDECE
002EQEDE
002EDEEE
002EQEFE
002EOFOE
002EOQFLE
002EOFZE
D0ZEDF3E
002EDF4E

o0
o0
o0
o0

g888388
SES8588888838
SES88E88888858
2888E888888

E88888838

00 00 00|00 0D [.....|.....]
00 00 00|00 00 |....fienad
00 00 O0JO0 OO |[.........
00 00 00|00 00 |..........
00 00 00|00 0D (..........
Q0 00 0D 00 OO0 |..........
Q0 00 0000 0D (..........
00 00 0000 00 |..........
00 00 0000 00 |.....L....]
00 00 00|00 0D |.....L.....]
00 00 00|00 00 [.....[.....]

00 OO0 QD00 00 |...oufeceutd
Q0 00 Q000 00 |..........1

Figure 02 - Address pointed by the indirect call.

The second point (2) marks a function call immediately before the indirect call (3). This is a
strong indicator that the code for creating the address table must be somewhere inside this
function. The address located in "002EOEAE" will be filled with pointers to the expected API

function. Figure 3 shows this same memory region after the "

executed.
O0DZEQDEFE (00 QO QDD 00|00 OO OO OL|5C 39 4........ YWYOHVOIHY
Q0Z2EQERBE <11 F& 28 77 Bh 2F 48 76 A4 1D - n&’HvE,Hu,in
O02EQEQE <11 A6 47 76 AD 6B 46 76 7C CA . 'Gu Fv|EGvj-Hv
002E0EAE <46 BA 97 16 EB 95 IF*ﬁ'vs.Evu GW. . HY
002EQEBE <4C5 8F 47 76 |16 BE 46 76 81 BC :A.Gv.KFv. 1Iv.5Hv
Q02EQECE 45D 37 48 76 80 12 48 76 AA 41 :]7Hv..Hv2AIV+EHV
DOZEQEDE 401 3C 48 76 |26 3C 48 76 €3 b/ ¢ . <HvlcHvAgFvxbGY
QO2EQEEE <433 88 46 /6 |10 60 46 76 56 cC {3.Fv.mFvvIGvb.Gv
OOZEQEFE <18 AD 46 /6 BED 67 48 76 EB D9 :..Fv gHvélGvgKIv
002E0FDE <80 46 47 76 / F/ 1. FGviSGy1+Fv=DIv
O0ZEOFLE <05 45 49 76 o ca 47 76 D7 59 . EIVAEGVXYGVY. .GV
002ECF2E <E9 97 47 76 9B 4 DE Cl :é.Gv.|.GvPAFVOVHY
D02EOF3E <4CE C1 46 76 (31 23 47 76 60 BA (IAFvIHGY °GwY Fv
002EOF4E <02 50 49 76 |[ED 94 2C 77 |06 2D |.]Ivi|. ,wh-+woy, w
D02EQFSE <6A 2C 7B 77 |[EB 56 2A 77 |28 5C |j,+waVv™w(\"w 1°w
OD2EQFBE <8A DD g6 // €U 5C 29 /7 90 5C |.Y&wA\Iw.\Jw. . &w
O0Z2EOQF7E <F8 BA 2B /7 |EJ 65 Z2C /7 48 EI'.'I 8. +wae wH *w. &w
002EOFBE 43D 28 2C 77 90 46 A5 75 ﬂ? I=(,w. F¥u. I¥uiHYu
00ZEQF9E <« A Ic 4 gI LC¥u . C¥uY.Huiany
002EOFAE <44E DF A4 75 3B DF Ad 75 ?E OF NEﬁuEﬂnu«ﬂnuFﬂnu
002EQOFBE < CA A 24 OE A 0C OE ,.E=u. ¥u..Yuz.Yu
002EQOFCE <47 3F DE 76 6D 42 OF 76 45 24 G va vES.v2i.v
O0ZEQOFDE <5B 37 DE 76 |aD 09 D 75 59 72 | Auvrku. . Au
00DZ2EQOFEE <D EY9 58 BD /2 F5 D9 | .hu‘xhrﬁUhréJhr
D02EQOFFE <01 2¢ BD 72|BD 79 BD 72 B2 B2 |.,%r¥ykrb®¥%r.Ekr
0DZ2ELDOE 46C 3F BD 72 |3A 95 BE 72 |7E 25 117%r: . Br-%%rl6kr
002EL0LE 9FB 90 BE /2 2C 57 D9 /4 DC 71 I0.%r,W0tUgUtv.%v
002E102E <31 B1l 45 /7 |71 3C 62 /6 |00 00 |1+Ewg<bv..dw..Cv
alatel b ol d o AN AR N 78 AN AN adA TC NN AN e LTl LI Was

"__load_libraries" function is

Figure 03 - Address pointed by the indirect call is filled after the

is called

" load_libraries" function

x32dbg has a memory dump visualisation mode called "Address" which will list every
function pointed to each address loaded in the call table we just described.

3/19


https://1.bp.blogspot.com/-EpYGj5DLQtE/XbBvW-ciITI/AAAAAAAAbfY/Al4XubHsX-oK961TdnspSzuqMG4WlgIdACLcBGAsYHQ/s1600/Screenshot%2B2019-10-23%2Bat%2B17.18.02.png
https://1.bp.blogspot.com/-mHqmdsQog38/XbB1JPLLPgI/AAAAAAAAbfk/P22-2SdyWig5G2qWDHFHMi7XwxIs71QrgCLcBGAsYHQ/s1600/Screenshot%2B2019-10-23%2Bat%2B17.42.28.png

002EQESA
QOZEQEJE
002eEQEAZ
002ZEQEAG
002e0EA
002EQEAE
002eQEB2
002EQERG
Q0ZEQEBA
002EQERE
00Z2EQECZ
002eQECE
002EQECA
002eQECE
002EQEDZ
00Z2EQEDG
002EQEDA
00ZEQEDE

7647419F
7647A611
76466EA9
7647CATC
764820Al

76470273

764796FB
764581400
7647 8FCS
7646BELG
76496C81
76483589
7648375D
76481280
764941a4
76484528
76433cC01

kernel32.lstrcata
kernel3z.lstrlen
kernel32.GetComputerNameA
kernel32.cCloseHandle
kernel32.createProcessInternala
kernel3Z.sleep
kernel32.cetFilesize
kernel32.readFile
kernel3Z . writeFile
kernel32.GetSystembirectoryA
kernel32.setFileTime
kernel32.GetFileattributesExA
kernel32.CreateMutexA
kernel32.createThread
kernel32.GetProcessHeap
kernel3Z.GetvolumeInformationA
kernal32.MultiByteTowidechar
kernel32.LoadLibraryw

Figure 04 - Resolved address in call table

Figure 04 shows that the position pointed by the indirected call listed in point (3) points to
function "sleep" inside "kernel32.dII". Basically this call table is an Array of unsigned integers
(4 bytes) containing an address pointing to an API call in each position.

The " __load_library" function is responsible for creating this "call table" so the focus of this

article will move to understand how it works.

--- End of part | ---

Figure 05 -"__load_libraries" zoomed out CFG representation.

4/19


https://1.bp.blogspot.com/-3dV0BYr_4zY/XbB2CN2r6BI/AAAAAAAAbfs/vxzFgw8sWhQT9W_b4dRYJx1wCYw41oGJACLcBGAsYHQ/s1600/Screenshot%2B2019-10-23%2Bat%2B17.47.03.png
https://1.bp.blogspot.com/-md2iHJazlJw/XbCfUgEMgdI/AAAAAAAAbf4/Ebas5NCTAesgFCXqO7cUtTPKxJS7EBXRwCLcBGAsYHQ/s1600/Screenshot%2B2019-10-23%2Bat%2B20.35.09.png

Figure 05 shows an overview of the " load_library" function created by IDA. This function is
quite large and performs few connected steps which we need to go through in order to fully
understanding its behaviour. This function can be divided in three main sections:
1. Code responsible for finding the base addresses for core libraries;
2. Code responsible for loading addresses for calls within code libraries;
3. The last section is responsible for loading other libraries necessary for executing the
malware.

Figure 06 presents the first part of the " load_libraries" function. In its preamble the code
navigates through the TEB (Thread Environment Block) and loads 4 bytes from

offset 0x30 into register EAX. This address contains the address of the PEB (Process
Environment Block). Next step is to get the location for the "PEB_LDR_DATA" structure
which is located in offset OxC. This structure contains a linked list containing information
about all modules (DLLs) loaded by a specific process.

5/19


https://en.wikipedia.org/wiki/Win32_Thread_Information_Block
https://en.wikipedia.org/wiki/Process_Environment_Block
https://www.aldeid.com/wiki/PEB_LDR_DATA
https://1.bp.blogspot.com/-NcZGCyVXneg/XbCiLoDNw_I/AAAAAAAAbgQ/651D1Ka7uMMYQAqA0dFZvKcQXDn1YRW7QCLcBGAsYHQ/s1600/ida_function_part_001.png

MOVEX
xor
rol
add
cmp
jnz

Figure 06 - first section of the "__load_libraries" function.

6/19


https://1.bp.blogspot.com/-NcZGCyVXneg/XbCiLoDNw_I/AAAAAAAAbgQ/651D1Ka7uMMYQAqA0dFZvKcQXDn1YRW7QCLcBGAsYHQ/s1600/ida_function_part_001.png

The code accesses the offset 0xC in the "PEB_LDR_DATA" structure which contains the
head element for the loaded modules in the order they were loaded by the process. Each
element in this linked list is a combination of "_LDR_DATA_TABLE_ENTRY" and
"_LIST_ENTRY" structures. This structure has an entry to the base name of the module in
the offset 0x30. Figure 07 summarises all this "structure maze" used in order to fetch loaded
module names (excusez-moi for my paint brush skills :D).

r ™ i ™ r

"y i
TEE PEB PEE_LDR_DATA

_LDR_DATA_TAELE F.HTR-"I"

0x00 Flink

OxC Addr to PES_LDA DATA —f——f Oxl InloadOrderMadulelist ]

N

~—® 0x18 DllBaze

!

0x30 Addr te PEE [~ 0x30 BaseDl|Mame

. r \, r b, . L r

Figure 07 - Path through the process internal structures to get loaded DLL names and
base addresses

The main loop, beginning at "loc_2F189F" (Figure 06), goes through all modules loaded by
the "explorer.exe” process. This algorithm fetches the module name and calculates a hash
out of it. The second smaller looping located at "loc_2F18AB" (Figure 06) is the part of the
code responsible for calculating this hash. Figure 08 shows the reversed code for this
hashing algorithm.

7/19


https://www.aldeid.com/wiki/PEB_LDR_DATA
https://www.aldeid.com/wiki/LDR_DATA_TABLE_ENTRY
https://docs.microsoft.com/en-us/windows/win32/api/ntdef/ns-ntdef-list_entry
https://1.bp.blogspot.com/-z6SIo3sxaSY/XbGI2AQoawI/AAAAAAAAbhU/ROY_IV2m3i0tEp0foF2ePcdlYVDjIJZIQCLcBGAsYHQ/s1600/TEB_accessing.png

module_name - b'tinype.exe'

rol Lambda val, r_bits, max_bits=32: \
(val r_bits*max_bits) & (2++max_bits-1) | \
((val & (2++tmax_bits 1)) (max_bits (r_bits*max_bits)))

1
.-
1
1
1.
15
18
19

final - @
c module_name:
tl = (c & @xDF) & Oxff
final = final ~ t1
final = rol(final, 8)
final t1
final Oxffffffff

print(hex(final))

Figure 08 - Reversed hashing algorithm used in the first part of the analysed code

Moving forward, after calculating a hash the algorithm does a XOR operation with a
hardcoded value 0x25A56A90 and this value is compared with two hardcoded hashes:
0x4C5DACBC (kernel32.dIl) and 0x7FA40424 (ntdll.dll). The base addresses of each DLL
are stored in two global variables located in the following addresses [ES/+0x1036] and
[ESI+0x103A].

Bonus: these hardcoded hashes can be used for detecting this specific version of
Smokeloader.

Summarising, this first part of the code is responsible by finding the base address of two core
libraries in MS Windows ("ntdll.dIl" and "kernel32.dII"). These addresses will be used for
fetching resources necessary for loading all other libraries required by the malware.

Figure 09 shows the second section of "__load_libraries". This figure shows the code with

some functions names already figured out in order to make it more didactic.

short loc_2F1B9F

8/19


https://1.bp.blogspot.com/-vWSBk-ktTiw/XbF-j0UGhFI/AAAAAAAAbhI/pco1Imq-guo7PEEVT-7d-68sKZLpDCXXgCLcBGAsYHQ/s1600/Screenshot%2B2019-10-24%2Bat%2B12.35.03.png
https://1.bp.blogspot.com/-v-gamXAvpKs/XbGatY7Qs6I/AAAAAAAAbhs/6lFIQYfXKcULzppwOMQPsMSir_UiyMwRACLcBGAsYHQ/s1600/Screenshot%2B2019-10-24%2Bat%2B14.34.53.png

; ntdll

lea

Mo

push
push
call
test

9/19


https://1.bp.blogspot.com/-v-gamXAvpKs/XbGatY7Qs6I/AAAAAAAAbhs/6lFIQYfXKcULzppwOMQPsMSir_UiyMwRACLcBGAsYHQ/s1600/Screenshot%2B2019-10-24%2Bat%2B14.34.53.png

Figure 09 - second section of the "__load_libraries" function.

The first two basic blocks checks if the function was able to find "ntdll.dIl" and "kernel32.dII"
base addresses. If these modules are available then the "__load procs from_module"
function is invoked for filling the call table. This function receives 4 parameters and does not
follow the standard C calling convention. Two parameters are passed through the stack and
the other two through registers (ECX and EDX). This function expects a DLL base address
in EDX, the data segment in ECX, an address to a list of unsigned ints (api calls hashes) and
a destination address (where the calls addresses will be stored). The last two parameters are

pushed in the stack.

Figure 10 shows the hardcoded hashes passed as parameter to
" load_procs_from_module" function. This list will be used to determine which procedures
will be loaded in the call table.

Figure 10 - Array of hashes of "ntdll.dll" function names

Next step is to take a look inside " load _procs _from_module" function. Figure 11 shows the
code for this function. Parameters and functions were named to facilitate the understanding
of this code.

Wl [ (55

10/19


https://1.bp.blogspot.com/-v-gamXAvpKs/XbGatY7Qs6I/AAAAAAAAbhs/6lFIQYfXKcULzppwOMQPsMSir_UiyMwRACLcBGAsYHQ/s1600/Screenshot%2B2019-10-24%2Bat%2B14.34.53.png
https://1.bp.blogspot.com/-T1Ik2bin5YE/XbG53MMt6TI/AAAAAAAAbh4/htzsm60B3YEil7JcNLxy380WxuIoiZG2QCLcBGAsYHQ/s1600/Screenshot%2B2019-10-24%2Bat%2B16.48.11.png
https://1.bp.blogspot.com/-nIoTX9DyCYY/XbIZp3GTdZI/AAAAAAAAbik/JsLfyrdiyAEdbAOt5Z6RP25I_CtCbi9XwCLcBGAsYHQ/s1600/Screenshot%2B2019-10-24%2Bat%2B23.36.38.png

oc_hashes]
DLL base
; data segment

b

dword ptr [ i ]_.
short loc_31F1B1A

loc 31F1AF3:

mov

mov edx, ebp ;3 DLL base
xor

push

call

mov edi

test eax

= 3 =a”®

jz short loc_31F1B17

dword ptr [ -
short loc_31F1AF3

11/19


https://1.bp.blogspot.com/-nIoTX9DyCYY/XbIZp3GTdZI/AAAAAAAAbik/JsLfyrdiyAEdbAOt5Z6RP25I_CtCbi9XwCLcBGAsYHQ/s1600/Screenshot%2B2019-10-24%2Bat%2B23.36.38.png

short loc_31F1B19

10{_31F1819:
pop ed

loc_31F1B1A:
pPop '

pop
mov
pop
pop
retn

__load_procs_from_module endp

Figure 11 - Code for"___load _procs_from_modules" function

This function iterates over a list of 4 bytes hashes received as parameter. Each element is
XORed with a hardcoded value (0x25A56A90) and passed to the function

" get proc_address" together with a base address of a library. This function iterates over
all procedures names exported by a DLL, calculates a hash and compares it with the hash
received as parameter. If it finds a match, " get proc_address" returns an address for the
specific function.

Lets take a closer look inside " __get proc_address" to figure out how it navigates through

the loaded DLL. Figure 12 shows a snip of the code for this function.

Ll e =]

12/19


https://1.bp.blogspot.com/-nIoTX9DyCYY/XbIZp3GTdZI/AAAAAAAAbik/JsLfyrdiyAEdbAOt5Z6RP25I_CtCbi9XwCLcBGAsYHQ/s1600/Screenshot%2B2019-10-24%2Bat%2B23.36.38.png
https://1.bp.blogspot.com/-4BJIYgqe0HI/XbX2ypSXblI/AAAAAAAAbjI/sSH_bBC9bQ0vUWhYYne8tpun23IEPuKZACLcBGAsYHQ/s1600/Screenshot%2B2019-10-27%2Bat%2B20.56.17.png

word ptr
4= dword ptr

3 DLL base address

13/19


https://1.bp.blogspot.com/-4BJIYgqe0HI/XbX2ypSXblI/AAAAAAAAbjI/sSH_bBC9bQ0vUWhYYne8tpun23IEPuKZACLcBGAsYHQ/s1600/Screenshot%2B2019-10-27%2Bat%2B20.56.17.png

Figure 12 - Code for"_get proc_address" function.

The preamble of the function fetches the address for the PE header by accessing offset
0x3C in the DLL base address. Next step it fetches the relative virtual address (RVA) for the
export directory at offset 0x78 of the PE header. From the Export Directory structure this
function fetches the following fields: NumberOfNames (offset 0x18), AddressOfNames (offset
0x20) and AddressOfNameOrdinals (offset 0x24). References for all these structures can be
found in the Corkami Windows Executable format overview.

After loading information about the exports the code will iterates through the list of function
names and calculates a 4 bytes hash by calling the "__hashing" function (same algorithm
described in Figure 08). If the output of the " hashing" function matches the hardcoded
hash then the ordinal for that function is saved and the address related to that ordinal is
returned.

Figure 13 shows a code in Python that reproduces the above mentioned comparison
algorithm using hardcoded hashes extracted from memory (Figure 10) and all function
names exported by ntdll.dll.

14/19


https://1.bp.blogspot.com/-4BJIYgqe0HI/XbX2ypSXblI/AAAAAAAAbjI/sSH_bBC9bQ0vUWhYYne8tpun23IEPuKZACLcBGAsYHQ/s1600/Screenshot%2B2019-10-27%2Bat%2B20.56.17.png
https://github.com/corkami/pics/blob/master/binary/pe102/pe102.pdf
https://www.geoffchappell.com/studies/windows/win32/ntdll/api/index.htm?tx=7

ntdll_function_hashes - [
CE9CF40E, @x@CBB441ED, )
: 37C2A503, 49B8F7C, @x0ABDA34BE,
88FF6FC, 6C1A, @x@DD98ACCE,
@x739210B7, ©0x5CB65516

]

rol lambda val, r_bits, max _bits=32: \
(val r_bitsimax_bits) & (2++max_bits-1) | \
((val & (2++max_bits-1)) (max_bits (r_bits max_bits)))

def __hashing(arg):
final = @
C arg:
t1 (c OxDF) Oxff
final = final = t1
final = rol(final, 8)
final t1
final OxFfffffff
final

fd = open('ntdl1_exports.txt', 'r')
h ntdll_function_hashes:
h2 = h *~ 8x25A56A90
C fd:
¢ = c.replace('\n', '')
h2 __hashing(bytes(c
print(' [+] ox{:x} —> {
fd.seek(0)

, 'utf-8")):
}'.format(h, c))

Figure 13 - Reversing outcome for code responsible by resolving "ntdll.dll" hardcoded
hashes

This code produces the following output:

15/19


https://1.bp.blogspot.com/-EDfPO5-HOrQ/XbYj-ogQHjI/AAAAAAAAbjU/BQFm62fv6koMgh4I89cmXnU46iUOMOZpQCLcBGAsYHQ/s1600/Screenshot%2B2019-10-28%2Bat%2B00.10.23.png

@xce9cf4@e -> RtlGetLastWin32Error
@xcbb44led -> RtlAllocateHeap

@x1640ef7 -> RtlReAllocateHeap
Ox728663c8 RtlFreeHeap

@xbd8670ee IwCreateSection
@x37c2a5@3 ZwMapViewOfSection
Oxed9b8f7cC ZwUnmapViewOfSection
@xabda34be Rt1ComputeCrec32
@x12ac99ce Rt1MoveMemory

@xl1l88ffefc RtlZeroMemory

@x30bebcla atoi

@xdd98acce LdrGetD11Handle
Oxel84ebeld RtlGetVersion

Ox1f70d502 IwQueryInformationProcess
@x739210b7 LdrProcessRelocationBlock
@x5cb65516 Rt1RandomEx

Finally, these addresses are used for filling the call table which will be referenced by indirect
calls in the main payload. It is possible to confirm that what was described so far is true by
observing the function addresses written in the data segment after executing the second
section of "__load_libraries". Figure 14 shows the part of the call table filled so far with the
expected "ntdll.dll" calls.

Aﬂdres; [Value CGIIQ[F?H‘ES .
D0ZEOQOFSZ| 77 2CY9AED Nt .Rt1GetLastWwin32Error

D02EQFS6 77282006 ntdll.
Sal772CFF51 nedll.
SE|772B2CHEA | ntdl1.
22 772A56ER ntdll.
EOFG6 772A5C28 ntdll.
EOFGA 77246988 ntdll.
E 77260D8A | ntdll.
72| 77295¢cc0|ntdll.
76|77295C90 ntdll.
7a 77269000 |ntd11.
JF7E 772BEAFR ntdll.
82| 772CH5E3|ntd11.
86 77246048 ntdll.
D0Z2EOQF8A 77262F1D | ntdll.
D02EQOF8E 772C283D ntdll.
Q0Z2eQ0F92 00000000

NN2ocneds ! nnindininnn

Rt1AllocateHeap

Rtlreal locateHeap
Rt1FreeHeap
ZwCreatesection
NtMapviewofsection
NtUnmap\iewofSection
Rt1ComputecCrc32
Rt1MoveMemory
RtlZeroMemory

atoi

LdrGeth]l THandle
RtlGetversion
NtQueryInformationProcess
LdrProcessRelocationBlock
Rt1RandomEx

Figure 14 - Segment of Smokeloader's dynamically generated call table

The last segment of the " load_libraries" function de-obfuscates the remain libraries names
and load them by using the same resources used for loading "ntdll" and "kernel32". The
libraries loaded by Smokeloader are: "user32", "advapi32", "urlmon", "ole32", "winhttp",
"ws2_ 32", "dnsapi" and "shell32".

Now that the whole process of creating the call table used by the indirect calls is described,
next step will get into fixing the memory containing the main payload by using /DA Python.

16/19


https://1.bp.blogspot.com/-DMOTm7iLKoM/XbYkoB8lH2I/AAAAAAAAbjc/euMmHofBiZ8Gzol98BddYYvr8-woj9czgCLcBGAsYHQ/s1600/Screenshot%2B2019-10-28%2Bat%2B00.13.04.png
https://1.bp.blogspot.com/-UaYf7SsVE7A/XbYpfe3dteI/AAAAAAAAbjo/wFp_gOIZdNkL8z6K34wPLaqILRaB-stSQCLcBGAsYHQ/s1600/Screenshot%2B2019-10-28%2Bat%2B00.31.21.png

--- End of part Il ---

When the main payload of Smokeloader is imported into IDApro it is possible to see code
containing indirect calls which uses a base address stored in a register plus an offset. Figure
15 presents a snip of the main payload containing such indirect calls.

mov
call
lea
mow
push
push
lea
mow
push
lea
mow
push
call
add
push
Xor
=eg@al :@a2F1B85 push
push
call
mow
call
cmp
jnz
push
call
push
call

loc_2F1BB3:
mov BCX,
call sub_2F:

Figure 15 - Indirect calls calling functions pointed at the dynamic generated calls table.

This characteristic makes the processing of reversing this code harder since the interaction
with other resources in the Operating System is not clear as all external calls is not explicit.
The goal in this part of the article is to patch these calls for pointing to addresses we going to
map and label (using IDA Python). The code below implements the change we want.

This code performs the following actions into our IDB:

17/19


https://1.bp.blogspot.com/-X1mDkdBLW78/XbgugSuGdkI/AAAAAAAAbkE/OEhfFs48oQUT-ojDtsHyxrDrrPRBLWHqgCLcBGAsYHQ/s1600/Screenshot%2B2019-10-29%2Bat%2B13.19.48.png

1. Reads a memory dump of the data segment of an executing Smokeloader binary (line
106);

2. Creates a DATA segment mapped into 0x00000000 (line 107).

3. Loads the dumped data segment from the running sample into this new segment (line
39);

4. Imports APl names extracted from x32dbg to specific positions in the new data
segment (line 112);

5. Patches all indirect call instructions (opcode 55 9X) to direct call instructions (line 57).

Figure 16 shows the code listed after executing the script above. As we can see, all indirect
calls were translated to direct calls to a labeled table located in the freshly created data
segment starting at address 0x00000000.

kernel32 CreateMutexh

[edi+ ], ea»
ntdll RtlGetlLastWin32Error

loc_2F1BB3:

Figure 16 - Patched code with calls containing meaningful labels.
Just heads up for preventing people against messing up research IDBs: for obvious reasons

(different instruction sets) the script above can not be used for patching 64 bits
Smokeloader IDBs but it could be easily adapted to do the same task.

18/19


https://1.bp.blogspot.com/-CETEyKaym24/XbgvzZ4Tj5I/AAAAAAAAbkQ/xv1oi6EcQd8vbRVDmyLZlOote08M8d9pACLcBGAsYHQ/s1600/Screenshot%2B2019-10-29%2Bat%2B13.25.30.png

--- End of part Ill ---
That's all folks!

The ideas described in this article can be extended and used to analyse any other malware
families dynamically importing libraries and using indirect calls. Another thing cool for
experimenting in future would be write a script which loads DLLs and extracts labels
statically by using the reversed " ___hashing" function and native functionalities in IDA for
mapping DLLs in the process address space.

19/19


https://github.com/nihilus/IDA-IDC-Scripts/blob/master/PE-scripts/pe_dlls.idc

