McAfee ATR Analyzes Sodinokibi aka REvil Ransomware-
as-a-Service — What The Code Tells Us

securingtomorrow.mcafee.com/other-blogs/mcafee-labs/mcafee-atr-analyzes-sodinokibi-aka-revil-ransomware-as-a-
service-what-the-code-tells-us/

October 2, 2019

Episode 1: What the Code Tells Us

McAfee’s Advanced Threat Research team (ATR) observed a new ransomware family in the
wild, dubbed Sodinokibi (or REvil), at the end of April 2019. Around this same time, the
GandCrab ransomware crew announced they would shut down their operations.
Coincidence? Or is there more to the story?

In this series of blogs, we share fresh analysis of Sodinokibi and its connections to
GandCrab, with new insights gleaned exclusively from McAfee ATR’s in-depth and extensive
research.

o Episode 1: What the Code Tells Us

1/24

https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/mcafee-atr-analyzes-sodinokibi-aka-revil-ransomware-as-a-service-what-the-code-tells-us/
https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/mcafee-atr-analyzes-sodinokibi-aka-revil-ransomware-as-a-service-what-the-code-tells-us/

o Episode 2: The All-Stars
o Episode 3: Follow the Money
o Episode 4: Crescendo

In this first instalment we share our extensive malware and post-infection analysis and
visualize exactly how big the Sodinokibi campaign is.

Background

Since its arrival in April 2019, it has become very clear that the new kid in town, “Sodinokibi”
or “REvil” is a serious threat. The name Sodinokibi was discovered in the hash
ccfde149220e87e97198c23fb8115d5a where ‘Sodinokibi.exe’ was mentioned as the internal
file name; it is also known by the name of REvil.

At first, Sodinokibi ransomware was observed propagating itself by exploiting a vulnerability
in Oracle’s WebLogic server. However, similar to some other ransomware families,
Sodinokibi is what we call a Ransomware-as-a-Service (RaaS), where a group of people
maintain the code and another group, known as affiliates, spread the ransomware.

This model allows affiliates to distribute the ransomware any way they like. Some affiliates
prefer mass-spread attacks using phishing-campaigns and exploit-kits, where other affiliates
adopt a more targeted approach by brute-forcing RDP access and uploading tools and
scripts to gain more rights and execute the ransomware in the internal network of a victim.
We have investigated several campaigns spreading Sodinokibi, most of which had different
modus operandi but we did notice many started with a breach of an RDP server.

Who and Where is Sodinokibi Hitting?

Based on visibility from MVISION Insights we were able to generate the below picture of

infections observed from May through August 23", 2019:

2/24

https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/mcafee-atr-analyzes-sodinokibi-aka-revil-ransomware-as-a-service-the-all-stars/
https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/mcafee-atr-analyzes-sodinokibi-aka-revil-ransomware-as-a-service-follow-the-money/
https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/mcafee-atr-analyzes-sodinokibi-aka-revil-ransomware-as-a-service-crescendo/
https://www.mcafee.com/enterprise/en-us/solutions/lp/mvision-insights.html?eid=RBUULBZJ&smcid=BL&utm_campaign=MV_INS_19Q3&utm_source=mcafeeblog&utm_medium=organic

Who is the target? Mostly organizations, though it really depends on the skills and expertise
from the different affiliate groups on who, and in which geo, they operate.

Reversing the Code

In this first episode, we will dig into the code and explain the inner workings of the
ransomware once it has executed on the victim’s machine.

Overall the code is very well written and designed to execute quickly to encrypt the defined
files in the configuration of the ransomware. The embedded configuration file has some
interesting options which we will highlight further in this article.

Based on the code comparison analysis we conducted between GandCrab and Sodinokibi
we consider it a likely hypothesis that the people behind the Sodinokibi ransomware may
have some type of relationship with the GandCrab crew.

3/24

Sodinokibi Ransomware Functionalities

RunPE .
Sodinokibi Sample ~ UnPacking l
Dynamic |AT
Resolution @
N -
Mutex

Dacrypt JSON
Config file

JSON Config file
File Mame Description
Public key of the attacker in Basegd

pk
pid Affiliate number
sub Subaccount or campaign id
dbg Debug option
Option to encrypt the first 1 megabyte of each
fast target file or all files
wipe Option to wipe specific files inthe field Swild®
fid | Folders whitelist
wht | fls Files whitelist
ext | Lit oftangeted extensions
wiid List of targeted folders
pre List of processes to kil
dmn List of C2 domains
net Option to specify the connexion to £2
nbody Ransom note in basesd
nname Strings of mahware name
exp Enable exploit OVE-2018-8453
img Wallpaper ransom note inbasesd

&

POST of encrypted
victim's information

If ‘net’ ==

Delete
Shad ow copy

Calculate CRC32
Hash of blob of data

9,
l

The exploit can
cause a BSOD

1&

Privilege Escalation with
Exploit CVE-2018-8453

{1} Selcn
If ‘exp’==1 -
JSON [
N
| ;ggg Shellcode using Heaver's Gate
I.' L J 1100 technigue for 64bit machines
Collect data from I

the machine

Write data in Registry
HEEY LOCAL RALCHINE e HIEY CURAENT LEER

f
I-' Drescription
|
| 0 key Master key
sk_key Infected machine’s private key encrypted
phk_key Public key
subkey Affiliate public key
stat information gathered from the infected machine
rnd_ext Randam extension for encry pted files

Get keyboard language

Ransomware actions

LN N N

- .
Wipe files Encrypt files Drop ransam
presentin and folders note
“wifld' field

4/24

FIGURE 1.1. OVERVIEW OF SODINOKIBI'S EXECUTION FLAW

Inside the Code

Sodinokibi Overview

For this article we researched the sample with the following hash (packed):

I
MD5: ef777a861ede95d3b02b0b135952d43a

SHAL: 39e4eblab854c4a7929e8e77caldbca37049154d

File size: 32KB

The main goal of this malware, as other ransomware families, is to encrypt your files
and then request a payment in return for a decryption tool from the authors or
affiliates to decrypt them.

The malware sample we researched is a 32-bit binary, with an icon in the packed file and
without one in the unpacked file. The packer is programmed in Visual C++ and the malware
itself is written in pure assembly.

Technical Details

The goal of the packer is to decrypt the true malware part and use a RunPE technique to run
it from memory. To obtain the malware from memory, after the decryption is finished and is
loaded into the memory, we dumped it to obtain an unpacked version.

The first action of the malware is to get all functions needed in runtime and make a dynamic
IAT to try obfuscating the Windows call in a static analysis.

5/24

_get_user3?_module_and_load_it: ; CODE XREF: SodiDbfuscateFunctionToMakeOperations+92Tj

mov eax, offset SodiDecryptUser32ModuleMameAndLoadIt
jmp short _call special_function_switch_case

_get_o0le32 module and load it: ; CODE XREF: SodiObfuscateFunctionToMakeOperations+8DTj
mou eax, offset SodiDecryptOLE32HoduleHameAndLoadIt
jmp short _call special_function_switch_case

_get_mpr_module_and_load_it: ; CODE XREF: SodiDbfuscateFunctionToHakeOperations+88tj
mov eax, offset SodiDecryptHPRModuleHameAndLoadIt

~call special function switch case: ; CODE XREF: SodiObfuscateFunctionToMakeOperations+57Tj

; SodiObfuscateFunctionToHakeOperations+5ETj ...
call eax ; SodiGetNHtdllBasenddressOfHodule

mou edi, eax

test edi, edi

jz short clear eax
mov ec¥, [edi+3Ch] ; move to module pe header to reach the EAT
and esi, 1FFFFFh

®or ebx, ebx

mou ecx, [ecx+edi+78h]
add ecx, edi

mov eax, [ecx+24h]
mowv edx, [ecx+268h]
add eax, edi

mov [ebp+var 8], eax
add edx, edi

mou eax, [ecx+1Ch]
add eax, edi

mov [ebp+var_4], edz
mov [ebp+var_C], eax
mowv eax, [ecx+18h]
mov [ebp+arg_8], eax
test eax, eax

jz short clear eax

FIGURE 2. THE MALWARE GETS ALL FUNCTIONS NEEDED IN RUNTIME

The next action of the malware is trying to create a mutex with a hardcoded name. It is
important to know that the malware has 95% of the strings encrypted inside. Consider that
each sample of the malware has different strings in a lot of places; values as keys or seeds
change all the time to avoid what we, as an industry do, namely making vaccines or creating
one decryptor without taking the values from the specific malware sample to decrypt the
strings.

push ebp

nov ebp, esp

sub esp, 58h

push esi

lea eax, [ebp+uvar_ 58]
push eax

push Géh

push 7

push 26Ah
push offset SodiGlobalBufferWithHoduleNameToDecrypt
call SodiPrepareToDecryptStringFunction ; Global\3555A3D6-37B3-8919-F7BE-F3AABSB6644A , its changes per sample

add esp, 14h

Xxor eax, eax

nov [ebp+var_2], ax

Xor esi, esi ; return FALSE (mutex dont exists by default)
lea eax, [ebp+var_58]

push eax

push esi

push esi

call SodiGlobalVarCreateHutexWFunction

nov SodiGlobalVarHutexHandle, eax

test eax, eax

jz short _exit

call SodiGlobalVarRtlGetLastErrorFunction
cnp eax, BB7h ; ERROR_ALREADY_EXISTS

6/24

FIGURE 3. CREATION OF A MUTEX AND CHECK TO SEE IF IT ALREADY EXISTS

If the mutex exists, the malware finishes with a call to “ExitProcess.” This is done to avoid re-
launching of the ransomware.

After this mutex operation the malware calculates a CRC32 hash of a part of its data using a
special seed that changes per sample too. This CRC32 operation is based on a CRC32
polynomial operation instead of tables to make it faster and the code-size smaller.

The next step is decrypting this block of data if the CRC32 check passes with success. If the
check is a failure, the malware will ignore this flow of code and try to use an exploit as will be
explained later in the report.

SodiCheckCRC32HashOfTheCryptedConfigAndIfIs0kDecryptIt proc near
; CODE XREF: SodiGetInformationOfTheUictimMachineAndPre
; SodiDecryptConfigJsonAndCheckTheExpFieldAndCleanAllMe

push edi
push ds:SodiGlobalVarSizeOfConfigCrypted
mou edi, offset SodiGlobalBufferConfigCrypted
push edi
push a8
call SodiCRC22PolinomialFunction |
add esp, BCh
cmp eax, ds:SodiGlobalVarConfigCRC32HardcodedValueCryptedConfig
jz short _reserve_memoriy
xor eax, eax : return HULL (failure)
pop edi
retn
_Feserve_memory: ; CODE XREF: SodiCheckCRC32HashOfTheCryptedConfigAndIFf]
push esi
push ds:SodiGlobalVarSizeOfConfigCrypted
call SodiGetHeapfAndReserveMemoryFunction
mov esi, eax
pop ecx
test esi, esi
jz short _exit
push esi
push ds:SodiGlobalVarSizeOfConfigCrypted
push edi
push 28h

push offset SodiGlobalBufferKeyToDecryptTheConfig

call SodiDecryptTextFunction

add esp, 14h

mou eax, esi ; return pointer to the decrypted config

FIGURE 4. CALCULATION OF THE CRC32 HASH OF THE CRYPTED CONFIG AND
DECRYPTION IF IT PASSES THE CHECK

In the case that the malware passes the CRC32 check and decrypts correctly with a key that
changes per sample, the block of data will get a JSON file in memory that will be parsed.
This config file has fields to prepare the keys later to encrypt the victim key and more
information that will alter the behavior of the malware.

7/24

The CRC32 check avoids the possibility that somebody can change the crypted data with
another config and does not update the CRC32 value in the malware.

After decryption of the JSON file, the malware will parse it with a code of a full JSON parser
and extract all fields and save the values of these fields in the memory.

fpkT: " PEavIERWcorVaRoBEHTGOWIOIKES iTkedgdhS YUt go="",
"pid": "8";
"S-ub": "2"',!";
Tdbhg': false,
"fast™: true,
"gipe™: true,
fuht™:
LAY [

"program files [(x86) ",
"mzocache™,

"program files'",
Thoot ™,

fintel"™,

riwindows. ~ht',
"perflogs",

"yindows",

riwindows. ~w3",
"zyztem volume information™,
rirecycle.bin'™,

"Lor browser™,
"fmozilla™,

"appdata™,
"programdata™,
"gwindow=s.aold"™,
"google™,

"application data'™

1.

FIGURE 5. PARTIAL EXAMPLE OF THE CONFIG DECRYPTED AND CLEANED

Let us explain all the fields in the config and their meanings:

pk -> This value encoded in base64 is important later for the crypto process; it is the
public key of the attacker.

pid -> The affiliate number that belongs to the sample.

sub -> The subaccount or campaign id for this sample that the affiliate uses to keep
track of its payments.

dbg -> Debug option. In the final version this is used to check if some things have been
done or not; it is a development option that can be true or false. In the samples in the
wild it is in the false state. If it is set, the keyboard check later will not happen. It is
useful for the malware developers to prove the malware works correctly in the critical
part without detecting his/her own machines based on the language.

8/24

« fast -> If this option is enabled, and by default a lot of samples have it enabled, the
malware will crypt the first 1 megabyte of each target file, or all files if it is smaller than
this size. In the case that this field is false, it will crypt all files.

o wipe -> If this option is ‘true’, the malware will destroy the target files in the folders that
are described in the json field “wfld”. This destruction happens in all folders that have
the name or names that appear in this field of the config in logic units and network
shares. The overwriting of the files can be with trash data or null data, depending of the
sample.

o wht -> This field has some subfields: fld -> Folders that should not be crypted; they are
whitelisted to avoid destroying critical files in the system and programs. fls -> List of
whitelists of files per name; these files will never be crypted and this is useful to avoid
destroying critical files in the system. ext -> List of the target extensions to avoid
encrypting based on extension.

o wfld -> A list of folders where the files will be destroyed if the wipe option is enabled.

e prc -> List of processes to kill for unlocking files that are locked by this/these
program/s, for example, “mysql.exe”.

o dmn -> List of domains that will be used for the malware if the net option is enabled;
this list can change per sample, to send information of the victim.

e net -> This value can be false or true. By default, it is usually true, meaning that the
malware will send information about the victim if they have Internet access to the
domain list in the field “dmn” in the config.

e nbody -> A big string encoded in base64 that is the template for the ransom note that
will appear in each folder where the malware can create it.

e nname -> The string of the name of the malware for the ransom note file. It is a
template that will have a part that will be random in the execution.

e exp -> This field is very important in the config. By default it will usually be ‘false’, but if
it is ‘true’, or if the check of the hash of the config fails, it will use the exploit CVE-2018-
8453. The malware has this value as false by default because this exploit does not
always work and can cause a Blue Screen of Death that avoids the malware’s goal to
encrypt the files and request the ransom. If the exploit works, it will elevate the process
to SYSTEM user.

e img -> A string encoded in base64. It is the template for the image that the malware will
create in runtime to change the wallpaper of the desktop with this text.

After decrypting the malware config, it parses it and the malware will check the “exp” field
and if the value is ‘true’, it will detect the type of the operative system using the PEB fields
that reports the major and minor version of the OS.

9/24

SodiGetOperativeSystemiajorAndiinorVersionFromPEB proc near
; CODE RREF: SodiCheckDperat:
; SodiGetFileTimefAndOperatiwm
mov ecx, large fs:368h
movzx eax, byte ptr [ecx+8A%h] ; Hajor Uersion
movzx ecx, byte ptr [ecz+8A8h] ; Hinor Uersion

=hl ax, 8
or ax, Cx
retn

SodiGetOperativeSystemiajorAndiHinorVersionFromPEB endp

FIGURE 6. CHECK OF THE VERSION OF THE OPERATIVE SYSTEM

Usually only one OS can be found but that is enough for the malware. The malware will
check the file-time to verify if the date was before or after a patch was installed to fix the
exploit. If the file time is before the file time of the patch, it will check if the OS is 64-bit or 32-
bit using the function “GetSystemNativelnfoW”. When the OS system is 32-bit, it will use a
shellcode embedded in the malware that is the exploit and, in the case of a 64-bit OS, it will
use another shellcode that can use a “Heaven’s Gate” to execute code of 64 bits in a
process of 32 bits.

y »001lFrepdreloMakeHsNelLlCcOodedaseqaltin

T owvar_24 = word ptr -24h

- push ebp

3 mou ebp, esp

4 sub esp, 24h

? 1ea eax, [ebp+var_24]

} push eax

) call SodiGlobalVarGetSystemHative InfoWFunction
g ®or eax, eax

| cmp [ebp+var_24], 9 ; PROCESSOR_ARCHITECTURE_AMDGL |
i setz al

} mou esp, ebp

} pop ebp

: retn

: SodiCheckIfTheDperativeSystemIs6hbits0r32Bits endp

FIGURE 7. CHECK IF OS IS 32- OR 64-BIT

In the case that the field was false, or the exploit is patched, the malware will check the OS
version again using the PEB. If the OS is Windows Vista, at least it will get from the own
process token the level of execution privilege. When the discovered privilege level is less
than 0x3000 (that means that the process is running as a real administrator in the system or
SYSTEM), it will relaunch the process using the ‘runas’ command to elevate to 0x3000
process from 0x2000 or 0x1000 level of execution. After relaunching itself with the ‘runas’
command the malware instance will finish.

10/24

push ebp

mov ebp, esp

sub esp, 4Ch

push esi

call SodiGlobalVarGetCurrentProcessFunction

mov esi, eax

call SodiGetOperativeSystentajorAndiinorVersionFromPEB
nov ecx, 606h ; Windows Vista or upper

cmp ax, Cx

jb _exit

push esi

call SodiGetTokenElevationInformationFromProcessFunction
pop ecx

cmp eax, 3

jnz _exit

push esi

call SodiGetTokenIntegrityLevelInformationFromProcessAndCheckSidFunction
pop ecx

cmp eax, 308080h ; ADHIN PRIVILEGE (UAC ACCEPTED OR BYPASSED OR DONT EXISTS IN THIS MACHINE BECAUSE IS DISABLED)
jnb _exit

push edi

call SodiReleaseHutexfAndCloseHandleOfItFunction

lea eax, [ebp+var_1u]

XoVr edi, edi

push eax

push edi

call SodiGetHoduleFileNameWAndPrepareHemoryFunction
nou esi, eax

pop ecx

pop ecx

test esi, esi

jnz short _decrypt_string

push edi

call SodiGlobalVarExitProcessFunction

FIGURE 8. CHECK IF OS IS WINDOWS VISTA MINIMAL AND CHECK OF EXECUTION
LEVEL

The malware’s next action is to check if the execute privilege is SYSTEM. When the execute
privilege is SYSTEM, the malware will get the process “Explorer.exe”, get the token of the
user that launched the process and impersonate it. It is a downgrade from SYSTEM to
another user with less privileges to avoid affecting the desktop of the SYSTEM user later.

After this it will parse again the config and get information of the victim’s machine This
information is the user of the machine, the name of the machine, etc. The malware prepares
a victim id to know who is affected based in two 32-bit values concat in one string in
hexadecimal.

The first part of these two values is the serial number of the hard disk of the Windows main
logic unit, and the second one is the CRC32 hash value that comes from the CRC32 hash of
the serial number of the Windows logic main unit with a seed hardcoded that change per
sample.

11/24

push ebp

mov ebp, esp

push ecx

push esi

call SodiGetWindowsDirectoryWFunction

mov esi, eax

Xor eax, eax

test esi, esi

jz short _exit

Xor BCX, EBCX

mov [esi+6], ax ; put a null char to get only the unicode string of the logic unit, for example C:3\
push ecx

push ecx

push ecx

push ecx

lea eax, [ebp+var_u]

push eax

push ecx

push ecx

push esi

call SodiGlobalVarGetVolumeInformationWFunction ; make as gandcrab of the main unit where windows is installed logic unit
neq eax

push esi

sbh eax, eax

and [ebp+var_4], eax

call SodiPrepareToReleaselemory

mov eax, [ebp+var_4] ; return hard disk serial number |
pop ecx

FIGURE 9. GET DISK SERIAL NUMBER TO MAKE CRC32 HASH

After this, the result is used as a seed to make the CRC32 hash of the name of the
processor of the machine. But this name of the processor is not extracted using the Windows
APl as GandCrab does; in this case the malware authors use the opcode CPUID to try to
make it more obfuscated.

push ebp

moy ebp, esp

sub esp, 18h

push ebx

push esi

push edi

moy edi, [ebp+arg_A]

Xor eax, eax

mowv [ebp+var_4], eax

moy [ebp+var_8], edi
_loop_get_processor_name: ; CODE XREF: SodiGetProcessorNameUsingCPUIDOpcodeFunction+48)j

add eax, 80000802h

Xor ecx, ecx

push ebx

cpuid

FIGURE 10. GET THE PROCESSOR NAME USING CPUID OPCODE
Finally, it converts these values in a string in a hexadecimal representation and saves it.

Later, during the execution, the malware will write in the Windows registry the next entries in
the subkey “SOFTWARE\recfg” (this subkey can change in some samples but usually does
not).

The key entries are:

o 0_key -> Type binary; this is the master key (includes the victim’'s generated random
key to crypt later together with the key of the malware authors).

12/24

e sk_key -> As 0_key entry, it is the victim’s private key crypted but with the affiliate
public key hardcoded in the sample. It is the key used in the decryptor by the affiliate,
but it means that the malware authors can always decrypt any file crypted with any
sample as a secondary resource to decrypt the files.

e pk_key -> Victim public key derivate from the private key.

o subkey -> Affiliate public key to use.

o stat -> The information gathered from the victim machine and used to put in the ransom
note crypted and in the POST send to domains.

e rnd_ext -> The random extension for the encrypted files (can be from 5 to 10
alphanumeric characters).

The malware tries to write the subkey and the entries in the HKEY _LOCAL_MACHINE hive
at first glance and, if it fails, it will write them in the HKEY_CURRENT_USER hive.

s Registry Editor

File Edit View Favaorites Help

=] SOFTWARE Al Mame Type Data
2 corfesy [ab](pefault) REG_5Z (value nat set)
(] Classes (B8]0 _key REG_BINARY F7 cc be 3 Oc d3 45 4F 7b 93 8 92 bd 86 63 30 7o bé ..,
g ;f!i':;o&ware B]pk_key REG_BINARY 3303995 ec 72 7953 b3 bt be 3 33 bd be 45 57 84..,
3 Gemplus rnd_ext REG_3Z .26hduss
] Google Bi]sk_key REG_BIMARY £a3c 54 df 1c 06 ca be 3281 e55d 79 de d3536c 1d ..,
£ Tmmunity Tne B stat REG_BINARY 5F 34 af a4 3d ad d9 9a c8 05 72 bf 0d Fe 96 b7 SF 62 ..,

[JetBrains
[Keygener Assistant
2 Macromedia
[Micrasaft
3 Mozilla
3 Mozilarlugins
[Mokepad++
3 oDBC
[orade
3 Palicies =
D Program Groups
(3 Python
=Tty
[Rred Gate
[reqisteredapplications
L T e Y T HRU
< | =

hd

Iy Computer\HKEY _LOCAL_MACHIMEYSOFTWARE recfg

FIGURE 11. EXAMPLE OF REGISTRY ENTRIES AND SUBKEY IN THE HKLM HIVE

The information that the malware gets from the victim machine can be the user name, the
machine name, the domain where the machine belongs or, if not, the workgroup, the product
name (operating system name), etc.

After this step is completed, the malware will check the “dbg” option gathered from the config
and, if that value is ‘true’, it will avoid checking the language of the machine but if the value is
‘false’ (by default), it will check the machine language and compare it with a list of
hardcoded values.

13/24

test edi, edi

jz short _clear _eax
mou ecx, edi
shl ecx, 2
push BCK
call SodiGetHeapAndReservelemoryFunction
mov ebx, eax
pop ecx
test ebx, ebx
jz short clear eax
push ebx
push edi
call SodiGlobalVarGetKeyboardLayoutListFunction |
test eax, eax
jz short release_memory
test edi, edi
jle short release_memory
_loop _check layout: ; CODE XREF: SodiGetKeyboardLayoutListAndCompareUWithThen
mouzx eax, word ptr [ebx+esi=h]
push eax
call SodiSwitchAndCaseOfTheLangquagesBlacklistedToAvoidWorksInThisHachine
add esp, 4
test eax, eax
jnz short return TRUE
inc esi
cmp esi, edi
jl short loop check layout
_release_memory: ; CODE XREF: SodiGetKeyboardLayoutListAndCompareWithThen
; SodiGetHKeyboardLayoutListAndCompareWithTheAHardcodedLi
push ebx
call SodiPrepareToReleaselemory
pop ecx

FIGURE 12. GET THE KEYBOARD LANGUAGE OF THE SYSTEM

The malware checks against the next list of blacklisted languages (they can change per
sample in some cases):

¢ 0x818 — Romanian (Moldova)
e 0x419 — Russian

e 0x819 — Russian (Moldova)
e 0x422 — Ukrainian

e 0x423 - Belarusian

e 0x425 — Estonian

e 0x426 — Latvian

e 0x427 — Lithuanian

o 0x428 - Tajik

e 0x429 — Persian

e 0x42B — Armenian

e 0x42C — Azeri

e 0x437 — Georgian

e 0x43F — Kazakh

o 0x440 — Kyrgyz

e 0x442 —Turkmen

e 0x443 — Uzbek

14/24

e 0x444 — Tatar
e 0x45A — Syrian
e 0x2801 — Arabic (Syria)

We observed that Sodinokibi, like GandCrab and Anatova, are blacklisting the regular Syrian
language and the Syrian language in Arabic too. If the system contains one of these
languages, it will exit without performing any action. If a different language is detected, it will
continue in the normal flow.

This is interesting and may hint to an affiliate being involved who has mastery of either one
of the languages. This insight became especially interesting later in our investigation.

If the malware continues, it will search all processes in the list in the field “prc” in the config
and terminate them in a loop to unlock the files locked for this/these process/es.

push ebp
mou ebp, esp
push esi
mou esi, [ebptarg_h]
lea eax, [esi+24h]
push eax
call SodiWsctrlenFunction
push eax
push offset SodiGlobalUarToKeepTheBasefAddress0fStrings0fPRCStrings
call SodiPrepareToMakeCustomHashAndCheckUnicodeStringFunction
add esp, BCh
test eax, eax
jz short clear_eax
push dword ptr [esi+8]
push a
push 1
call SodiGlobalVarOpenProcessFunction
mou esi, eax
test esi, esi
jz short _inc_counter
push a
push esi
call SodiGlobalUarTerminateProcessFunctionAddress
push esi
call SodiCheckIfNeedCloseHandleFunction |
pop eCcx
_inc_counter: ; CODE XREF: SodiCheckTargetProcessToCloseAndIfTheyAreFou
X0r eax, eax
inc eax
jmp short _exit

FIGURE 13. SEARCH FOR TARGET PROCESSES AND TERMINATE THEM

After this it will destroy all shadow volumes of the victim machine and disable the protection
of the recovery boot with this command:

exe /c vssadmin.exe Delete Shadows /All /Quiet & bcdedit /set {default}
recoveryenabled No & bcdedit /set {default} bootstatuspolicy ignoreallfailures

It is executed with the Windows function “ShellExecuteW”.

15/24

P [
push esi
call SodiPrepareToDecryptStringFunction ; /c vssadmin.exe Delete Shadows fAll /Quiet & bcdedit /set

add esp, 28h
mov [ebp+var_3C], 3Ch
ROV eax, eax
%0 esi, esi
mov [ebp+var_508], ax
moy [ebp+var_38], esi
call SodiGlobalVarGetForegroundWindowsFunction
mov [ebp+var_34], eax
lea eax, [ebp+var_AiC]
mov [ebp+var_2C], eax
lea eax, [ebp+var_174]
mou [ebptvar_38], esi
mov [ebp+var_24], esi
moy [ebp+var_28], esi
moy [ebp+var_1C], esi
mov [ebp+var_ 18], esi
mov [ebp+var_14], esi
moy [ebp+var_18], esi
moy [ebp+var_C], esi
mov [ebp+var_ 8], esi
mou [ebptvar_&4], esi
mov [ebp+var_28], eax
pop esi
_loop_shell_execute: ; CODE XREF: SodiDeleteShadowUolumesAndDisableProtectionsInBootFunction+99)]
lea eax, [ebp+var_3C]
push eax

call SodiGlobalVarShellExecuteWFunction |

FIGURE 14. LAUNCH COMMAND TO DESTROY SHADOW VOLUMES AND DESTROY
SECURITY IN THE BOOT

Next it will check the field of the config “wipe” and if it is true will destroy and delete all files
with random trash or with NULL values. If the malware destroys the files , it will start
enumerating all logic units and finally the network shares in the folders with the name that
appear in the config field “wfld”.

16/24

_check_registers:
cmp
ja

_check_if need_unmap:

®or
inc
test
jz
push
call

GlobalVarHapViewOfFileFunctionfAddress
edi, eax

edi, edi

short check if need close handle
[ebpsvar_A4]

edi
SodiPrepareRandomUaluesttithTrashAndOverwriteFileFunction |
ecx

ecx

edi
SodiGlobalVarUnmapUiewDfFileFunctionfddress
eax, [ebp+var_4]

[ebp+var_8], eax

ecx, [ebp+var 18]

[ebp+var C], esi

ecx, eax

edx, [ebp+var_14]

edx, esi

[ebp+var_ 18], ecx

[ebp+var_14], edx

ed®, esi

short loop map files

short _check_if_need_unmap

; CODE XREF: SodiWipeCallbackToFillTheFileWithTrashs
ec®, esi
short loop map_ files

; CODE XREF: SodiWipeCallbackToFillTheFileWithTrashs
; SodiWipeCallbackToFillTheFileWithTrashAndDeletelItF

esi, esi

esi

edi, edi

short check_if_need close_handle

edi

SodiGlobalVarUnmapUiewdfFileFunctionaddress

short _check_if_need_close_handle

FIGURE 15. WIPE FILES IN THE TARGET FOLDERS

In the case where an affiliate creates a sample that has defined a lot of folders in this field,
the ransomware can be a solid wiper of the full machine.

The next action of the malware is its main function, encrypting the files in all logic units and
network shares, avoiding the white listed folders and names of files and extensions, and
dropping the ransom note prepared from the template in each folder.

17/24

push 3

push a8

push ACceoBeaaeh

push [ebp+arg_C]

mov [esi+14Ch], edi
push [ebp+arg_8]
push [ebp+arg 4]

push esi
call SodiPrepareToDpenFileAndGetTheSizeOfTheHameFunction |
add esp, 1Ch
push esi
test eax, eax
jnz short crypt file
push [ebp+arg_A]
call SodiPrepareToReleaseMemoryFunction
pop ecx
Zxor eax, eax
jmp short fix stack
_kFeturn_false ; CODE XREF: SodiPrepareToCryptTheFileimeg:
Zor eax, eax
jmp short exit
_crypt_file : ; CODE XREF: SodiPrepareToCryptTheFilelimeg:
call SodiPrepareToCryptTheFileFunction
mow eax, esi
_fix stack: ; CODE XREF: SodiPrepareToCryptTheFile1imeg:
pop ecx
_exit: ; CODE XREF: SodiPrepareToCryptTheFile1meq:
pop edi
pop esi
pop ebhx
pop ebp
ratn

FIGURE 16. CRYPT FILES IN THE LOGIC UNITS AND NETWORK SHARES

After finishing this step, it will create the image of the desktop in runtime with the text that
comes in the config file prepared with the random extension that affect the machine.

The next step is checking the field “net” from the config, and, if true, will start sending a
POST message to the list of domains in the config file in the field “dmn”.

18/24

push 7

=or ebx, ebx

mou [ebp+var_2C], offset alpContent ; “wp-content™
push ebx

mou [ebp+var_28], offset aStatic ; "static”

mov [ebp+var_24], offset aContent ; “content™

mou [ebp+var_28], offset alnclude ; “include”

mou [ebp+var_1C], offset alploads ; “uploads*

mou [ebp+var_18], offset aNews ; "news"

mov [ebp+var 14], offset aData ; "data”

mou [ebp+var_18], offset afAdmin ; “admin"

call SodiPrepareToMakeTrashAndWriteFileAndHakeHathFunction
push [ebp+eax=i+uar 20]

push esi

call SodiGetUnicodeSizeOfStringAndPrepareToConcatWithOtherUnicodeStringFunction
push edi

push esi

call SodiGetUnicodeSize0fStringAndPrepareToConcatWithOtherUnicodeStringFunction
push 8

push ebx

mou [ebp+var_38], offset almages ; "images”

mov [ebp+var_2C], offset aPictures ; “pictures”

mov [ebp+var 28], offset almage ; “image"

mov [ebp+var_24], offset aTemp ; “temp"

mov [ebp+var_28], offset aTmp ; ""tmp"

mou [ebp+var_1C], offset aGraphic ; “graphic™

mou [ebp+var_18], offset afssets ; “assets™

mov [ebp+var_14], offset aPics ; "pics”

mov [ebp+var 18], offset aGame ; “"game"

call SodiPrepareToMakeTrashAndWriteFileAndHakeMathFunction
push [ebp+eax=h+uar_38]

push esi

call SodiGetUnicodeSize0fStringAndPrepareToConcatWithOtherUnicodeStringFunction
add esp, 48h

push edi

push esi

call SodiGetUnicodeSize0fStringAndPrepareToConcatWithOtherUnicodeStringFunction

FIGURE 17. PREPARE THE FINAL URL RANDOMLY PER DOMAIN TO MAKE THE POST
COMMAND

This part of the code has similarities to the code of GandCrab, which we will highlight later in
this article.

After this step the malware cleans its own memory in vars and strings but does not remove
the malware code, but it does remove the critical contents to avoid dumps or forensics tools
that can gather some information from the RAM.

19/24

pop
cmp

mou
mou
moy
mouw
mouw
mou
mou
mouw
mouw
mou
mou
mouw
mouw
mouw
mou
moy
mouw
mouw
mou
mou
mouw
mouw
mou
mou
moy
mouw
mouw
mou
mou
mouw
mouw
mou
mou
mnu

ecx

edi, &

short _loop_clean_menory

eax, SodiGlobalUarToKeepTheUnicodeStringO0fThePidFromConfig

[ebp+var_ 58], eax

eax, SodiGlobalUarToKeepTheUnicodeStringO0fTheSubFromConfig
[ebp+var_54], eax

eax, SodiGlobalVarDomainsPointerHemoryfddressiithUnicodeStrings
[ebp+var_ 58], eax

eax, SodiGlobalVarPointerToRansomNoteTemplateInHemory

[ebp+var_A4C], eax

eax, SodiGlobalVarToKeepTheAddressOfTheStringInUnicodeOfRansomHoteTemplateName
[ebp+var_ 48], eax

eax, SodiGlobalUarToKeepTheHemoryaddressWithThelUnicodeStringOfThelmageRansomHoteTemplate
[ebp+var_4i4], eax

eax, SodiGlobalPointerToAddressWithTheRandomExtension

[ebp+var_4B8], eax

eax, SodiGlobalUarPointerToKeepTheEncodedInBase640fThe2@8Bytes
[ebp+var_3C], eax

eax, SodiGlobalVarPointerToString0fTheProcessorHameAndSerialNumber0fTheWindowsLogicUnit
[ebp+var_38], eax

eax, SodiGlobalPointerToAddressWithInfoFromRegistry

[ebp+var_34], eax

eax, SodiGlobalPointerToAddressWithUserHameOfTheUictimMachine
[ebp+var_38], eax

eax, SodiGlobalPointerToComputerHamefddress

[ebp+var_2C], eax

eax, SodiGlobalUarPointerToDomainStringOrWorkgroupfAddress
[ebp+var_28], eax

eax, SodiGlobalVUarPointerToLocalHameStringOrHullAddress

[ebp+var_24], eax

eax, SodiGlobalVUarPointerToStringlfKeyboardIsBlackListedOrHot
[ebp+var_28], eax

eax, SodiGlobalVarPointerToProductHamefAddress

[ebp+var_-1C], eax

eax, SodiGlobalUarPointerToBase64EncodedString

I'rhn+var 1R81. pax |

FIGURE 18. CLEAN MEMORY OF VARS

If the malware was running as SYSTEM after the exploit, it will revert its rights and finally
finish its execution.

SodiGetOwnProcessAndCheckTokenPrivilegeAndIfIsSYSTEMRevertToltFunction proc near

; CODE XREF: SodiCheckCaselfHeedCryptFileOrReadItOrWriteltOrRenameFileFunction+B&tp
; SodiStartAllRansomvareCodeFlowFunction+7ETp

call SodiGlobalVarGetCurrentProcessFunction

push eax

call SodiGetTokenIntegritylLevelInformationFromProcessAndCheckSidFunction
pop ecx

cmp eax, 408086h ; SYSTEHM LEVEL

jnz short _return_talse

jmp SodiGlobalVarRevertToSelfFunction

_return_false:

; CODE XREF: SodiGetOwnProcessAndCheckTokenPrivilegeAndIfIsSYSTEHRevertToItFunction+12T5
Xor eax, eax
retn

SodiGetOwnProcessAndCheckTokenPrivilegeAndIfIsSYSTEMRevertToltFunction endp

FIGURE 19. REVERT THE SYSTEM PRIVILEGE EXECUTION LEVEL

Code Comparison with GandCrab

Using the unpacked Sodinokibi sample and a v5.03 version of GandCrab, we started to use

IDA and BinDiff to observe any similarities. Based on the Call-Graph it seems that there is an

overall 40 percent code overlap between the two:

20/24

Similanty 0.40

Functions 60.8% Calls 8.1%

FIGURE 20. CALL-GRAPH COMPARISON

The most overlap seems to be in the functions of both families. Although values change,
going through the code reveals similar patterns and flows:

—/ —7
= =
 — | I—
\ [
I‘ZI | s— |
 e— m—|
= [= [
—/o — /o E=g
| s— l:l | —
] =
| E—
/3
| I—

—
[
—D | —
—— m—
| I— —/1
 — — — Y —
= =T
| S—
— —
/1 | —
 E— — — | — |
| — | —
1]
| I— —= | — —
[— | I—
— =
| — | —

Although here and there are some differences, the structure is similar:

21/24

We already mentioned that the code part responsible for the random URL generation has
similarities with regards to how it is generated in the GandCrab malware. Sodinokibi is using
one function to execute this part where GandCrab is using three functions to generate the
random URL. Where we do see some similar structure is in the parts for the to-be-generated
URL in both malware codes. We created a visual to explain the comparison better:

https://URL/ images / [random-name].

pictures

image

temp

tmp

graphic

pics

game

https://URL/ images [/ [random-name].

pictures

image

tmp

graphic

assets

pics

imgs

FIGURE 21. URL GENERATION COMPARISON

We observe how even though the way both ransomware families generate the URL might
differ, the URL directories and file extensions used have a similarity that seems to be more
than coincidence. This observation was also discovered by Tesorion in one of its blogs.

Overall, looking at the structure and coincidences, either the developers of the GandCrab
code used it as a base for creating a new family or, another hypothesis, is that people got
hold of the leaked GandCrab source code and started the new RaaS Sodinokibi.

Conclusion

Sodinokibi is a serious new ransomware threat that is hitting many victims all over the world.

22/24

https://www.tesorion.nl/aconnection-between-the-sodinokibi-and-gandcrab-ransomware-families/

We executed an in-depth analysis comparing GandCrab and Sodinokibi and discovered a lot
of similarities, indicating the developer of Sodinokibi had access to GandCrab source-code
and improvements. The Sodinokibi campaigns are ongoing and differ in skills and tools due
to the different affiliates operating these campaigns, which begs more questions to be
answered. How do they operate? And is the affiliate model working? McAfee ATR has the
answers in episode 2, “The All Stars.”

Coverage

McAfee is detecting this family by the following signatures:

¢ “Ransom-Sodinokibi”
¢ “Ransom-REuvil!”.

MITRE ATT&CK Techniques

The malware sample uses the following MITRE ATT&CK™ techniques:

¢ File and Directory Discovery
o File Deletion

e Modify Registry

e Query Registry

» Registry modification

e Query information of the user
e Crypt Files

e Destroy Files

o Make C2 connections to send information of the victim
o Modify system configuration
o Elevate privileges

YARA Rule

23/24

https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/mcafee-atr-analyzes-sodinokibi-aka-revil-ransomware-as-a-service-the-all-stars/

rule Sodinokobi

{
/*
This rule detects Sodinokobi Ransomware in memory in old samples and perhaps future.

*/

meta:
author = “McAfee ATR team”
version =“1.0"

description = “This rule detect Sodinokobi Ransomware in memory in old samples and
perhaps future.”

strings:

$a ={400F B6 C8 89 4D FC 8A 94 0D FC FE FF FF OF B6 C2 03 C6 OF B6 FO 8A 84 35
FC FE FF FF 88 84 OD FC FE FF FF 88 94 35 FC FE FF FF OF B6 8C 0D FC FE FF FF }

$b ={0OF B6 C2 03 C8 8B 45 14 OF B6 C9 8A 8C 0D FC FE FF FF 32 0C 07 88 08 40 89
4514 8B 45 FC 83 EB 0175 AA}

condition:

all of them

}

McAfee Labs Threat Research Team
McAfee Labs is one of the leading sources for threat research, threat intelligence, and
cybersecurity thought leadership. See our blog posts below for more information.

24/24

https://www.mcafee.com/blogs/author/mcafee-labs/

