
1/14

The BlackBerry Cylance Threat Research Team

Inside the APT28 DLL Backdoor Blitz
threatvector.cylance.com/en_us/home/inside-the-apt28-dll-backdoor-blitz.html

This blog post is a follow-up to Flirting With IDA and APT28, where we covered generating
IDA Pro signatures to identify and eliminate benign library code. In doing so, we can focus
our attention on the bespoke code responsible for defining the implant’s behavior.

This time around we perform a deep dive into the same APT28 sample by analyzing its
capabilities and providing insight into its features.

Overview

Hash:
B40909AC0B70B7BD82465DFC7761A6B4E0DF55B894DD42290E3F72CB4280FA44

 File Type: Windows x64 DLL
 PE Compilation Timestamp: 4 July 2018 14:38:54

Figure 1: APT28 sample details

Analysis reveals the implant is a multi-threaded DLL backdoor that gives the threat actor (TA)
full access to, and control of, the target host. When commanded by C2, the implant can
upload or download files, create processes, interact with the host via a command shell and
connect to C2 according to a defined sleep/activity schedule.

As covered in Part 1, the implant is written in C++ and statically linked against OpenSSL and
the Poco C++ framework. Since the file is packaged as a DLL, the intention would be to
inject it into a long-running process that is granted Internet access (such as a NetSvc service

th

https://threatvector.cylance.com/en_us/home/inside-the-apt28-dll-backdoor-blitz.html
https://threatvector.cylance.com/en_us/home/flirting-with-ida-and-apt28.html
https://threatvector.cylance.com/en_us/home/flirting-with-ida-and-apt28.html

2/14

group) or one having local firewall permissions. We do not believe this DLL is intended to
operate as a module for a larger tool.

Entry Point

Malicious code entry occurs via the DllMain export. The implant’s first task is to load the
legitimate Microsoft npmproxy.dll found in “c:\windows\system32”. With this loaded, the
addresses of the five implant exports, “DllCanUnloadNow”, “DllGetClassObject”,
“DllRegisterServer”, “DllUnregisterServer” and “GetProxyDllInfo” are set to the addresses of
the same, benign exports found in the Microsoft DLL.

The reason for this is unconfirmed, but most likely serves a defensive measure to evade end
point protection that scans export addresses looking for code changes (when compared to a
predetermined signature database), or against a database of known-malicious code.
Perhaps by setting its own exports to those of the benign copy, the implant is attempting to
remain undetected:

Figure 2: Substitution of PE export addresses

With export addresses replaced, a thread is launched to execute the main code path. Within
this, a second thread is launched responsible for send and receive operations with C2. A
global variable forms the basis of inter-thread synchronization for processing of C2
messages.

Mutex

The primary thread’s first task is the creation of a Globally Unique ID (GUID) mutex
“1b8232f6-6806-4733-901d-62bf3ef33e6c”. The GUID string can be found as plain text
within the binary, offering a potential (albeit trivially replaceable) IoC. As is customary, if
mutex creation fails the sample terminates with no further action taken.

Machine Fingerprint

Following mutex creation, the implant generates a unique CRC-32 host fingerprint using the
primary network interface’s ethernet (MAC) address, the host name, and Windows version
string. The final CRC-32 result is then XOR’d with fixed constant 0x64113. The generated
host fingerprint is used later to build the C2 beacon URL, and presumably identifies the
implant’s malicious use on each infected machine.

Command-and-Control (C2)

3/14

The main communication protocol with the C2 server is RSA encrypted, Base64 encoded
JSON exchanged over HTTPS (TLS, port 443), or as fallback, on plain HTTP using port 80.
During our analysis the implant did not attempt to use any other application protocols.

The user-agent string for HTTP requests is populated from either the return value of the
“ ObtainUserAgentString” API call, or if that fails, a hard-coded alternate (see IoCs below).

Support for egress proxy servers is included through a call to
“ WinHttpGetIEProxyConfigForCurrentUser”. The result is parsed and supplied to the Poco
framework’s “ HTTPClientSession::setProxyConfig” prior to C2 activity.

A 1024-bit RSA key pair is embedded within the implant and used to encrypt and decrypt
communication between host and C2. The private key decrypts inbound traffic while the
public key encrypts outbound. No stream cipher(s) or session keys are negotiated.

The initial HTTPS beacon to “malaytravelgroup[.]com” is a GET request consisting of a
randomly selected URL path concatenation, together with a query string containing the
parameter split count, the XOR constant 0x64113 (also used when generating the host CRC-
32), and the computed CRC-32 fingerprint. The query string is padded with random data to
prevent ad-hoc analysis and finally Base64 encoded:

Field Name Bytes Value Comment

1 - 1 1-254 Parameter split count as ASCII value.

2 “aid” 4 0x64113 XOR constant used when generating host CRC-32.
Possibly a unique implant ID.

3 “bid” 4 variable CRC-32 host fingerprint.

Table 1: C2 beacon query parameters

The URL path component is built as one to three strings (“/” separated), generated from a set
of encrypted string tables. The decrypted versions are provided in the Appendix.

The Base64 encoded data is split into a random number of parameters and padded as a
means of obfuscation. The query parameter’s names are randomly generated using 1-4
upper/lower case characters:

Name Value Explanation

4/14

<rand_str> <2_rand_chars> +
b64(<n>)

Specifies the number of parameters across
which the beacon data is split

<rand_str_1> <2_rand_chars> +
b64(<rand_byte> +

<data_part_1>)

Value contains first part of encoded data,
preceded by 2 random characters

<rand_str_2> <2_rand_chars> +
b64(<rand_byte> +

<data_part_2>)

Value contains second part of encoded data,
preceded by 2 random characters

...

<rand_str_n> <2_rand_chars> +
b64(<rand_byte> +

<data_part_n>)

Value contains last part of encoded data,
preceded by 2 random characters

Table 2: Query parameter deconstruction

Examples of beacon request URLs:

GET /pricing/training/news/?GPFi=mLMg&CYlp=Tj9RNBBg%3D%3D&JOM=uJfgAz9Zpw

GET /forum/feedback/switch/?
LnY=YNA&D=TH%2FRM%3D&rMuo=BFXUEG&cs=bkqgA%3D&HZql=bXgTP1mnA%3D
HTTP/1.1

GET /activity/?
FLVE=JNA&Y=vKYxNB&F=Hg6wY%3D&Slq=QBuAAz&ux=lSGfWacA%3D%3D HTTP/1.1

Figure 3: Beacon URL examples

Using the first example in Figure 3, the first query parameter indicating the beacon data split
count would be Base64 decoded as:

 GPFi=mLMg >> b64_decode(Mg) >>0x32 ("2")

All successive query parameters have the first two characters removed prior to Base64
decoding. The first byte of the decoded result is then discarded to arrive at the final value:

5/14

 CYlp=Tj9RNBBg== >> b64_decode(9RNBBg==) >> F5 13 41 06
 JOM=uJfgAz9Zpw >> b64_decode(fgAz9Zpw) >> 7E 00 33 F5 9A 70

0x00064113 >> XOR constant/implant ID
0x709AF533>> Host CRC-32 fingerprint

Once the beacon is received and decoded, the next phase of interaction is to issue
commands that drive the implant’s functions, such as the provision of an activity
schedule/sleep interval limiting implant activity.

Domain Generation Algorithm (DGA)

The primary C2 domain of “malaytravelgroup[.]com” is used for the initial beacon. Like all
sensitive strings, it is XOR encoded and revealed only when needed.

The implant also contains a Linear Congruential Generator (LCG) based algorithm for
generating what appear to be backup C2 domain names. Curiously the implementation is
100% deterministic owing to the use of a fixed seed value (0xC31) as shown in Figure 4.
Every invocation of the DGA will produce the same five domains:

schooltillhungryprocess[.]com

 reasonwithusefulpolicy[.]com
 streetunderrelevantpeople[.]com

 experiencewithweakkid[.]com
 systembeforeniceparent[.]com

Figure 4: Encoded C2 servers

Once the domains are generated, they are XOR encoded. The LCG implementation can be
seen here, together with its constant seed value:

Figure 5: DGA LCG using fixed seed value

 Domain names are generated as the concatenation of 4 string-table lookups from 3
encrypted string tables. Table 3 is referenced twice during generation. The Top-Level Domain
(TLD) suffix is hardcoded to “.com”.

Table Number of strings

6/14

1 99

2 31

3 149

Table 3: String table sizes for domain generation

Assuming the continued adoption of a four-part domain name, the LCG would be capable of
generating millions of unique permutations. The reason for limiting its output to the same
five, irrespective of date, time, host identity, or other input variable is unclear. A copy of the
decrypted string tables is provided in the Appendix.

By manually decreasing the delay between check-in attempts, we accelerated the amount of
C2 activity generated by the implant. Curiously, during a 24-hour observation window, no
attempts were made to communicate with the generated domains. Different reachability
scenarios were tested, ranging from malformed responses to unreachable IP addresses. At
no point did the implant generate any DNS or HTTP traffic relating to the generated domains.

It’s conceivable the backup domains are accessed via HTTP 302 redirects issued by the
primary site, but this would seemingly defeat the purpose of having primary and backup
domains to cater for failure, migration, or shutdown. It’s also possible the generated C2
domains are active only for certain implant commands such as file upload or download.

Lacking any evidence for their direct use, we can speculate the generated domains may be
operating as a honeypot. Access to them from any Internet addresses would immediately be
considered “suspicious” by virtue of their hidden existence only within the implant code. The
source of such requests could be directly attributable to threat researchers or analysts
investigating the implant’s inner workings.

Functions

The implant lacks any modularity and is therefore limited to eight functions. Each function is
invoked from C2 by supplying a value from which a known CRC-32 is calculated. The
computed CRC-32 value serves as a key or look-up to execute the corresponding function.

Parameters for each backdoor supported function are supplied with each command and
detailed in Table 4:

CRC-32 Function Parameters Description

7/14

 15512FB9 Spawn
process

file_name,
file_path, args

Spawn a process using the supplied
arguments.

 76BCDC67 Create file file_name,
file_path, body

Creates a file with the supplied body, i.e. file
is pushed (downloaded) from C2. Files have
the DOS hidden attribute set by default.

 B21CEBD4 Delete
file/folder

file_name,
file_path,
recursive

Deletes file or folder. Optional recursive
parameter for folder and contents deletion.

 406C9E35 Launch
shell

start, stop,
status, bash

Launches COMSPEC (cmd.exe) shell. Stdin,
stdout, stderr relayed over main C2 channel.

 72E99D37 Read file file_name,
file_path

Read a file, i.e. upload to C2.

 04365407 Set C2
check-in
interval

timeout Sets the interval between C2 check-in.
Default is 3 hours.

 99598005 Set C2
check-
in/activity
schedule

day_of_month,
day_of_week,
hour,

Sets day of month/week and hour that implant
should attempt to reach C2. Default setting is
0 for all values, meaning no exclusions;
check-in would therefore be every 3 hours –
the default sleep interval.

 1E46EC18 Get status
information

None Returns Build_Id of implant, Computer_Id,
Full_Info. Details of last command and status
(success/fail).

Table 4: Implant functions

The shell capability is perhaps the most interesting, giving the operators a full-duplex,
interactive COMSPEC (cmd.exe) session, with stdin (input), stdout, and stderr (output
returned by commands) redirected over the HTTPS C2 channel. Commands to the shell are
issued by the TA with the resulting output being returned almost immediately.

Despite the shell pipe creation taking place in (as identified by IDA signatures) the Poco
framework’s “SMTPChannel” constructor, the implant makes no use of SMTP as a transport.
The “bash” parameter, synonymous with Linux environments, hints at a multi-platform
capability. However, in this instance it is used to send commands to the shell by writing the

8/14

accompanying value to stdin. Windows 10 does offer a Linux Subsystem that would make a
bash shell available, but we have no evidence to suggest this is what the operators are
installing or using:

Figure 6: Implant function dispatch

String Encryption

Thirteen unique XOR keys are used throughout the implant for runtime decoding of sensitive
strings. Each implant function (as listed in Table 4) is provided with its own XOR key, as are
general C2, URL/HTTP, and RSA related operations:

Key: Used during:

 F226E34F0B64528CF0 Embedded RSA key decryption

 371F41ABE4C8880BC1 URL/HTTP related operations

40A521B0866411BAC4 General string decryption key

 EFEA221C400E2D1227 C2 messaging

 82EF8E95992055B6B5 C2 messaging

 4F840D589769 Create process function

 6EFEAF1AAA6932 Create file/download function

 59938EF1C8EFBA79B Delete file/folder function

 722C1B76 Shell handler function

 1F4582D80B Read file/upload function

 6A39E0FC68D6 Set C2 check-in interval function

 A24B726DFD Set C2 activity schedule function

9/14

 597EB47AAD Get host/install info function

Table 5: XOR encoding/decoding keys

Conclusion

Analysis shows the implant carries a feature set designed to provide the fundamental
capabilities of a backdoor: file download, upload, remote command execution, and
interactive shell access.

Comparing the functions of this implant to published descriptions of APT-28’s “x-tunnel”, we
find no tunneling, proxying, or VPN-like capabilities. It also lacks credential harvesting,
network service scanning, or Windows registry manipulation. Given the lack of modularity
only an updated version could provide these features. The alternative (and perhaps more
likely) scenario would be for such capabilities to exist in subsequent tools downloaded and
executed by this implant.

Indicators of Compromise (IoCs)

SHA256:

b40909ac0b70b7bd82465dfc7761a6b4e0df55b894dd42290e3f72cb4280fa44

C2 beacon domain:

malaytravelgroup[.]com

DGA domains:

schooltillhungryprocess[.]com
 reasonwithusefulpolicy[.]com

 streetunderrelevantpeople[.]com
 experiencewithweakkid[.]com

 systembeforeniceparent[.]com

Mutex:

 1b8232f6-6806-4733-901d-62bf3ef33e6c

Hard-coded User-Agent string:

“ Mozilla/5.0 (Windows NT 6.3; WOW64; rv:28.0) Gecko/20100101 Firefox/28.0”

Yara Signature

10/14

rule apt28_backdoor_cls
{
 strings:
 $st1 = "AES_256_poco" ascii
 $st2 = "TEncryption" ascii
 $st3 = "shell" ascii
 condition:
 all of them
}

rule apt28_backdoor_crc32
{
 strings:
 $xor1 = { 48 8B 07 39 48 0C 75 3A 44 8B 70 08 4C 8B 38 4D 85 C0 74
2E 45 85 E4 74 29 }
 condition:
 $xor1
}

Appendix

Decrypted String Tables:

Table 1 Table 2 Table 3

different
 used

 important
 every

 large
 available

 popular
 lonely

 basic
known

 various
 difficult
 several
 unite

 historical
 hot

 useful
 mental
 scare

 additional

at
on

 in
 to

into
 from
 before

 until
till

 about
 for

 of
with

 by
 after

 since
during

 between
 near

 nearby

street
 company

 part
 system

 number
 world

 case
 work
 party
 girl

 house
 woman
 life

 people
 year

 day
 way
 thing
 child
 group

11/14

emotional
old
political
similar
healthy
financial
medical
traditional
former
entire
strong
actual
significant
successful
electrical
expensive
pregnant
intelligent
interesting
poor
happy
responsible
cute
helpful
recent
willing
nice
wonderful
impossible
serious
huge
rare
visible
typical
competitive
critical
desperate
immediate
aware
educational
environmental
global
decent
relevant
accurate
capable
dangerous
dramatic
efficient
powerful
foreign
hungry

behind
across
above
over
under
below
along
round
around
past
through

time
area
problem
place
hand
service
school
guy
country
point
week
relationship
end
word
family
fact
head
month
information
power
change
question
business
development
home
side
night
money
eye
interest
book
teacher
air
court
water
manager
form
food
ca
moment
level
room
car
story
market
effect
idea
opportunity
result
use
study
job

12/14

friendly
psychological
severe
suitable
numerous
sufficient
unusual
anxious
cultural
curious
famous
pure
comprehensive
obvious
careful
impressive
unhappy
acceptable
aggressive
boring
inner
eastern
sudden
reasonable
strict
weak
civil

name
report
body
law
face
authority
friend
parent
minute
door
minister
road
rate
line
hour
war
mother
right
office
person
reason
view
term
period
centre
morning
project
research
figure
society
history
city
police
kind
million
community
need
tree
price
team
game
father
kid
student
support
program
health
field
man
example
quality
control

13/14

action
process
position
education
age
course
type
manner
order
decision
industry
mind
condition
paper
bank
century
activity
table
sense
building
experience
staff
language
plan
policy

Table 6: C2 DGA Strings

Table 1

14/14

news
nwshp

 section
 pagead
 ads

 forum
 general

 topic
 master

 explore
 features
 enterprise

 pricing
 article

 contact
 security
 about

 status
 blog

 training
 help

 feedback
 terms

 activity
 pricing
 switch

Table 7: URL Path String Table

The BlackBerry Cylance Threat Research Team

About The BlackBerry Cylance Threat Research Team

The BlackBerry Cylance Threat Research team examines malware and suspected malware
to better identify its abilities, function and attack vectors. Threat Research is on the frontline
of information security and often deeply examines malicious software, which puts us in a
unique position to discuss never-seen-before threats.

