Watching the WatchBog: New BlueKeep Scanner and
Linux Exploits

g
>

W¥#* intezer.com/blog/linux/watching-the-watchbog-new-bluekeep-scanner-and-linux-exploits/

July 24, 2019

Written by Paul Litvak and Ignacio Sanmillan - 24 July 2019

Get Free Account

Join Now

Overview

* We have discovered a new version of WatchBog—a cryptocurrency-mining botnet
operational since late 2018—that we suspect has compromised more than 4,500
Linux machines in newer campaigns taking place since early June.

e Among the new Linux exploits, this version of WatchBog implements a BlueKeep RDP
protocol vulnerability scanner module, which suggests that WatchBog is preparing a
list of vulnerable systems to target in the future or to sell to third party vendors for
profit.

e The malware is currently undetected by all security vendors.

« In this blog post we provide prevention and response recommendations for Windows
and Linux users, in addition to a YARA signature for detecting this and future threats
that share the same malicious code.

Introduction

1/12

https://intezer.com/blog/linux/watching-the-watchbog-new-bluekeep-scanner-and-linux-exploits/
https://www.intezer.com/author/paullitvak/
https://www.intezer.com/author/nacho/
https://analyze.intezer.com/
https://www.intezer.com/blog/linux/hiddenwasp-malware-targeting-linux-systems/

WatchBog is a cryptocurrency-mining botnet that was spotted as early as November 2018.
The group is known to be exploiting known vulnerabilities to compromise Linux servers. The
group was documented in the past by the Alibaba Cloud Security department.

Since the last publication regarding this group, it has upgraded its implants by implementing
a new spreading module in order to improve the coverage of vulnerable servers. We have
detected a new version of WatchBog, which incorporates recently published exploits—
among them being Jira’s CVE-2019-11581 (added 12 days after the release of the exploit),
Exim’s CVE-2019-10149, and Solr's CVE-2019-0192.

We also found that this spreader module incorporated a BlueKeep scanner.

BlueKeep, also known as CVE-2019-0708, is a Windows-based kernel vulnerability, which
allows an attacker to gain RCE over a vulnerable system. The vulnerability is present in
unpatched Windows versions ranging from Windows 2000 to Windows Server 2008 and
Windows 7. There is no known public PoC available for achieving RCE with this
vulnerability, and no attack has been spotted in the wild yet. The incorporation of this
scanner module suggests that WatchBog is preparing a list of vulnerable systems for future
developments with regards to BlueKeep.

The Jira, Solr and BlueKeep scanner modules were all added in the time frame of 13 days.
WatchBog seems to be accelerating the incorporation of new functionalities as of late.

The spreader binary is currently undetected by security vendors:

@ () No engines detected this file
b17829d758e8689143456240ebd79b420f963722707246f5dc9b085a41117b5e 81977 KB 2019-07-23 06:31:57 UTC

p1
64bits elf shared-lib
Community

VirusTotal

After uploading this file to Intezer Analyze we can immediately see that it shares code with
WatchBog, before even beginning to reverse engineer the file:

2/12

https://www.alibabacloud.com/blog/return-of-watchbog-exploiting-jenkins-cve-2018-1000861_594798
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures_(identifier)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-0708
https://www.virustotal.com/gui/file/b17829d758e8689143456240ebd79b420f963722707246f5dc9b085a411f7b5e/detection

Family:

Unique

Intezer Analyze analysis

While investigating this new spreader module, we discovered a flaw with its design that
allowed us to stage a ‘man-in-the-middle’ attack, to help us analyze the binary. We provide
an analysis of this module in the technical analysis below.

Technical Analysis

The WatchBog threat actor group runs an initial deployment script when infecting a target.
This script sets up persistence via crontab and downloads further Monero miner modules
from Pastebin, as has been previously documented by Alibaba Cloud.

The interesting addition to this script is the following part in the end of the script:

if [! -f "/tmp/.tmp
touch /tmp/.tmpl

As per the WatchBog’s script’s typical way of operating, the script downloads another
base64-encoded payload from Pastebin, which further downloads another module and then
executes it:

However, this is not another miner module. Rather, it is the new spreader module.

From a quick view this is a plain dynamically linked ELF executable. However, once we
started analyzing the executable, we were surprised to see that this was actually a Cython-
compiled executable requiring us to expand our analysis efforts.

3/12

https://analyze.intezer.com/#/files/b17829d758e8689143456240ebd79b420f963722707246f5dc9b085a411f7b5e

i i ==)
Functions window Dle)e| IDA View-A X Stringswindow X [O] HexView1l X Structures X Enums X Impa

Function name Se~

_Py_GetVersion pl

_PyObject_GC_UnTrack pl

_PyUnicodeUCS4_FromStringAndSize pl

_PyErr_WriteUnraisable pl

PyNumber_Add pl

[] PvObiect GenericGetAttr .pl~

4) v

%[\

Line 115 of 452 ; —=

i

i 0@

Ak, Graph overview 0| 6| L

“‘MeetCython, an optimizing static compiler that takes your .py modules and translates
them to high-performant C files. Resulting C files can be compiled into native binary
libraries with no effort. When the compilation is done there’s no way to reverse compiled
libraries back to readable Python source code!”.

——

1.15% (-6298,45918) (528,266) 000OCAFB 000DDO0OCODOCAFR: initjail {Synchronized with Hex View-1)

Cython-compiled binary

As stated by this Medium article about Cython:

The compiled binary does, however, include some hints to the original Python module:

= = [
lea rax, aJail_py ; "jail.py"| (lea rax, aJail_py ;o "jail.py"| [lea rax, aJail_py ;o "jail.py"
mev es:__pyx_linene, 4COh mov es:__pyx_linene, 4Clh mewv es:__pyx_lineno, 4CZh
mov cs:_ pyx_clineno, 7C3€h mov cs:_ pyx_clineno, 7CEOh mowv cs:_ pyx_clineno, 7D0Zh
mewv cs:__pyx_filename, rax mewv cs:__pyx_filename, rax mew cs:__pyx_filename, rax
jmp loc_605C1 Jmp loc_605C1 jmp loc_605C1
I
Initialization

Initially, the binary creates a file at /tmp/.gooobb in which it writes its pid as a footprint of the
malware execution. Consequent attempts to launch the spreader will fail while this file
exists.

The binary then retrieves its C2 servers from Pastebin:

4/12

https://medium.com/@xpl/protecting-python-sources-using-cython-dcd940bb188e
http://cython.org/?source=post_page---------------------------

An .onion C2 server address is also hardcoded in the binary and is used as a fallback.

We can estimate the number of victims infected based on the number of visits to the
Pastebin links:

ccO

THE_ JUM 5TH, 2019 (EDITED) 4,974 NEVER
ccl

THE_ JUM 5TH, 2019 (EDITED) 4,922 NEVER
cc2
THE_ JUM 5TH, 2019 (EDITED) 4,894 MNEVER

As seen above, we suspect around 4,500 endpoints were infected with the use of these
specific Pastebin links. As WatchBog is known to have been active before June 5—which is
the upload date of these Pastebins—we believe additional machines may have been
infected with the use of older Pastebin links.

The binary first attempts to connect to one of the available static C2 servers.
We observed that the onion C2 server had an expired certificate.

Normally, HTTPS clients check the validation of the SSL certificate that they are interacting
with. However, this was not the case with WatchBog’s implants. This led us to assume that
the WatchBog client did not verify the certificate when using HTTPS, otherwise it would
reject it and refuse to communicate with the C2.

This flaw allowed us to setup a transparent HTTPS proxy with our own certificate and stage
a ‘man-in-the-middle’ attack to analyze WatchBog SSL/TLS traffic:

5/12

<« ¢ @ @ localhost:8081/#/Flows/c39c083F-3442-479b-89e1-0F48a986a34b/req
Start Options Flow

c @& 9 @ X »r %

Replay Duplicate Revert Delete Download Resume Abort

Flow Modification Export Interception

Path Method
:l https:/i7dc5fbde. ngrok.io/apil726f61745f6e4e7961536163393464324f336e6e/tasks POST
_—I https:/i7dc5fbde.ngrok.iofapi/726161745f6e4e7961536163393464324f: ftask POST
;l https:/i7dc5fbde.ngrok.io/api/756c657865635{376f703369655a586c575267585635/tasks ~ POST
_—I hitps:/i7dcSfbde.ngrok.io/apil726161745f6e4e7961536163393464324f336e6e/tasks POST
;l https:/i7dc5fbde.ngrok.io/api/726f61745f6e4e7961536163393464324f336e6e/tasks POST
_—I https:/i7dc5fb4e.ngrok.io/apil726f61745f6e4e7961536163393464324f336e6e/tasks POST
;l https:/i7dc5fbde.ngrok.io/api/726f61745f6e4e7961536163393464324f336e6e/tasks POST
_—I https:/i7dc5fb4e.ngrok.io/apil726f61745f6e4e7961536163393464324f336e6e/tasks POST
j https:/i7dc5fbde.ngrok.io/api/726f61745f6e4e7961536163393464324f336e6e/tasks POST

Stalus Size

206

206

206

206

206

206

206

206

206

34.8kb
34.2kb
33.7kb
36.2kb
33.7kb
33.8kb
34.4kb
36.0kb
36.1kb

Time

Request | Response
2s | content-Length
Host
Accept
2s | User-Agent

25

25
Connection

1s | Content-Type

1s {
"data": [
= "*-gOU-#0Y,S8P80 \n",
1s "*-gOWE34Q,VeP8d \n",
"*-&B8U-#85,VEP8A \n",
1s "*-gOU-#0U-VEP8D \n",

"s_gOU-#6Q-SDP8G \n",
'+ -g4W834U, VP8O \n",
'*_gQU-#0Q,S,P80 \n",

Details

746

7dc5fbde.ngrok.io
application/json
Mozilla/5.© (Windows NT 6.:
ecko) Chrome/21.0.1180.71 ¢
close

application/json

The binary then generates a unique key for the infected victim and sends an initial message
to the C2 under this key. The following images include a sample request and response

payloads from the SSL/TLS decrypted traffic:

Request

J RawT Params I Headers T Hex }

Response

J RawT Headers T Hex]

POST

Japi /726161 745 474a795655745759336b506a335271 /ta
sks HTTRE/1.1

Connection: close

Accept-Encoding: gzip, deflate

accept: application/json

user-agent: Mozilla/4.0 (compatible; MSIE 7.0b;
Windows NT 5.2; .NET CLR 1.1.4322; .NET CLR
2.0.50727; InfoPath.2; .MET CLR 2.0.04506.30)
Content-Length: 608

host: 7deSthde.ngrok.io

content-type: application/json

{"data": ["* &OU-#0Y,S$PSO “\n",

"k GOWS34Q, VOPBO \n", "*-&4V838S,VOPS0 \n",
k. GAU-#0U, VOPSO \n", "*-&OU-#OY-S<PS0 \n",
k. GET-#0Y,VOPEO \n", "*-&4U-#4U,VOPSO \n",
. GAU-#4Q, VOPSO \n", "*-&0U-#0Q- S@PE0 \n",
k. GOU-#0Q-SEPEO \n", "*-&OU-#0Q- S@PS0 \n",
k. 54T -#OB, VOPBO \n", "*-&4U-#0U, VOPEO \n",
"k GOWS34Q, VOPSO \n", "*-&OWS30Y,VOPSO \n",
. GAL-#8W, VOPED \n", "*-&OWS34Q,VOPSO \n",
"o GAWS34U, VOPSO \n", "*-&4U-#8S, V0PSO \n",
k. GOU-#0Q,5 PEO \n", "*-&OU-#0U-VEPBO \n",
wk. GOU-#0U- SGPBO \n", "*-&4T-#9B,VOPSO \n",
. GAU-#0U, VOPEO \n", "*-&OWS34Q,VOPSO \n",

"#. §OU-#0Y-VEPSO \n" 1}

HTTP/L.0 206 PARTIAL COMNTENT

Content-Type: application/json
Server: Apache/2.4.5

Content-Length: 34570

Date: Wed, 24 Jul 2019 11:09:35 GMT

{

"data": [

k- HOU- #OY , SEPS0
"o ROWE340), VOPED
"o 8T -#10, VOPS0D
"o BAVEZEW, VOPED
" BAVEZ0B, VOPED
"#- GET - #0Y , VOPE0D
" BAYVEZES5, VOPED
- GOWSZ0Y , VOPED
" - BAWS39E, VOPED
- BAWSZEEW, VOPED
- BOWS340, VOPED
- ROWSZ0Y , VOPED
k- BAU- #8W, VOPSO
"o ROWE340), VOPED
"o HOU- #0U, SEP80
"o GOU-#00Q- S=PE0
k- HOU-#0Q- SEP80
"o GOU-#0U,S PEO
k- &8U-#98, VOPSD

\n” r
Wn',
\\.n” -,
\\.n” r
.\\.n” -,
\\.n” r
nty,
\\.n” -,
\\.n” r
\n” -,
\\.n” r
.\\.n” -,
\n” r
Wn',
\\.n” -,
\\.n” r
.\\.n” -,
\\.n” r
nty,

These packets were encoded to obfuscate its content. During the analysis, we were able to
determine the encoding algorithm used. The following script decodes the payload:

6/12

final = ""
arr = input()

for a in arr:
stri = "begin 666 \n{0}\n \nend\n".format(a) \
.decode("uu").strip('\x00") \
.decode("hex") \
.decode("base64")
final += chr(int(stri))
print(final[::-1])

The initial message contains the compromised system information:

Downloads $

This information will be merged and hashed to build the route of WatchBog’s API hosted in
its CNCs. The server replies with a “task” for the bot to perform on a list of targets:

BlueKeep Scanner

In this newer version of WatchBog it seems that the group has integrated an RDP scanner
in order to find vulnerable Windows machines to the BlueKeep vulnerability. This scanner is
a Python port from zerosumOx0’s scanner hosted in Github. We can make this

assessment based on function name similarities:

7] Functions window

Function name

'F] __pyx_pf_4jail_8BlueKeep_36rdp_calculate_rc4_keys_isra_103
7] __pyx_pw_djail_4Scan_5scan_rdp_windows

71 _ pyx_pw_4jail_8BlueKeep_19rdp_rc4_crypt

7] __pyx_pw_4jail_8BlueKeep 21rdp_parse_serverdata
7] __pyx_pw_djail 8BlueKeep 31rdp salted hash

7] _pyx_pw_4jail 8BlueKeep 33rdp final hash

7] _pyx_pw_4jail_8BlueKeep_35rdp_hmac

7] __pyx_pw_4jail_BBlueKeep_37rdp_calculate_rcd_keys
7] _pyx_pw_4jail_8BlueKeep_45rdp_encrypted_pkt

7 _ pyx_pw_4jail_8BlueKeep_5check_rdp_vuln

The scanner will then attempt to find vulnerable RDP servers from the IP list provided by
the CNC:

7/12

https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2019-0708
https://github.com/zerosum0x0/CVE-2019-0708

lexec@ubuntu:~ top$ cat tracelog | grep "] connect”

8464 (9, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("120.19.72.226")},
8465 (8, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("120.19.72.227")},
8466 (7, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("120.19.72.228")},
8463 (6, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("120.19.72.225")},
8467 (10, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("120.19.72.

8468 (11, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("120.19.

8469 (12, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("120.19.

8470 (13, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("120.19.72.231")},
8471 (14, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("120.19.72.232")},
8472 (15, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("120.19.72.233")},
8473 (16, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("120.19.

8474 (17, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("120.19.

8475 (18, L i _IN sin_port=htons(3389), sin_addr=inet_addr("120.19.

8476 (19, sin_port=htons(3389), sin_addr=inet_addr("120.19.

8477 (20, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("120.19.

8478 (21, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("120.19.

8479 (22, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("120.19.

8480 (23, L i \ sin_port=htons(3389), sin_addr=inet_addr("120.19.

8481 (24, L i _IN sin_port=htons(3389), sin_addr=inet_addr("120.19.

8482 (25, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("120.19.72.242")},
8483 (26, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("120.19.72.243")},
8484 (27, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("120.19.72.244")},
8485 (28, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("120.19.

8486 (29, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("126.19.

8487 (30, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("120.19.

8488 (31, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("126.19.

8489 (32, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("120.19.

8490 (33, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("126.19.

8491 (34, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("120.19.

8492 (35, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("126.19.

8493 (36, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("120.19.

8494 (37, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("126.19.

8495 (38, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("120.19.

8496 (39, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("126.19.

8497 (40, {sa_family=AF_INET, sin_port=htons(3389), sin_addr=inet_addr("120.19.

WatchBog scanning RDP ports

The default Windows service port for RDP is TCP 3389, and can easily be identified in the
packets with “Cookie: mstshash=".

|frame contains "watchbog”|

o. Time Source Destination Protocol Lengtt Info
117 8.274350965 172.16.167.159 139.199.106.196 TCP 102 46646 - 3389 [PSH, ACK] Seqg=1 Ack=1 Win=29208 Len=46
123 0.280085182 172.16.167.159 139.199.106.188 TCP 102 42258 - 3389 [PSH, ACK] Seq=1 Ack=1 Win=29208 Len=46
124 0.280322226 172.16.167.159 139.199.100.45 TCP 102 35304 — 3389 [PSH, ACK] Seg=1 Ack=1 Win=292008 Len=46

135 0.282373631 172.16.167.159 139.199.16060.171 102 49436 =1 Ack=1 Win=29208 Len=46

136 0.282637040 172.16.167.159 139.199.100.226 TCP 102 44132 —~ 3389 [PSH, ACK] Seqg=1 Ack=1 Win=29208 Len=46

Frame 135: 182 bytes on wire (816 bits), 102 bytes captured (816 bits) on interfTace @
Linux cooked capture
Internet Protocol Version 4, Src: 172.16.167.159, Dst: 139.199.160.171
Transmission Control Protocol, Src Port: 49436, Dst Port: 3389, Seq: 1, Ack: 1, Len: 46
Data (46 bytes)

Data: (0300002e29e00000000000436T6F6DGI653a206d073747368. ..

{dwvrwvrww

60 B4 00 01 0O 66 GO Gc 29 1d 6F 11 G0 0B 08 OO

0E16 45 G0 00 56 de b2 EENEE 40 06 17 cd ac 10 a7 9F E- -V [§
8b c7 64 ab c1 1c Bd 3d 2d a@ 36 bc 4e 9f 0a c3 d =
50 18 72 10 44 6b G0 G2 03 00 GO 2e 29 e@ 00 GO P.r Dk .
6o 00 00 43 6F 6F Gb 69 65 3a 20 6d 73 74 73 68 Cooki e: mstsh
61 73 68 3d 77 61 74 63 68 62 6f 67 0d @a 01 @0 ash=watc hbog
68 00 08 0B G0 60

o

=T

6N

We can observe the use of the string ‘watchbog’ as the username of the RDP mstshash
field.

8/12

Among some of the IP lists we found being supplied for RDP scanning, we spotted that

some of the IP addresses belonged to Vodafone Australia and Tencent Computer

Systems infrastructure.

After the scanning stage, the WatchBog client returns an RC4 encrypted list of vulnerable IP

addresses encoded as a hexadecimal string:

Request

Raw | Params Headers Hex

Response

Raw | Headers | Hex

POST fap1/726T6f 7451 6c6a5973706e6b49377a7471706167 /report
HTTE/1.1

Connection: close

Accept-Encoding: gzip, deflate

accept: application/json

user-agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT &.1;
Wow64; Trident/S.0; SLCCZ; .NET CLR 2.0.50727; .NET CLR
3.5.30729; .NET CLR 3.0.30729; Media Center PC 5.0; .NET4.0C;
.NET4.0E)

Content-Length: 5176

host: 9dg42chE.ngrok.io

content- type: application/json

{"job_id":

"wycqZvMwgrYipl Xd*- I#Wf=|eb@f | 0@PEOZo3- &*rD[m=[!| &- 28 hkv+]1x",
"data":
"ESE4SAGBOYAADSBEESC1S0D291 1DAEFD7 31FE020341017692702AF03B1ESFED
O2EDB36722B87DEDDFSE191E4423ES6048B57 C2CBA 16007 7F/ES112D89584252
SE31BB7EADF7 25FE8B00DCFASTEAELISAFABASFDOASBGEASECS2C3B4SEFSESEE1
SO04C37BE0726FAB1 7 2E7 3EABACTED3CT 7131FE37 CES0E3EDOAD10AADTBEF127
SCOFSS3DEEFCT3FC4ECEEZ331742825A24070951B1 CESEECESASFAGST 3854285
F256033271FSESES1EEEBBEEE=342DA100824CA0SEF35EEDF IBAFZABB2EATASTEZ
72913D0Z2AAB4S5E80592544941SDOAFCEEESDABSESE51 36F336030341 2ECS50CF
8380C2E4327FDOYFADS2BCS402E1 ADB1 CEO7ECEYFCDDD345597 ABDFE0SDBTECCE
182DF7EB97EDES 245BCO06080B2A14853E6AFADELAZZEBFB1ABCY7ETOOZA1C1738
25543A029294C379B8DCEE9AE2680D35BFCEOVBASOG00387B532BEESC2SBESTFD
S4D897453E1709B148A0E0974D7 2ED363F30E2DES2825D9E0ACET 1 1 32DEFD3EE

Encrypted scanned IP addresses

A
™~

HTTP/1.1 205 RESET COMTENT

Date: Tue, 22 Jul 2019 15:22:34 GMT
Server: Apache/2.4.5

Content-Type: text/html; charset=utf-8
Content-Length: @

Connectien: close

The threat actors behind WatchBog may be gathering a list of vulnerable BlueKeep

Windows endpoints for future use, or perhaps to sell to a third party to make a profit.

Spreading

The WatchBog client includes five exploits for the following CVEs:

Functions window
Function name

0| @1

__pyx_pw_4jail_3Pwn_llpwn_nexus
_ pyx_pw_4jail 3Pwn_13pwn_jira
_pyx_pw_djail_3Pwn_15pwn_salr
_pyx_pw_4jail 3Pwn_3pwn_jenkins
__pyx_pw_4jail 3Pwn_Spwn_exim
__pyx_pw_4jail_3Pwn_7pwn_redis

_ pyx_pw_4jail_3Pwn_9pwn_couchdb

Available “pwn” modules

9/12

https://db-ip.com/all/120.19.72
https://db-ip.com/all/139.155.109

Furthermore, two modules for bruteforcing CouchDB and Redis instances exist together
along with code to achieve RCE.

All of the exploited “pwn” modules allow an attacker to achieve remote code execution.

Once a vulnerable service is discovered to which exists an exploit module, the binary
spreads itself by invoking the right exploit and installing a malicious bash script hosted on
Pastebin.

We were able to find an early test version of the spreader module uploaded to
HybridAnalysis, including an exploit to Solr CVE-2019-0192, an exploit to ActiveMQ CVE-
2016-3088, and a module utilizing a technique to gain code execution over cracked Redis
instances:

(random.choice('abcdefghijklmnopgrstuvwxyz') for i in range(random.choice([5, 4, 6]1))),

Solr exploit as it appears in the test version
Conclusion

We presented our findings regarding the high pace of adaptation that WatchBog is
maintaining by integrating recently published exploits and updating its implants with more
up-to-date offensive technologies.

It is important to highlight that Python malware can become harder to analyze if it is
deployed natively with engines such as Cython. That is in contrast to other Python native
frameworks such as pyinstaller, where Python code can not be recovered.

The incorporation of the BlueKeep scanner by a Linux botnet may indicate WatchBog is
beginning to explore financial opportunities on a different platform. Currently, no known
public RCE BlueKeep PoCs exist and it will be interesting to monitor this group once a PoC
is published.

Prevention and Response

10/12

https://www.hybrid-analysis.com/sample/cdf11a1fa7e551fe6be1f170ba9dedee80401396adf7e39ccde5df635c1117a9?environmentId=300

* We recommend to update your relevant software to its latest version:

o We suggest Windows users refer to Microsoft's customer guidance in order to
mitigate the BlueKeep vulnerability.

o We suggest Linux users, who use Exim, Jira, Solr, Jenkins or Nexus Repository
Manager 3, to update to the latest versions.

o We suggest Linux users, who use Redis or CouchDB, to ensure that there are
no open ports that are exposed outside of trusted networks.

o We recommend Linux users who suspect that they are infected with WatchBog to
check for the existence of the “/tmp/.tmplassstgggzzzqpppppp12233333” file or the
“tmp/.gooobb” file.

o We have also created a customYARA rule based on WatchBog’s malicious code for
detecting this threat.

Genetic Analysis

WatchBog is indexed in Intezer’s genetic database. If you have a suspicious file that you
suspect to be WatchBog, you can upload it to Intezer Analyze in order to detect code reuse
to this malware family. You are welcome to try it in our free community edition.

I0Cs

b17829d758e8689143456240ebd79b420f963722707246f5dc9b085a411f7b5e
26ebeac4492616baf977903bb8deb7803bd5a22d8a005f02398¢c188b0375dfa4
cdf11a1fa7e551fe6be1f170ba9dedee80401396adf7e39ccde5df635¢1117a9
https://9d842cb6.ngrok].]io

https://7dc5fb4e.ngrok[.]io

https://z6r6anrjbcasuikp.onion][.]Jto

https://pastebin[.Jcom/raw/Dj3JTtn;

https://pastebin[.Jcom/raw/p3mGdbpq

https://pastebin[.Jcom/raw/UeynzXEr

https://pastebin[.Jcom/raw/MMCFQMH9

3.14.212[.1173

3.14.202[.]1129

11/12

https://support.microsoft.com/en-us/help/4500705/customer-guidance-for-cve-2019-0708
https://github.com/intezer/yara-rules/blob/master/WatchBog.yar
https://analyze.intezer.com/#/

3.17.202[.]129
3.19.3[.]150
18.188.14[.]65

Paul Litvak
Paul is a malware analyst and reverse engineer at Intezer. He previously served as a
developer in the Israel Defense Force (IDF) Intelligence Corps for three years.

Ignacio Sanmillan

Nacho is a security researcher specializing in reverse engineering and malware analysis.
Nacho plays a key role in Intezer\'s malware hunting and investigation operations, analyzing
and documenting new undetected threats. Some of his latest research involves detecting
new Linux malware and finding links between different threat actors. Nacho is an adept ELF
researcher, having written numerous papers and conducting projects implementing state-of-
the-art obfuscation and anti-analysis techniques in the ELF file format.

12/12

