
1/14

July 23, 2019

ABADBABE 8BADF00D: Discovering BADHATCH and a Detailed Look at FIN8’s Tooling
blog.gigamon.com/2019/07/23/abadbabe-8badf00d-discovering-badhatch-and-a-detailed-look-at-fin8s-tooling/

Security / July 23, 2019

 ATR

by Kristina Savelesky, Ed Miles, Justin Warner

FIN8 is a financially-motivated threat group originally identified by FireEye in January of 2016, with capabilities further reported on by Palo Alto
Networks’ Unit 42 and root9B. This blog will introduce a new reverse shell from FIN8, dubbed BADHATCH and compare publicly reported
versions of ShellTea and PoSlurp to variants observed by Gigamon Applied Threat Research (ATR). With these comparisons, we aim to show
how FIN8 continues to evolve and adapt their tooling. Our goal in sharing this intelligence is to enable defenders to better prevent, discover, or
disrupt FIN8’s operations and offer a greater understanding of their capabilities.

Evolving Toolsets

Gigamon ATR, along with incident response partners, observed FIN8 on numerous occasions and on each occasion collected and analyzed
malicious samples for detection research. We analyzed variants of the ShellTea implant and PoSlurp memory scraper malware, designated
ShellTea.B and PoSlurp.B. One of the most interesting samples analyzed appears to be a previously unreported tool, BADHATCH, that
provides file transfer and reverse shell functionality.

As part of our research, Gigamon ATR reviewed previously reported samples when available, assessed public reports, and compared
intelligence to our own observations from incident response engagements. Previous reporting on FIN8 indicates that initial infection typically
begins with a malicious email campaign, using weaponized Microsoft Word document attachments aimed at enticing the user to enable
macros. These macros execute a PowerShell command which downloads a second PowerShell script containing the shellcode of the first
stage of a downloader, called PowerSniff by root9B and Unit 42, or PUNCHBUGGY by FireEye. While Gigamon ATR does not have phishing
documents available for comparison, an incident response partner recovered the BADHATCH PowerShell script that, at first sight, appears
comparable to PowerSniff/PUNCHBUGGY.

BADHATCH Malware

The BADHATCH sample begins with a self-deleting PowerShell script containing a large byte array of 64-bit shellcode that it copies into the
PowerShell process’s memory and executes with a call to CreateThread. This script differs slightly from publicly reported samples in that the
commands following the byte array are base64 encoded, possibly to evade security products. While previous analyses saw PowerSniff
downloaded from online sources and executed, Gigamon ATR incident response partners recorded the attackers launching the initial
PowerShell script via WMIC as visible in Figure 1.

wmic /node:“<server_name>” process call create “powershell –ep bypass –c .\<script_name>.ps1”

Figure 1: WMIC command used to launch BADHATCH PowerShell script.

The first stage of the malware then loads an embedded second stage DLL into the same memory space (using the Carberp function hash
resolution routine to hide the names of API functions being used) and executes it. The use of hexadecimal constants 0xABADBABE
0x8BADF00D to locate the beginning of the embedded DLL was a common trait across all first stages of the FIN8 PowerShell scripts we
analyzed (see Figure 2).

Figure 2: The BADHATCH first stage locates the embedded DLL using 0xABADBABE 0x8BADF00D constants. The hex dump of the
embedded DLL is shown on the left, with the disassembly of instructions and constants used for locating the DLL on the right
Once executed, depending on the session ID, the embedded DLL either APC injects into a svchost.exe process (launched with svchost.exe -k
netsvcs), or injects into explorer.exe (using the ToolHelp32 API functions and RtlAdjustPrivilege to enable SeDebugPrivilege). The malware
creates a local event object, with the hardcoded name Local\{45292C4F-AABA-49ae-9D2E-EAF338F50DF4}, which is used similarly to a
mutex (to ensure only one copy is running at a time).

On startup, and every 5 minutes thereafter, the sample beacons to a hardcoded command and control (C2) IP (149.28.203[.]102) using TLS
encryption, and sends a host identification string derived from several system configuration details and formatted as %08X-%08X-%08X-
%08X-%08X-SH. Only the one hardcoded IP address and no C2 domains were observed. Upon connecting back to the C2 server and sending
the system ID, the shell will offer the banner shown in Figure 3, with the OS version and bitness as well as the hostname values filled in.

https://blog.gigamon.com/2019/07/23/abadbabe-8badf00d-discovering-badhatch-and-a-detailed-look-at-fin8s-tooling/
https://blog.gigamon.com/category/security/
https://blog.gigamon.com/author/atrteam/
http://www.gigamon.com/resources/resource-library/white-paper/wp-inside-financially-motivated-attacks.html
https://www2.fireeye.com/WBNR-Know-Your-Enemy-UNC622-Spear-Phishing.html
https://unit42.paloaltonetworks.com/powersniff-malware-used-in-macro-based-attacks/
https://www.root9b.com/content/uploads/2018/10/PoS-Malware-ShellTea-PoSlurp_YARA.pdf
https://www.root9b.com/content/uploads/2018/10/PoS-Malware-ShellTea-PoSlurp_YARA.pdf
https://www.root9b.com/content/uploads/2018/10/PoS-Malware-ShellTea-PoSlurp_YARA.pdf
https://www.root9b.com/content/uploads/2018/10/PoS-Malware-ShellTea-PoSlurp_YARA.pdf
https://www.root9b.com/content/uploads/2018/10/PoS-Malware-ShellTea-PoSlurp_YARA.pdf
https://unit42.paloaltonetworks.com/powersniff-malware-used-in-macro-based-attacks/
https://www.root9b.com/content/uploads/2018/10/PoS-Malware-ShellTea-PoSlurp_YARA.pdf
https://unit42.paloaltonetworks.com/powersniff-malware-used-in-macro-based-attacks/
https://www.fireeye.com/blog/threat-research/2016/05/windows-zero-day-payment-cards.html
https://unit42.paloaltonetworks.com/powersniff-malware-used-in-macro-based-attacks/
https://blog.gigamon.com/wp-content/uploads/2020/06/figure2-BADHATCH-1024x137-1.png

2/14

--

* SUPER REMOTE SHELL v2.2 SSL

--

OS: %s SP %d %s

HOSTNAME: %s

Press i+enter to impersonate shell or just press enter

Figure 3: banner of the BADHATCH reverse shell.

The shell even includes a small bit of online help with troubleshooting suggestions (displayed in Figure 4) if there are issues with launching the
cmd.exe process the shell uses for command execution.

Logon failure: unknown user name or bad password.

Logon failure: user account restriction. Possible reasons are blank passwords not allowed, logon hour restrictions, or a policy
restriction has been enforced.

The trust relationship between this workstation and the primary domain failed.

The service cannot be started, either because it is disabled or because it has no enabled devices associated with it.

Run 'sc start seclogon' if you can ;)

Failed to execute shell, error %u

Figure 4: Plaintext error messages present in the strings of the BADHATCH DLL.

An option for impersonating a specific user via the Windows APIs is given, but both execution paths will start a cmd.exe process for command
execution. Upload and download functions are available, and the shell looks for those commands, as well as a ‘terminate’ command, before
sending any input to the cmd.exe process.

BADHATCH uses the Windows IO Completion Port APIs and low-level encryption APIs from the Security Support Provider Interface to
implement an asynchronous TLS-wrapped TCP/IP channel. As a side effect of this implementation, port 3885 will be opened and bound on
localhost. The malware connects back to itself on this port and uses this as a loopback transmission channel in the course of encrypting and
transferring data between threads. Internally, this mechanism uses CompletionKeys of ’nScS’ and ‘rScS’. These keys are used to track which
IO operations have completed and identify the sender/receiver threads that handle the shell communication.

Besides the networking behavior, BADHATCH appears to be considerably different from PowerSniff in that it contains no methods for sandbox
detection or anti-analysis features apart from some slight string obfuscation. It includes none of the environmental checks to evaluate if it is
running on possible education or healthcare systems and has no observed built-in, long-term persistence mechanisms. Below, Table 1
summarizes the differences between PowerSniff, PUNCHBUGGY, and BADHATCH.

Shared Component root9B PowerSniff Unit 42 PowerSniff
VirusTotal
PUNCHBUGGY ATR B

SHA-256 Hash not provided in report Hash for maldoc
provided in report

5024306ade133b0
 ebd415f01cf64c23
 a586c99450afa9b7
 9176f87179d78c51d

c5642
94026
3bd5d
9709e
cc561

Infection vector is a spearphishing email with
an attached maldoc that downloads a
PowerShell stager

✓ ✓ ✓ Unkno
obser
launch
WMIC

Target architecture is 32- or 64-bit ✓ ✓ ✓ Obser

First stage loads and runs shellcode in
memory that loads a DLL second stage

✓ ✓ 0xABADBABE
0x8BADF00D checks to
find embedded DLL

0xABA
0x8BA
check
embe

Use of Carberp function hash resolution
routine in shellcode to find API functions

✓ Unmentioned in report Same hashes and
algorithm as BADHATCH

Same
algori
PUNC

Embedded DLL decrypts strings using
algorithm with seed 0xDDBC9D5B, multiplier
0x19660D, increment 0x3C6EF35F

Unmentioned in report Same seed and
constants as
PUNCHBUGGY

Same seed and
constants as Unit 42
PowerSniff sample

Not ob

3/14

Shared Component root9B PowerSniff Unit 42 PowerSniff
VirusTotal
PUNCHBUGGY ATR B

Includes methods for sandbox detection Slightly different than Unit 42
sample/PUNCHBUGGY

Identical to
PUNCHBUGGY

Identical to Unit 42
sample

None

Ability to write DLL to
%%userprofile%%\AppData\LocalLow\%u.db
and run via rundll32

✓ ✓ ✓ Not ob

Ability to write an executable and run it ✓ Unmentioned ✓ Not ob

Ability to write a DLL and load into calling
process with LoadLibraryW

✓ Unmentioned ✓ Not ob

Performs HTTP requests with user agent of
Mozilla/4.0 (compatible; MSIE 8.0; Windows
NT %u.%u%s)

✓ Contacts C2 via HTTP,
user agent unspecified in
report

✓ Conta
comm
contro
over 4
minut

Persistence
Ability to write a DLL and add it to
HKLM\System\CurrentControlSet\

 Control\Session
Manger\AppCertDlls for
persistence

Persistence unspecified No observed registry
modifications

No ob
persis

Memory string similarity
Similar to PUNCHBUGGY and
Unit 42 PowerSniff

Seem identical to
PUNCHBUGGY, similar
to root9B PowerSniff

Seem identical to Unit 42
PowerSniff, similar to
root9B PowerSniff

Very d
other

Ability to inject into explorer.exe ✓ Unmentioned Unobserved ✓

Ability to spawn and inject into svchost.exe
process if sessionID = 1

Unmentioned Unmentioned Unobserved ✓

Ability to download/uploaded files to/from
user-supplied path

Unmentioned Unmentioned Unobserved ✓

Ability to start interactive shell Unmentioned Unmentioned Unobserved ✓

Ephemeral localhost port 3885 usage Unmentioned Unmentioned Unobserved ✓

Command and control vseflijkoindex[.]net
 vortexclothings[.]biz

 unkerdubsonics[.]org
 popskentown[.]com

supratimewest[.]com
 letterinklandoix[.]net
 supratimewest[.]biz

 starwoodhotels[.]pw
 oklinjgreirestacks[.]biz

 www.starwoodhotels[.]pw
 brookmensoklinherz[.]org

supratimewest[.]com
 letterinklandoix[.]net
 supratimewest[.]biz

 starwoodhotels[.]pw
 oklinjgreirestacks[.]biz

 www.starwoodhotels[.]pw
 brookmensoklinherz[.]org

149.2

Table 1: A comparison table showing shared and differentiating components between root9B’s PowerSniff (as reported), Unit 42’s PowerSniff
(as reported), a PUNCHBUGGY sample from VirusTotal, and the BADHATCH sample from Gigamon ATR.

ShellTea.B Implant

ShellTea is a memory-resident implant that includes multiple methods for downloading and executing additional code and can install
persistence via the registry. Its primary use case appears to be serving as a stealthy foothold in the victim network and deploying additional
payloads.

During two previous incident response engagements involving FIN8, response partners recovered registry keys containing hexadecimal-
encoded data and corresponding PowerShell scripts. Gigamon ATR discovered these to be persistence artifacts of ShellTea variants, with a
few differences from root9B’s ShellTea sample. Table 2 presents a comparison of differentiating features between ShellTea and ShellTea.B.

root9B ShellTea ATR ShellTea.B

Hash not provided in report Shellcode from registry:
 385538451e59f630db6f1b

 367aacfdbb85b7d730210
 fc6d5b2bee7037f0362a5

PowerShell script waits five seconds for thread to complete PowerShell script includes Start-Sleep 2; then waits for one
minute for thread to complete

https://www.root9b.com/content/uploads/2018/10/PoS-Malware-ShellTea-PoSlurp_YARA.pdf
https://www.root9b.com/content/uploads/2018/10/PoS-Malware-ShellTea-PoSlurp_YARA.pdf
https://www.root9b.com/content/uploads/2018/10/PoS-Malware-ShellTea-PoSlurp_YARA.pdf
https://www.root9b.com/content/uploads/2018/10/PoS-Malware-ShellTea-PoSlurp_YARA.pdf

4/14

root9B ShellTea ATR ShellTea.B

Uses a custom function resolver with 4-byte hashes and seed
0x463283F5, multiplier 0x19660D, increment 0x3C6EF35F

Uses a custom function resolver with 4-byte hashes and seed
0x463283F5, multiplier 0x19660D, increment 0x3C6EF35F

Use of Ws2_32.dll exports for network functionality (connect, send, etc.) Use of wininet.dll exports for network functionality
(InternetConnectA, HttpSendRequestA, etc.)

Connects to command and control over port 443 using a custom binary
protocol with XTEA encryption in CBC mode, can communicate through
proxies via CONNECT

Communicates with command and control servers using HTTPS
POST requests, with XTEA-encrypted payload in the body (see
Figure 5 for headers)

The command and control servers utilized a standard self-signed
“Internet Widgets” Apache TLS certificate

C2 domains include:
 neofilgestunin[.]org

 verfgainling[.]net
 straubeoldscles[.]org

 olohvikoend[.]org
 menoograskilllev[.]net

 asojinoviesder[.]org

C2 domains include:
 moreflorecast[.]org

 preploadert[.]net
 troxymuntisex[.]org

 nduropasture[.]net

No encoded DNS traffic mentioned Encoded DNS requests to generated subdomains of
nduropasture[.]net

Table 2: A comparison table showing differentiating components between root9B’s ShellTea implant (as reported) and the ShellTea.B sample
from Gigamon ATR.

POST

json/

Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Trident/4.0

Accept: application/octet-stream

Content-Type: application/octet-stream

Connection: close

Figure 5: Strings output of hardcoded HTTP POST headers used in ShellTea.B communications, note the missing right parenthesis of the user
agent string.

In addition to the HTTPS channel, ShellTea.B uses DNS to communicate with C2 infrastructure. Small messages, usually 39 bytes, are
encoded in the subdomain field of DNS A-record queries. These messages are composed of several pieces of internal state encoded in the
character space “abcdefghijklmnopqrstuvwxyz012345”. The state transmitted includes an internal PRNG seed as well as several hardcoded
values embedded in the malware at compile time, while the query responses consist of single IP addresses. The DNS channel is initiated from
within several nested loops, that can cause repeated lookups depending on the IP address. If the IP doesn’t conform to several value checks,
the inner loop will run again after a 30 second delay, up to 3 times. Iterations of the inner loop are controlled by checking if the IPs first octet
plus 7 is not equal to the second octet, or if the fourth octet modulo 10 does not result in 0, 1, 2, or 3 (see Figure 6). If the inner loop terminates
while the result of the modulo is greater than 0, the outer loop will run again after a delay based on the modulo value, causing the cycle to
begin again. NOTE: On initialization, this DNS channel will be active before the HTTP channel.

Figure 6: The ShellTea.B DNS channel processing.
The differences in communication protocols between ShellTea and ShellTea.B suggest minor changes to this element of the FIN8 attack chain,
possibly to adapt to target environments by blending in with other HTTPS or DNS traffic in lieu of a more suspicious custom protocol.

PoSlurp.B Scraper

https://blog.gigamon.com/wp-content/uploads/2020/06/Figure-6-1024x178-1.jpg
https://www.root9b.com/content/uploads/2018/10/PoS-Malware-ShellTea-PoSlurp_YARA.pdf

5/14

The final, perhaps most important component in the FIN8 toolkit, is the one that actually retrieves credit card numbers as they pass through
payment card processing systems. Credit card numbers are 15 or 16 digits long and conform to the Luhn algorithm. This algorithm defines
valid credit card numbers, and most scrapers check card numbers against it. Notably, PoSlurp does not run the Luhn algorithm on card
numbers it collects. Verification may be performed offline, after the exfiltration of the card data, but either way, FIN8 knows the environment
and PoSlurp targets the card processing software directly for scraping rather than arbitrarily scraping other process memory.

During previous incident response engagements involving FIN8, response partners also recovered POS memory-scraping samples: one, an
executable binary that appears to be a 32-bit version of the PoSlurp malware reported by root9B (reported as PUNCHTRACK by FireEye), and
another, a PowerShell script highly similar to the BADHATCH PowerShell script. This script was also observed being executed via WMIC,
illustrated in Figure 7.

wmic /node:”@t.txt” /user:”<username>” /password:”<password>” process call create “powershell -ep bypass –c c:\users\
<admin_user>\appdata\local\temp\<script_name>.ps1”

Figure 7: WMIC command used to launch the PoSlurp.B script.

Like the BADHATCH script, this script base64 decodes and executes further commands which load a byte array of shellcode into memory and
begin execution. The PowerShell script is then moved to a temporary file before being overwritten with a copy of the Regedit executable and
then deleted. True to the previously analyzed first stage scripts, the shellcode uses the Carberp function hash resolution routine to locate an
embedded DLL by parsing for the same hexadecimal constants, loads the DLL into memory, and executes it. Unlike the notable use of low-
level API functions and anti-analysis techniques in PoSlurp, PoSlurp.B’s first stage simply calls VirtualAlloc, LoadLibrary, and GetProcAddress
to dynamically resolve imported functions, without other tricks to thwart analysis. Where PoSlurp and PUNCHTRACK arguments are passed in
as part of the command line, PoSlurp.B arguments are passed in an environment variable and are pipe-delimited instead of hash- or asterisk-
delimited (see Figure 8).

$env:PRMS = “i|<inject_process_name>|<scrape_process_name>|t|2800|”;

Figure 8: Pipe-delimited PoSlurp.B arguments passed in an environment variable in the PowerShell script.

Major functional differences in PoSlurp.B include the ability to:

Inject into the target process given an ‘i’ argument.
Create a svchost netsvcs process and APC inject the main loop given an ‘s’ argument.
Run the main loop without injection given a ‘p’ argument.

The PUNCHTRACK sample that we analyzed (downloaded from VirusTotal) also had the ability to create and inject into a svchost process,
though it did so regardless of command line arguments.

Additionally, the call to DeleteFile that cleaned up old output files has been removed. Incident response partners captured these actions being
performed manually, show in Figure 9.

for /F %i in (<filename>.txt) DO attrib -h \\%i\c$\users\<local_admin_user>\appdata\local\temp\<filename>.tmp

for /F %i in (<filename>.txt) DO net use \\%i\c$ /user:%i\<username> <password>

for /F %i in (<filename>.txt) DO copy \\%i\c$\users\\<local_admin_user>\appdata\local\temp\<filename>.tmp %i.tmp

for /F %i in ((<filename>.txt) DO del \\%i\c$\users\\\<local_admin_user>\appdata\local\temp\\<filename>.tmp

Figure 9: Commands to manually unhide, copy, and delete encrypted PoSlurp.B log files.

The following table (Table 3) provides a comparison between features observed in two versions of PoSlurp, a PUNCHTRACK sample
downloaded from VirusTotal, and PoSlurp.B.

Shared component root9B PoSlurp ATR PoSlurp
VirusTotal
PUNCHTRACK ATR PoSlurp.B

SHA-256 Hash not provided in report
cc952950a73909a

 655044dbb87f85f
 66d44d1d4e3a1e0

 96777bbc938a62bd
 080 (link)

ffc133ea83deac
 94bce5db1a4202

 57304931e6d3cfb
 82c6d9e50a2a98

 f43d310 (link)

8c6fe4c8b000e87
b756d5fd0b53d3
230ceafa892885
91dac42445c0ba

https://www.root9b.com/content/uploads/2018/10/PoS-Malware-ShellTea-PoSlurp_YARA.pdf
https://www.fireeye.com/blog/threat-research/2016/05/windows-zero-day-payment-cards.html
https://www.root9b.com/content/uploads/2018/10/PoS-Malware-ShellTea-PoSlurp_YARA.pdf
https://www.root9b.com/content/uploads/2018/10/PoS-Malware-ShellTea-PoSlurp_YARA.pdf
https://www.fireeye.com/blog/threat-research/2016/05/windows-zero-day-payment-cards.html
https://www.fireeye.com/blog/threat-research/2016/05/windows-zero-day-payment-cards.html
https://www.virustotal.com/gui/file/cc952950a73909a655044dbb87f85f66d44d1d4e3a1e096777bbc938a62bd080/detection
https://www.virustotal.com/gui/file/ffc133ea83deac94bce5db1a420257304931e6d3cfb82c6d9e50a2a98f43d310/detection

6/14

Shared component root9B PoSlurp ATR PoSlurp
VirusTotal
PUNCHTRACK ATR PoSlurp.B

Invocation wmic /node:”@targets.txt” process
call create “cmd /c
[PoSlurp_filename].exe

 TARGET1.EXE
 #TARGET2.exe*1234*winlogon.exe”

cmd /c psv.exe TARGET1.EXE
 #TARGET2.EXE*1400*winlogon.exe

Takes 3 args:
PUNCHTRACK
filename
(psvc.exe), POS
target process,
and timeout

wmic /node:”@t.t
/user:”<username
/password:”<pass
process call crea
“powershell –ep b
–c c:\users\
<admin_user>\ap
local\temp\
<script_name>.p

$env:PRMS =
“i|wininit.exe|
<scrape_process
|t|2800|”;

Target architecture 64-bit judging by screenshots 32-bit 32-bit 64-bit

Use of
RtlWriteMemoryStream for
constants, uses custom
API hashing algorithm for
resolving functions

✓ ✓ ✓ Not observed

Use of Carberp function
hashing code to resolve
imports

✓ ✓ ✓ ✓

First stage byte length 6610 bytes 6608 bytes 6368 bytes 7186 bytes

0xABADBABE and
0x8BADF00D checks in
first stage to find start of
embedded DLL

Not mentioned ✓ ✓ ✓

Uses
ZwAllocateVirtualMemory
LdrLoadDll and
LdrGetProcedureAddress

✓ Same hashes as PUNCHTRACK Same hashes as
psv.exe

Uses VirtualAlloc
LoadLibrary and
GetProcAddress

CreateToolhelp32Snapshot
to find processes

✓ ✓ ✓ ✓

RtlAdjustPrivilege
(SE_DEBUG) +
WrtieProcessMemory +
RtlCreateUserThread to
inject into target process

✓ ✓ ✓ Injects into target

Creates svchost netsvcs
process and APC injects
main loop

Not mentioned Not observed Always Only when given

Able to run main loop
without injection

Not mentioned Not observed Not observed When given ‘p’

Deletes old log files ✓ Calls DeleteFileW before running
scraper

Calls DeleteFileW
before running
scraper

Does not call Sle
DeleteFile before
scraping

Scans target process’s
memory every 5 seconds
until timeout, encrypts card
data and saves

✓ ✓ ✓ ✓

Table 3: A comparison table showing shared and differentiating components between root9B’s PoSlurp (as reported), Gigamon ATR’s PoSlurp,
a PUNCHTRACK sample from VirusTotal, and the PoSlurp.B sample from ATR.

Stitching Together the Pieces

Our analysis is the result of the combined efforts of Gigamon ATR and our incident response partners. With shared data from one recent
engagement, we put together a more complete picture of the role each tool plays in FIN8’s kill chain. The BADHATCH, ShellTea.B, and
PoSlurp.B samples detailed above were recovered from forensic analysis during incident response. While our data regarding the entire attack

7/14

is incomplete, the analysis of evidence obtained revealed an interesting picture of FIN8’s workflow, displayed in Figure 10.

Figure 10: A visual timeline of FIN8 activity during the incident response engagement.
Our response partner’s timeline began with observed modifications to suspicious registry keys, which Gigamon ATR analyzed and determined
to be containing persistence mechanisms for the ShellTea.B memory implant. Logs also revealed two PowerShell scripts launched via WMIC
with compromised credentials. We found these scripts to be the PowerShell stagers for BADHATCH and PoSlurp.B. Even though multiple
workstations had ShellTea.B persistence keys in the registry, the attackers operated predominately from a single workstation. From the
ShellTea.B infected workstation, they enumerated three different servers on the network and deployed the BADHATCH reverse shell to two,
but ultimately were observed only using one server to communicate with POS devices (see Figure 11).

Figure 11: A breakdown of FIN8’s data collection process.
After successfully reaching their objectives, interactions increased, with almost daily sessions featuring BADHATCH deployments. Card data
was removed from the POS hosts, collected on the infected IT server, and staged there for exfiltration. The repetitive scraping and collection
process was:

1. Deploy the (non-persistent) BADHATCH reverse shell to the server
2. From the server, issue commands to each POS system in a target list to

1. Unhide the hidden log of encrypted card data
2. Copy the log back to the server
3. Delete the old log file

3. Execute the PoSlurp.B PowerShell script

In the first weeks of the command log, PoSlurp.B was not seen being deployed, even though uncollected card data existed on one of the POS
machines with an earlier timestamp. Only two attacker sessions were seen, performing some basic network recon using ping and netstat, prior
to deploying BADHATCH, with commands illustrated in Figure 12.

https://blog.gigamon.com/wp-content/uploads/2020/06/FIN8-process-1.png

8/14

wmic /node:"<IT_server>" process call create "cmd /c ping <ip_address> > out.txt"

wmic /node:"<IT_server> " process call create "cmd /c netstat -f > out.txt"

Figure 12: WMIC commands used for reconnaissance.

Although the command logs only captured the later stages of the operation, analysis of this data proved vital for understanding the
relationships between the attacker’s components, as well as how they moved and interacted in the environment. Large variations in timing data
demonstrated that actions were performed by humans, rather than automated tasks. This data also revealed some unexpected details: it turns
out threat actors make mistakes too! Multiple command errors were observed, including a session where the operator attempted to run a
command from the wrong directory multiple times before getting it right. Another session featured commands accidentally run from the wrong
machine before being properly executed on the intended target.

At the end of the day, the actors behind FIN8 are human and clearly fallible. While they may make rapid improvements to tools and
procedures, we hope the technical and operational information shared here will help other organizations detect and disrupt FIN8 operations.

Learn more about financially motivated threats in our newest report: A Look Inside Financially Motivated Attacks and the Active FIN8 Threat
Group

Gigamon Applied Threat Research would like to acknowledge Charles River Associates, a Gigamon Insight incident response partner,
with a special thank you to Peter Seddon, Andrew Fry, Kevin Kirst, and Geoff Fisher, for their contributions to this research.

Appendix: Detection Strategies

There are several unique opportunities for detection across the operational lifecycle and artifacts generated by FIN8’s toolset. Indicators vary
from recurring observed techniques to campaign-specific atomic indicators. This section draws on information from the analysis of each
sample and observations from the live incident response engagement to build detection strategies for future use.

Observations & Signatures

During our engagements with FIN8, we saw several patterns in their behavior that serve as useful observations but are not unique enough or
associated with malicious activity directly enough to be alert worthy. Checking for these characteristics and adding context from the
environment should produce investigable data:

Default self-signed certificates on low reputation infrastructure – FIN8 infrastructure utilized the default self-signed “Internet Widgets”
Apache TLS certificate as well as newly-registered domains and common VPS-based hosting providers. These observations can be
used to hunt FIN8 and many other threat actors.
Periodic connections – Identifying periodic connections can help detect automated behaviors, such as the 5-minute timing of callbacks
from BADHATCH and the periodic DNS and HTTPS traffic of ShellTea.B.
Newly observed one-to-many RPC/WMI interactions – FIN8 makes heavy use of Windows file sharing and WMIC to distribute and
execute its tooling. Spotting these actions can help identify infected hosts at various stages of an operation.
Encoded DNS Traffic – As detailed above, ShellTea.B utilizes a DNS-based communication channel to contact its C2 servers. A-record
queries are generated with high-entropy subdomains that can be matched by a regex like “[a-z0-5]{39,42}”. The responses to these
queries would also stand out as being distributed among random IP blocks.

Additionally, while signature-based detection tends to be prone to evasion, it is a valuable part of a comprehensive detection strategy,
particularly with actors that reuse infrastructure and tools between engagements. With this set of malware, signature-based network detection
is complicated by the use of encryption, but signatures are provided for cases where SSL/TLS termination is in use. The following signatures
can identify the tools discussed in this blog:

http://www.gigamon.com/resources/resource-library/white-paper/wp-inside-financially-motivated-attacks.html

9/14

rule FIN8_abadbabe

{

 meta:

 author = "Kristina Savelesky – Gigamon ATR"

 description = "Hexadecimal constants used in FIN8 unembedding"

 last_modified = "June 27, 2019"

 strings:

 $abadbabe= "0xbe,0xba,0xad,0xab"

 $8badf00d = "0x0d,0xf0,0xad,0x8b"

 $hex = { be ba ad ab 0d f0 ad 8b }

 condition:

 $hex or ($abadbabe and $8badf00d)

}

alert tcp $HOME_NET 1024: -> $EXTERNAL_NET 443 (msg:"GIGAMON_ATR COMMAND_AND_CONTROL BADHATCH Check-in"; flow:established,
from_client, no_stream; dsize:64; content:"-SH"; offset:44; depth:3; pcre:"/[0-9A-F]{8}-[0-9A-F]{8}-[0-9A-F]{8}-[0-9A-F]{8}-[0-9A-
F]{8}-SH/"; content:"|02 09 01|"; offset:52; depth:3; flowbits:set,ATR.BADHATCH.check-in; classtype:trojan-activity; sid:2900366;
rev:3;)

alert tcp $HOME_NET 1024: -> $EXTERNAL_NET 443 (msg:"GIGAMON_ATR COMMAND_AND_CONTROL BADHATCH Banner"; flow:established,
from_client; dsize:>100; flowbits:isset,ATR.BADHATCH.check-in; content:"|2a 20|SUPER|20|REMOTE|20|SHELL|20|v2|2e|2|20|SSL";
classtype:trojan-activity; sid:2900367; rev:2;)

reject http $HOME_NET any -> $EXTERNAL_NET any (msg:"GIGAMON_ATR COMMAND_AND_CONTROL ShellTea.B User Agent POST Request";
content:"POST"; http_method; depth:4; content:"json/"; http_uri; content:"Mozilla/4.0 (compatible|3B| MSIE 8.0|3B| Windows NT
6.1|3B| Trident/4.0"; http_user_agent; offset:0; depth: 62; content:!")"; http_user_agent; distance:0; within:1; content:"Accept|3a
20|application/octet-stream"; http_header; content:"Content-Type|3a 20|application/octet-stream"; http_header; distance: 0;
content:"Connection|3a 20|close"; http_header; distance:0; classtype: trojan-activity; sid:1; rev:1;)

Atomic Indicators

Atomic indicators are a valuable component of a detection strategy, particularly in situations when the actor has been known to reuse
infrastructure. Due to the use of shared hosting, IP address indicators will vary in usefulness. The atomic indicators in Table A1 were observed
in our analysis.

Indicator Type Sample

c5642641064afc79402614cb916a1e3bd5
 ddd4932779709e38db64d6cc561cd5

SHA256 BADHATCH

149.28.203[.]102 IP Address BADHATCH

Local\{45292C4F-AABA-49ae-9D2E-EAF338F50DF4} Event String BADHATCH

subarnakan[.]org Domain ATR ShellTea

subarnakan[.]org Domain ATR ShellTea

asilofsen[.]net Domain ATR ShellTea

manrodoerkes[.]org Domain ATR ShellTea

ashkidiore[.]org Domain ATR ShellTea

druhanostex[.]net Domain ATR ShellTea

kapintarama[.]net Domain ATR ShellTea

385538451e59f630db6f1b367aacfdbb
 85b7d730210fc6d5b2bee7037f0362a

SHA256 ShellTea.B

moreflorecast[.]org Domain ShellTea.B

198.199.105.192 IP ShellTea.B Resolution

preploadert[.]net Domain ShellTea.B

10/14

Indicator Type Sample

104.248.9.143 IP ShellTea.B Resolution

troxymuntisex[.]org Domain ShellTea.B

nduropasture[.]net Domain ShellTea.B

8c6fe4c8b000e87b756d5fd0b53d3e
 230ceafa8928851a91dac42445c0bab8e3

SHA256
PoSlurp.B

%TMP%\wmsetup.tmp File path PoSlurp.B

Table A1: Atomic indicators from BADHATCH, a ShellTea sample analyzed by Gigamon ATR, ShellTea.B, and PoSlurp.B.

ATT&CK Mapping

ATT&CK is a framework developed by MITRE and widely used by intelligence communities to characterize and model TTPs used by threat
actors and their tooling. In Table A2 below, we map the TTPs observed in BADHATCH, ShellTea.B, and PoSlurp.B, as well as operational
techniques, to ATT&CK techniques.

Stage Techniques observed in:

BADHATCH

ShellTea.B

PoSlurp.B

Operationally

Collection Data from Local Systems (T1005)

Data Staged (T1074)

Command and Control Commonly Used Port (T1043)

Custom Command and Control Protocol (T1094)

Custom Cryptographic Protocol (T1024)

Data Encoding (T1132)

Standard Cryptographic Protocol (T1032)
 Obfuscation (T1001)

Multiband Communication (T1026)

Remote File Copy (T1105)

Standard Application Layer Protocol (T1071)

Standard Cryptographic Protocol (T1032)

11/14

Stage Techniques observed in:

BADHATCH

ShellTea.B

PoSlurp.B

Operationally

Uncommonly Used Port (T1065)

Defense Evasion Access Token Manipulation (T1134)

Deobfuscate/Decode Files or Information (T1140)

Execution Guardrails (T1480)

File Deletion (T1107)

File Permissions Modification (T1222)

Hidden Files and Directories (T1158)

Modify Registry (T1112)

Obfuscated Files or Information (T1027)

Process Injection (T1055)

Scripting (T1064)

Valid Accounts (T1078)

Virtualization/Sandbox Evasion (T1497)

Discovery Network Share Discovery (T1135)

Process Discovery (T1057)

Query Registry (T1012)

Remote System Discovery (T1018)

12/14

Stage Techniques observed in:

BADHATCH

ShellTea.B

PoSlurp.B

Operationally

Security Software Discovery (T1063)

System Information Discovery (T1082)

System Network Configuration Discovery (T1016)

System Network Connections Discovery (T1049)

System Owner/User Discovery (T1033)

System Time Discovery (T1124)

Virtualization/Sandbox Evasion (T1497)

Execution Command-Line Interface (T1059)

Execution through Module Load (T1129)

PowerShell (T1086)

Scripting (T1064)

Service Execution (T1035)

Windows Management Instrumentation (T1047)

Exfiltration Data Encrypted (T1022)

Exfiltration over Command and Control Channel (T1041)

Initial Access Valid Accounts (T1078)

Lateral Movement Remote File Copy (T1105)

13/14

Stage Techniques observed in:

BADHATCH

ShellTea.B

PoSlurp.B

Operationally

Remote Services (T1021)

Windows Admin Shares (T1077)

Persistence Hidden Files and Directories (T1158)

Registry Run Keys / Startup Folder (T1060)

Valid Accounts (T1078)

Privilege Escalation Access Token Manipulation (T1134)

Process Injection (T1055)

Valid Accounts (T1078)

Table A2: Mapping of TTPs observed in BADHATCH, ShellTea.B, and PoSlurp.B to ATT&CK techniques.

RELATED CONTENT

REPORT

2022 Ransomware Defense Report

GET YOUR COPY

WEBINAR

Encryption Trends: What We Learned from Analyzing 1 Trillion Network Data Flows

WATCH ON DEMAND

REPORT

2022 TLS Trends Data

DOWNLOAD REPORT

14/14

WEBPAGE

Suddenly, Ransomware Has Nowhere to Hide

TAKE A LOOK

OLDER ARTICLE
 Human Factors Attacks: Social Engineering

NEWER ARTICLE
 Don’t Risk Your Network: Use Inline Bypass

https://blog.gigamon.com/2019/07/18/human-factors-attacks-social-engineering/
https://blog.gigamon.com/2019/07/23/dont-risk-your-network-use-inline-bypass/

