
1/5

July 22, 2019

A Deep Dive Into IcedID Malware: Part III - Analysis of
Child Processes

fortinet.com/blog/threat-research/deep-dive-icedid-malware-analysis-of-child-processes.html

Threat Research

By Kai Lu | July 22, 2019
FortiGuard Labs Threat Analysis Report Series

In Part II of this blog series, we identified three child processes that were created by the
IcedID malware. In Part III below, we’ll provide a deep analysis of those child processes.

Let’s get started!

0x01 Child process A (entry offset: 0x168E)

This first child process is primarily responsible for performing web injection in browsers and
acting as a proxy to inspect and manipulate traffic. It can also hook key functions in
browsers.

The following is the pseudo code of the entry point.

Figure 1. The pseudo code of the entry point in the trampoline code

https://www.fortinet.com/blog/threat-research/deep-dive-icedid-malware-analysis-of-child-processes.html
https://www.fortinet.com/blog/search?author=Kai+Lu
https://www.fortinet.com/blog/threat-research/icedid-malware-analysis-part-two.html

2/5

In this function, the process first unhooks the RtlExitUserProcess API and then loads a
number of dynamic libraries. The function sub_0x1A9F() is the core function.

Figure 2. The core function sub_0x1A9F()

Here’s a list of the key functionalities of this function.

1. Build a C2 server list

2. Create a thread to set IPC with file mapping technique

3. Create a thread and then call the QueueUserAPC function to add a user-mode
asynchronous procedure call (APC) object to the APC queue of the specified thread. In APC,
it can read the DAT config file, decrypt it with an RC4 key, and then decompress the data as
follows.

Figure 3. The decrypted web injection DAT config file

This DAT config file is used for performing web injections. It uses a Magic number, “zeus”.
IcedID then uses a customized algorithm to decode the content. The following is the
decompressed data.

Figure 4. The decompressed data of web injection

4. Add self-signed certificate into the certificate store and then create a proxy server which is
bound to 127.0.0.1 on TCP port 61420. Next, it calls the RegisterWaitForSingleObject
function to register a WSA (Windows Socket API) event handler, then uses the socket of the
initialized proxy server to handle all connect, send, and receive network requests.

Figure 5. Proxy server handles network requests

Additionally, in order to perform a MiTM attack on SSL connections, the proxy server has to
generate a certificate and add it into the cert store. The following is that implementation.

Figure 6. Adding a self-signed cert into the cert store

We can also see that this svchost.exe child process is listening on TCP port 61420.

5. Create a thread to perform code injection into the browser. The following is the thread
function of the browser code injection.

Figure 7. The browser injection function

It uses the ZwQuerySystemInformation function to gather a list of all current running
processes. If a browser process is found, it performs code injection into the browser process
and sets up a hook on the ZwWaitForSingleObject function. The following is the function that

3/5

checks to see if a running process is a browser process. It first generates a hash with the
process name using a specified algorithm. Then, it compares the hash with the given hash of
four browsers: Firefox, Edge, IE, and Chrome.

Figure 8. Checking the hash of the process name

Before performing its code injection, it first checks to see if this process is running on 64 bits
by calling the IsWow64Process function. It then performs a code injection into the browser
process, and depending on the process bits version, it calls the corresponding hook function
to set up a hook on the ZwWaitForSingleObject function.

Figure 9. Process injection and setting up a hook in a browser

Here we will use Firefox to demonstrate how it performs its process injection and sets up a
hook.

Figure 10. Process injection into Firefox

It sets up a hook on the ZwWaitForSingleObject API in the Firefox process as follows.

Figure 11. Hooked ZwWaitForSingleObject function

When Firefox calls the ZwWaitForSingleObject function, it jumps to the trampoline code. The
entry point of trampoline code is at offset 0x1856 from the injected memory region.

Let’s take a closer look at the trampoline code (offset:0x1856).

In this trampoline code, it first unhooks the ZwWaitForSingleObject API. Then it sets up a
hook on the SSL_AuthCertificateHook API (in nss3.dll for Firefox.) The
nss3.SSL_AuthCertificateHook function specifies a certificate authentication callback
function that is called to authenticate an incoming certificate.

The following is the hooked nss3.SSL_AuthCertificateHook function.

Figure 12. The hooked nss3.SSL_AuthCertificateHook function

It configures the nss3.SSL_AuthCertificateHook function to always return SECSuccess.

Note that it can set up a hook for browser-specific functions depending on the type of
browser. However, we won’t be providing details for any other browsers in this blog.

Next, it continues to set up a hook on the connect API in ws2_32.dll. The following is the
hooked connect API.

Figure 13. The hooked connect API in ws2_32.dll

The following is the pseudo code of the trampoline code for the hooked connect API.

4/5

Figure 14. The pseudo code of the trampoline code for the hooked connect API

Once the connect function returns 0 (the connection has succeeded), it sends 12 bytes of
data to proxy server 127.0.0.1:61420, which was created in this svchost.exe child process.
The captured traffic is shown in Figure 15.

Figure 15. Brower sends 12 bytes of data to proxy server

The structure of these 12 bytes consists of four parts, as follows:

0x00: Unknown

0x04: Target website’s IP address

0x08: Port

0x0A: Browser type

0x02 Child Process B (entry offset: 0x1E0A)

This second child process is used to communicate with the C2 server. It will attempt to send
an HTTP request to the C2 server via WebSocket, as follows.

Figure 16. Requesting data from the C2 via WebSocket

It also communicates with the parent svchost.exe process using a mapping file technique.
And, depending on the shared info, it may attempt to make network requests to a C2 server
over SSL, and then create a new process, perform code injections, and set up a hook on the
RtlExitUserProcess function.

0x03 Child Process C (entry offset: 0x10DF)

This process communicates with the parent svchost.exe process by using a mapping file
technique. It is also able to perform some registry operations.

0x04 Solution

This malicious PE file has been detected as “W32/Kryptik.GTSU!tr” by the FortiGuard
AntiVirus service.

The C2 server list has been rated as “Malicious Websites” by the FortiGuard WebFilter
service.

0x05 Conclusion

5/5

In this series of posts, I have provided a detailed analysis of a new IcedID malware sample.
The entire detailed analysis is divided into three parts. The first two part are available here:
Part I: Unpacking, Hooking, and Process Injection and Part II: Analysis of the Core IcedID
Payload (Parent Process).

IcedID is a sophisticated and complicated banking trojan that performs web injection in
browsers and acts as proxy to inspect and manipulate traffic. It is designed to steal
information – such as credentials – from victims and then send that stolen information to
attacker-controlled servers. To accomplish this, IcedID uses a large number of hooking and
process injection techniques, and it also disguises itself as several svchost.exe processes,
which we examined in this deep dive analysis series.

Learn more about FortiGuard Labs and the FortiGuard Security Services portfolio. Sign
up for our weekly FortiGuard Threat Brief.

Read about the FortiGuard Security Rating Service, which provides security audits and best
practices.

Related Posts

Copyright © 2022 Fortinet, Inc. All Rights Reserved

Terms of ServicesPrivacy Policy
| Cookie Settings

https://www.fortinet.com/blog/threat-research/icedid-malware-analysis-part-one.html
https://www.fortinet.com/blog/threat-research/icedid-malware-analysis-part-two.html
https://www.fortinet.com/fortiguard/threat-intelligence/threat-research.html?utm_source=nreleaseblog&utm_campaign=2018-q2-fortiguardlabs-cta
https://www.fortinet.com/support-and-training/support-services/fortiguard-security-subscriptions.html?utm_source=blog&utm_campaign=2018-blog-security-services
https://www.fortinet.com/fortiguard/threat-intelligence/threat-research.html?utm_source=nreleaseblog&utm_campaign=2018-q2-fortiguardlabs-cta
https://www.fortinet.com/support-and-training/support-services/fortiguard-security-subscriptions/security-rating.html?utm_source=blog&utm_campaign=2018-blog-security-rating-service
https://www.fortinet.com/corporate/about-us/legal.html
https://www.fortinet.com/corporate/about-us/privacy.html

