
1/18

Ahmet Bilal Can July 18, 2019

Android Malware Analysis : Dissecting Hydra Dropper
pentest.blog/android-malware-analysis-dissecting-hydra-dropper/

Hydra is another android bankbot variant. It uses overlay to steal information like Anubis . Its name
comes from command and control panel. Through July 2018 to March 2019 there was atleast 8-10
sample on Google Play Store. Distribution of malware is similar to Anubis cases. Dropper apps are
uploaded to Play Store. But unlike Anubis, Dropper apps extract dex file from png file with kinda
stenography and downloads malicious app from command and control server with dropped dex.
You can find the sample that I will go through in this post here : Dropper

ToC:

Bypass checks that on the java side
GDB Debug
Ghidra shenanigans
Understanding creation of the dex file
Bonus

First of all, if the dropper app likes the environment it runs, it will load the dex file and connect to
the command and control server. There are multiple checks on java and native side. We will debug
the native side with gdb and use ghidra to help us to find checks and important functions.

Time Check

When we open the first app with jadx we can see time check in class
com.taxationtex.giristexation.qes.Hdvhepuwy.

https://pentest.blog/android-malware-analysis-dissecting-hydra-dropper/
https://eybisi.run/Mobile-Malware-Analysis-Tricks-used-in-Anubis/
https://twitter.com/PRODAFT/status/1096458491852664840
https://koodous.com/apks/46aeb04f2f03ebe7c716fc6e58a5dea763cd9b00eb7a466d10a0744f50a7368f/comments

2/18

public static boolean j() {
 return new Date().getTime() >= 1553655180000L && new Date().getTime() <=
1554519180000L;
}

This function called in another class : com.taxationtex.giristexation.qes.Sctdsqres

class Sctdsqres {
 private static boolean L = false;
 private static native void fyndmmn(Object obj);
 Sctdsqres() {
 }
 static void j() {
 if (Hdvhepuwy.j()) {
 H();
 }
 }
 static void H() {
 if (!L) {
 System.loadLibrary("hoter");
 L = true;
 }
 fyndmmn(Hdvhepuwy.j());
 }
}

First, it checks the time and if the condition holds, the app will load the native library and call
fyndmmn(Hdvhepuwy.j()); which is native function. We need to bypass this check so app will

always load the library.

I used apktool to disassemble apk to smali and changed j() to always return true.

apktool d com.taxationtex.giristexation.apk
cd com.taxationtex.giristexation/smali/com/taxationtext/giristexation/qes
edit j()Z in Hdvhepeuwy.smali

.method public static j()Z
 .locals 1
 const/4 v0, 0x1
 return v0
.end method

rebuild apk with apktool b com.taxationtex.giristexation -o hydra_time.apk and sign
it.

Now time control will always return true and after loading native library and fyndmmn native
function is called. Even with this still app doesn’t load dex file.

GDB Debug

Here is a great post explaining how to setup gdb to debug native libraries. Steps:

Download android sdk with ndk

https://packmad.github.io/gdb-android/
https://dl.google.com/android/repository/android-ndk-r20-linux-x86_64.zip

3/18

adb push ~android-ndk-r20/prebuilt/android-TARGET-ARCH/gdbserver/gdbserver
/data/local/tmp
adb shell “chmod 777 /data/local/tmp/gdbserver”
adb shell “ls -l /data/local/tmp/gdbserver”
get process id, ps -A | grep com.tax
/data/local/tmp/gdbserver :1337 –attach $pid
adb forward tcp:1337 tcp:1337
gdb
target remote :1337
b Java_com_tax\TAB

There is a small problem here. App will load the library and call the native function and exit. The
app needs to wait for gdb connection. My first thought was putting sleep and then connect with
gdb.

apktool d hydra_time.apk
vim
hydra_time/com.taxationtex.giristexation/smali/com/taxationtex/giristexation/qes/Sctdsqres.smali

after following block:

.line 43
:cond_0

Add

const-wide/32 v0, 0xea60
invoke-static {v0, v1}, Landroid/os/SystemClock;->sleep(J)V

and since locals variable is 1 and we use an extra v1 variable, increment it to 2

.method static H()V
 .locals 2

Again sign and install the app. If all goes well the app will wait 60 seconds in a white screen. Now
we can connect with gdb.

ps | grep com.tax
/data/local/tmp/gdbserver :1337 --attach $pid

I use pwndbg for better gdb experience, you can try peda or whatever you want.

adb forward tcp:1337 tcp:1337
gdb
target remote :1337

4/18

debug session
It takes some time to load all libraries. Put breakpoint to native function fymdmmn

5/18

set breakpoint
If you want to sync gdb and ghidra addresses, type vmmap at gdb and look for first entry of
libhoter.so .

 0xe73be000 0xe73fc000 r-xp 3e000 0 /data/app/com.taxationtex.giristexation-
1/lib/x86/libhoter.so

So 0xe73be000 is my base address.
 Go to Window -> Memory Map and press Home icon on the upper right. Put your base address

and rebase the binary.

Look at the entry of native function in ghdira:

6/18

fyndmmn function

Why call the time function ? Again time check ? Rename return value of time function (curr_time)
and press ctrl+shift+f from assembly view and go to location that context is READ

return (uint)(curr_time + 0xa3651a74U < 0xd2f00)

So we were right, again time check. Rename the current function to check_time . Calculate the
epoch time:

>>> 0xffffffff-0xa3651a74+0xd2f00
>>> 1554519179
>>> (1554519179+ 0xa3651a74) & 0xffffffff < 0xd2f00
>>> True

convert epoch to time : Saturday, April 6, 2019 2:52:59 AM
Yep this was the time that app was on play store. Check how this boolean is used. Look for xrefs
of check_time function.

Yep, as we think it will exit if time doesn’t hold.
First breakpoint/binary patch point is here. Or we can change emulator/phone’s time to April 5
2019.
b *(base + 0x8ba8)

But bypassing time check is not enough.

Ghidra Shenanigans

Now diving into binary file you will find multiple functions like this :

7/18

decryption blocks

If you look at while loop.

xor while loop

2 blocks of data are XORed. (Length 0x18) We can put breakpoint after do while but it will not be
efficient solution. Let’s think a programmatic way to find decrypted strings.
These xor blocks are next to each other. If we can get length of blocks we can easily get decrypted
string. Then find the function that use these xor blocks and rename it. Afterwards we can jump
2*length and get next xor blocks. Repeat.

Starting xor block is at 0x34035 .
Get xrefs of block:

8/18

xor block

go to function,

get

cmp value
get size from CMP instruction, since we know the address of first xor block, add size to first
address and get the address of second xor block. XOR the blocks and rename the calling function.

Ghidra : go to Window -> Script Manager -> Create New Script -> Python .
Set name for script and let’s write our ghidra script.

9/18

import ghidra.app.script.GhidraScript
import exceptions
from ghidra.program.model.address import AddressOutOfBoundsException
from ghidra.program.model.symbol import SourceType

def xor_block(addr,size):

get byte list
first_block = getBytes(toAddr(addr),size).tolist()
second_block = getBytes(toAddr(addr+size),size).tolist()

a = ""
decrypt the block
for i in range(len(first_block)):
 a += chr(first_block[i]^second_block[i])

 ## each string have trash value at the end, delete it
trash = len("someval")
return a[:-trash]

def block(addr):
 ## block that related to creation of dex file. pass itt

if addr == 0x34755:
 return 0x0003494f
get xrefs
xrefs = getReferencesTo(toAddr(addr))
if len(xrefs) ==0:
 ## no xrefs go to next byte
 return addr+1

for xref in xrefs:
 ref_addr = xref.getFromAddress()
 try:
 inst = getInstructionAt(ref_addr.add(32))
 except AddressOutOfBoundsException as e:
 print("Found last xor block exiting..")
 exit()

 ## Get size of block with inst.getByte(2)

 block_size = inst.getByte(2)
 ## decrypt blocks

 dec_str = xor_block(addr,block_size)
 ## get function

 func = getFunctionBefore(ref_addr)
 new_name = "dec_"+dec_str[:-1]

 ## rename the function
 func.setName(new_name,SourceType.USER_DEFINED)

 ## log
 print("Block : {} , func : {}, dec string :

{}".format(hex(addr),func.getEntryPoint(),dec_str))

return addr+2*block_size

def extract_encrypted_str():

starting block
curr_block_location = 0x34035
for i in range(200):
 curr_block_location = block(curr_block_location)

10/18

def run():
extract_encrypted_str()

run()

To run the script, select created script in Script Manager and press Run.
Now look at the output.

ghidra script output
As you can see there are functions : getSimCountryISO , getNetworkCountryIso ,
getCountry and one suspicious string : tr . Without running we can assume code will check if

these function’s return values are equals to tr . I know this app targets Turkish people so this is
reasonable to avoid sandbox and even manual analyze.

 If you follow from these functions’ xrefs to function FUN_00018A90() (called after time check) you
can see this block :

country check

So next patch/breakpoint is this check :
 b *(base + 0x8c80)

 After these checks code will drop dex and load it. If you run without patch/breakpoints only
edevlet page is shown and nothing happens. Get your base address and try bypassing checks :

11/18

b *(base + 0x8ba8)
b *(base + 0x8c80)
copy eip : a8 -> set $eip = aa
c
copy eip : 80 -> set $eip = 82
c

After these breakpoints, app will create dex file and load it. You will see Accessibility page pop-pup
if you do it correctly.

checks bypassed
Or we can patch je instructions to jne in native library and build apk again.

Understanding creation of the dex file

If you look for dropped file in filesystem, you won’t see anything. File is removed with remove .
We can attach frida and catch dropped file easily. But forget about it for now and find how png file
is used to create dex file.

Look at the last parts of the ghidra script’s output.

12/18

ghidra script output
Somehow prcnbzqn.png is processed with AndroidBitmap and dex file is created with the
name xwchfc.dex . Then with ClassLoader API dex file is loaded and
moonlight.loader.sdk.SdkBuilder class is called.

Check function : 0xeec0

get png

file from asset folder
Iterates over assets and finds png file. Good. Rename this function asset_caller . Go to xrefs of
this func and find 0xe2c0 . I renamed some of functions. dex_header creates dex file on
memory. dex_dropper drops dex file to system and loads.

13/18

hierarchy of functions
How dex_header creates dex file ? Go to function definition.

dex creator function

bitmap_related creates bitmap from png file. Bitmap object is passed to dex_related
function. Bitmap ?

If you read png file byte byte you don’t get color codes of pixels directly. You need to convert it to
bitmap. So app first transfer png file to bitmap and read hex values of pixels. Fire up gimp/paint
and look at the hex codes of first pixel of the image and compare with below picture 🙂

rgb values of pixels

14/18

Now comes fun part. How these values are used. At 0xfbf0 you can find dex_related
function.

Bitmap object is passed to this function. Now there are 2 important functions here:

two

important function
byte_chooser will return one byte and dex_extractor will use that byte to get final dex bytes.
4_cmp variable is set to 0 at the beginning and will set to 0 at the end of else block. So flow will

hit byte_chooser 2 times before entering dex_extractor . Here is byte_chooser

byte chooser function
param_3 is hex codes of pixels. param_2 is like seed. If its first call of byte_chooser it is set to 0. In
second call of byte_chooser, param_2 will be return value of first call and left shifted by 4. Then its
set to 0 at the end of else block.

After calculating the byte by calling byte_chooser twice, return value is passed to
dex_extractor .

dex byte calculator function
param_2 is calculated byte param_1 is index.

Now we know how the dex file is created. Let’s do it with python

15/18

from PIL import Image
import struct

image_file = "prcnbzqn.png"
so_file = "libhoter.so"
offset = 0x34755
size = 0x1fa
output_file = "drop.dex"

im = Image.open(image_file)
rgb_im = im.convert('RGB')
im_y = im.size[1]
im_x = im.size[0]

dex_size = im_y*im_x/2-255

f = open(so_file)
d = f.read()
d = d[offset:offset+size]

def create_magic(p1,p2,p3):
return (p1<<2 &4 | p2 & 2 | p2 & 1 | p1 << 2 & 8 | p3)

def dex_extractor(p1,p2):
return (p1/size)*size&0xffffff00| ord(d[p1%size]) ^ p2

count = 0
dex_file = open(output_file,"wb")
second = False
magic_byte = 0
for y in range(0,im.size[1]):

for x in range(0,im.size[0]):
 r, g, b = rgb_im.getpixel((x, y))
 magic_byte = create_magic(r,b,magic_byte)
 if second:
 magic_byte = magic_byte & 0xff
 dex_byte = dex_extractor(count,magic_byte)
 dex_byte = dex_byte &0xff
 if count > 7 and count-8 < dex_size:
 dex_file.write(struct.pack("B",dex_byte))
 magic_byte = 0
 second = False
 count+=1
 else:
 magic_byte = magic_byte << 4
 second = True

dex_file.close()

Let’s look at the output file with jadx

16/18

dropped dex file
Remember moonlight from output of ghidra script ? Yep this looks correct.

Frida <3

Well I cant write an article without mentioning frida. Bypass checks with frida.

There are time checks on java and native side.
Country check
File is removed at native side.

17/18

var unlinkPtr = Module.findExportByName(null, 'unlink');
// remove bypass
Interceptor.replace(unlinkPtr, new NativeCallback(function (a){
 console.log("[+] Unlink : " + Memory.readUtf8String(ptr(a)))

}, 'int', ['pointer']));

var timePtr = Module.findExportByName(null, 'time');
// time bypass
Interceptor.replace(timePtr, new NativeCallback(function (){
 console.log("[+] native time bypass : ")
 return 1554519179
},'long', ['long']));

Java.perform(function() {
 var f = Java.use("android.telephony.TelephonyManager")
 var t = Java.use('java.util.Date')
 //country bypass
 f.getSimCountryIso.overload().implementation = function(){
 console.log("Changing country from " + this.getSimCountryIso() + " to tr ")
 return "tr"
 }
 t.getTime.implementation = function(){
 console.log("[+] Java date bypass ")
 return 1554519179000
 }
})

output of frida session
Pull the dex file with adb pull path/xwcnhfc.dex .

Homework

18/18

This part is homework for reader 🙂 Next version of this malware only use native arm binaries. So
we can’t easily debug without having arm based device. But we can use our dex dropper python
script. Malware sample. Load the arm binary to ghidra. Find the correct offset of the dex data block
and the size of the block. dex_extractor function might look different but it does the same thing. So
you need to only change the name of the files, offset and size variables at the python script. Hash
of dropped dex file : 7ff02fb46009fc96c139c48c28fb61904cc3de60482663631272396c6c6c32ec

Conclusion

We attached gdb to debug native code and found certain checks. Wrote a ghidra script to
automate decryption of strings and frida script to bypass checks. Also learned that png files needs
to be converted with Bitmap to get pixel values. So next time you see png file and suspicious app,
look for bitmap calls 😉

References

GDB Debug : https://packmad.github.io/gdb-android/
Featured image : https://www.deviantart.com/velinov/art/Hydra-monster-144496963

https://koodous.com/apks/6c13658a81921f658f660a0f670eb61e9459d8105c1a72910a6bc8abd7795c65
https://packmad.github.io/gdb-android/
https://www.deviantart.com/velinov/art/Hydra-monster-144496963

