The Avast Abuser: Metamorfo Banking Malware Hides By
Abusing Avast Executable

medium.com/@chenerlich/the-avast-abuser-metamorfo-banking-malware-hides-by-abusing-avast-executable-
ac9b8b392767

Chen Erlich April 9, 2020

-Ch
en
Chen Erlich

Apr 3, 2020

10 min read

Source: ensilo.com/BreakingMalware
Twitter: @chen_erlich

1/27


https://medium.com/@chenerlich/the-avast-abuser-metamorfo-banking-malware-hides-by-abusing-avast-executable-ac9b8b392767
https://medium.com/@chenerlich?source=post_page-----ac9b8b392767--------------------------------
https://medium.com/@chenerlich?source=post_page-----ac9b8b392767--------------------------------
https://twitter.com/chen_erlich

L

SUMMARY

In May 2019, enSilo’s Threat Intelligence team observed activity by a cybercrime group,
spreading Metamorfo — A Brazilian banking trojan. The variants we discovered abuse an
executable digitally signed by Avast, which is one of the most popular AV products in the world
for consumers. We were able to connect this activity to a campaign reported by TrendMicro
which targeted an executable by a different Anti-Virus vendor, Avira. This

further highlights the Modus-Operandi of the group.

This blog post describes in detail one of the variants used in this campaign and highlights
unique Tactics, Techniques and Procedures (TTPs) used in this campaign which were not
previously disclosed.

2/27


https://blog.trendmicro.com/trendlabs-security-intelligence/analysis-abuse-of-custom-actions-in-windows-installer-msi-to-run-malicious-javascript-vbscript-and-powershell-scripts/

TECHNICAL ANALYSIS

In May 2019, enSilo detected a new activity by a Brazilian cybercrime group. Both loader
variants and their respective payloads that were analyzed share similar TTPs and code
associated with a Brazilian cybercrime group.

Execution Flow Overview

On execution, the MSI downloader starts by checking if it is running in a virtual machine. If not,
downloads a zip file, unzips it, deletes itself, establishes persistency and restarts the system.

The zip file contains the following files:

1. jesus.exe — Signed AVDump32 — Avast’s memory dump utility. Renamed to a random
name.

2. dbghelp.dll — Malicious file to be side loaded by AJWrDz.exe.

3. jesus.dmp — Payload to be loaded by the injected Windows Media Player
executable (wmplayer.exe). Later renamed to the same random name as
jesus.exe with a .dmp extension.

4. ssleay64.dll — Known variant of Metamorfo. Will be loaded and used in the
injected wmplayer.exe.

5. ssleay32.dll — OpenSSL Shared Library.

6. borindmm.dll — Borland Memory Manager.

7. libeay32.dll — OpenSSL Shared Library.

During the rest of the analysis we will refer jesus.exe as “AJWrDz.exe” which is the random
name generated in this execution. After the system reboots, the file “AJWrDz.exe” executes,
which in turn triggers the side-loading of the malicious (and fake) DLL file “dbghelp.dll”. This
malicious DLL file injects itself to Windows Media Player process — wmplayer.exe, and
reflectively loads the renamed jesus.dmp file, “AJWrDz.dmp”.

The following diagram describes the high-level execution flow of the variants in this campaign:

3/27



L

MSI DOWNLOADER

The following is the static characteristics of the Windows Installer (MSI) downloader which
starts the infection, this MSI downloader is similar to the one used in the earlier part of the
campaign:

File Name: HNR-Not03958576535323.msi
SHA1: F1498E679885389C32FDF5EC39813FESD4D34F23

Size: 287232 bytes

4/27


https://docs.microsoft.com/en-us/windows/desktop/msi/windows-installer-portal

Creation Time: 2009-12—-11 11:47:44

During the time of analysis this variant had very low detection rate in VirusTotal, as can be seen
in figure 2:

[=

L

All MSI files in this campaign have different names, but share unique characteristics:

1. Disguised as “’ to look legitimate as seen in figure 3:

5/27



L

2. Created using the “Advanced Installer” tool, which is imported in all of them, as shown in
figure 4.

3. Contain a vimdetect.exe [MD5: 55FFEE241709AE96CF64CB0B9A96F0D7] to avoid
detection, as shown in figure 4:

6/27



L

4. Use the . The CustomAction table enables integration of custom code and data into an
installation. The source of the code that is executed can be a stream contained within the
database, a recently installed file, or an existing executable file. The attackers abused this
feature to add the malicious JavaScript/VBS payload as shown in figure 5.

7/27



L

The JavaScript payload

The downloader’s JavaScript payload is obfuscated:

Figure 6: Obfuscated MSI payload
After deobfuscation:

Figure 7: Deobfuscated MSI payload

The samples in this campaign communicate with a URL in the following format:

The "{random}’ part may change between different MSI downloaders. The image2.png file is
actually a zip file which is downloaded and extracted to a target folder. In this variant it is

8/27



extracted to %APPDATA%\Macromedia. Next, the MSI downloader creates in this location a
desktop.txt file containing the string “NULL”.

The purpose of the desktop.txt file is to indicate whether the system is infected by the malware.
If it exists, the MSI will exit after it will open Adobe’s website to explain how to install updates. It
does so by executing:

“c:\Windows\System32\cmd.exe /C start /IMAX https.//helpx.adobe[.Jcom//acrobat/kb/install-
updates-reader-acrobat.html”

Otherwise, it will open legal terms of use page in Adobe’s site and continue the payload
execution. This following command executes to open the terms of use page:

“c:\Windows\System32\cmd.exe /C start /IMAX https://adobe.ly/2RY5GJR’
which will redirect to “https.//www.adobe.com//legal/terms.html”.
Note that both URLs are with the Brazilian 2-letter abbreviation, suggesting the victims’ origin.

The files are extracted to a newly created folder with a randomized name under the same path,
and the zip file is then deleted. The “AJWrDz.exe” executable path is written to the registry Run
key “HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run” to achieve persistency. As a
final step the system is restarted to trigger its execution.

THE AVAST ABUSE

After the system restart, the “AJWrDz.exe” file executes. Its static characteristics are:
File Name: AJWrDz.exe (renamed from jesus.exe)

SHA1: 2A1A5D7C85560924EDC434A1D2F23ED3445D86F4

Size: 814296 bytes

Creation Time: 2018-10-08 13:07:15

This is a legitimate file, AVDump32.exe, digitally signed by “AVAST Software” as shown in
figure 8:

9/27



L

AvDump32.exe legitimate use is to create *.dmp files of Avast processes in case there is an
unhandled exception. When Avast is installed legitimately on a system the file is located in Its
original location: C:\Program Files\AVAST Software\Avast.

Figure 9 suggests that this file was submitted to VirusTotal as “jesus.exe”, which is the name of
the file in the downloaded zip, before it’'s being renamed in the MSI payload:

10/27



L

AvDump32.exe is abused by the Metamorfo to side-load the “dbghelp.dll” by leveraging the DLL
search order. Note that this is a common issue which makes it possible to leverage the DLL

side-loading attack, often referred to as DLL Hijacking. Figure 10 shows the DLL files imported
by this executable:

11/27



L

You can find another example of abusing the DLL search order in one of our previous blog
posts.

The side loaded “dbghelp.dil” is a malicious file written in Delphi and compiled using the
Embarcadero Delphi IDE with the following characteristics:

File Name: dbghelp.dll
SHA1: 08823578841AEED044EAD81ED6DB16DD95B6FF4B
Size: 5595136 bytes

Creation Time: 2019-04-27 22:17:17

12/27


https://blog.ensilo.com/ensilo-terminates-dll-search-order-hijacking

After being side-loaded by AvDump32.exe, the DLL’s execution starts with the following steps:

1. Resolves WINAPI functions
2. Hides its GUI using WINAPI call
3. Compares if the DLL is being ran by wmplayer. More on this later.

Next, the DLL file creates the mutex — [7F4HRE-375E-AEF3-BE9A-OBJT389F53] and writes
to HKCU\Software\index (as shown in figure 11) the name of the running process which is later
used to know the name of the .dmp file that should be loaded. Finally, it injects itself to Windows
Media Player executable — wmplayer.exe.

| %

L

13/27



The process wmplayer.exe is a rather strange victim for injection given that various Windows
distributions don’t come with Windows Media Player installed by default, so it can only be

implied that this software is probably more common in the victim’s origin, and that it probably
targets home users.

Metamorfo uses a DLL injection technique with a twist. Instead of getting a handle to the victim
process using OpenProcess, which relies on having a running process, the injection uses
CreateProcess with CREATE_SUSPENDED flag. Then it creates a remote thread which loads
the malicious DLL and executes it. The process’ main thread is never resumed and thus only
the malware code executes. Figure 12 shows the CreateProcess call:

| %

L

The injection flow is as follows:

14/27



L

INJECTED PAYLOAD

Upon injection, the DLL validates that it runs under the wmplayer.exe process by checking the
process hame and goes on to execute its malicious activity. It creates a second mutex — One-
InstanceJes, resolves more WINAPI functions, checks for the registry “index” key (which was
previously written)the execution location and for the “ADWrDz.dmp” file. If this file exists, it
extracts it in-memory using RtIDecompressFragment and reflectively loads it.

No DEP

15/27



dbghelp.dll is incompatible with DEP (Data Exception Prevention), as shown in Figure 14. Thus,
when it loads the operating system will disable DEP for the injected wmplayer.exe process. This
means that code can be executed from memory regions that are not marked as executable in
the context of this process.

Metamorpho uses this to execute the reflectively loaded payload from a non-executable region.
This makes the payload harder to detect by memory forensics toolkits and security products
which many times look specifically for executable memory.

| %

L

Leveraging CreateTimerQueueTimer

16/27


https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention

Once “ADWrDz.dmp” is loaded into memory Metamorfo leverages the Create TimerQueueTimer
WINAPI call to execute it (as shown in figure 14).

CreateTimerQueueTimer is a WINAPI that creates a queue for timers. These timer objects
allow the selection of a callback function at a specified time. The original function of the APl is
to be part of the process chain by creating a timer routine, but here, the callback function of the
APl is the entry point of the malware’s actual payload.

The use of CreateTimerQueueTimer makes detection harder since the payload will not run in
the remote thread context.

This kind of technique was previously used in malware variants such as Emotet and Hancitor.

[=

L

Throughout the “ADWrDz.dmp” execution, it outputs debug comments in Portuguese as shown
in figure 16:

17/27


https://msdn.microsoft.com/en-us/library/windows/desktop/ms686796(v=vs.85).aspx

L

Entering the CreateTimerQueueTimer callback, Metamorfo creates another mutex — libea54,
and starts checking for the existence of directories and files relevant for its execution. Since
there are multiple variations of Metamorfo in this campaign, the attackers used different
locations in the file system to drop their files, see IOCs section.

Next, Metamorfo checks for the existence of “mreb.xml” and “mreboot”, as can be seen in figure
17. These artifacts were not available to us and we couldn’t verify their purpose.

18/27



L

r
If they aren’t found, it creates another mutex by the name — [7F4HRE-375E-AEF3-BE9A-
OBJT389F53]. Then, it checks internet connection by trying to resolve “goole.com” (Misspelled)
address. If internet connection is available,

it sends a GET request to “https.//www.localizaip.com|.]br/api/iplocation.php” to retrieve geo
data.

Metamorfo’s C&C communication is encrypted using the dropped OpenSSL libraries
libeay32.dll and ssleay32.dlIl.

19/27



Based on the gathered data, if the victim is not from Brazil or Portugal it will print the following
output and send the collected data to the C&C “https:/x1-Ib12.internall.Jgocache.me”, which
resided in Brazil, and finish.

| %

L

a
If the victim is from Brazil or Portugal, it will start monitoring running applications in the system
using a message loop:

20/27



L

The ssleay64.dll payload

If the malware identifies a file named “mreb.xml” or a folder named “mreboot”, it loads a
malicious “ssleay64.dll”, also written in Delphi, compiled by Borland Delphi, which has the
following characteristics:

File Name: ssleay64.dll
SHA1: FSE63580710E8FA884377A746FC822E5

Size: 1445888 bytes

21/27


https://www.virustotal.com/gui/search/size%25253A1445888

Creation Time: 2019-04-08 12:15:27

The DLL holds various resources. Some of them are encrypted and will be used as payloads to
steal victim’s data, while others are cursor related resources.

Like samples from previous campaigns Metamorfo can display fake forms on targeted banking
sites and steal credentials from the victims. On previous campaigns Metamorfo used Windows
Update to hide its malicious activity. Similarly, in this campaign Metamorfo uses a fake “Blue
Screen” window. It does so after disabling the taskbar as can be seen in Figures 20 and 21:

| %

L

22/27


https://www.fireeye.com/blog/threat-research/2018/04/metamorfo-campaign-targeting-brazilian-users.html

L

Evading Banking Protection & Anti-Fraud Products

Metamorfo also makes efforts to evade banking protection and anti-fraud products by setting a
hook on LoadLibraryW function and checking which DLL is loaded, the trampoline can be seen
in Figure 22:

23/27



L

With the help of this trampoline, for every LoadLibraryW call the attackers will check if the DLL
to be loaded contains one of the following anti-fraud and banking protection strings:

o Gbpinj

e Scpbrad
e Scpad

o Trusteer
 Warsaw
¢ Gblplugin
¢ |psbho

e Hook

If one of them is matched, the DLL LoadLibraryW call is trying to load wouldn’t load.

Figure 23 shows a few searched strings:

24/27



L

I0CS

Hashes:

e MSI — F1498E679885389C32FDF5EC39813FES5D4D34F23

e Other related samples

e AvDump32.exe — 2A1A5D7C85560924EDC434A1D2F23ED3445D86F4
o Dbghelp.dil — 08823578841AEED044EAD81ED6DB16DD95B6FF4B

o Other related samples

¢ Ssleay64.dll -

o F5E63580710E8FA884377A746FC822E5

25/27



CO0BF102482C61E4CAB3C6B6666697779092FADC
6242CC3009A96F97AB9586C970DB26EDES512F9A
03A5BEF2B9DE1DF5C19C9F4D2AEC6F780F4749D0
C15154D7323EA0C7A40912C799599DACCEB4E7CE

URLs:

https://s3-eu-west-1[.]Jamazonaws.com/disenyrt3/image2.png

https://s3-eu-west-1[.]Jamazonaws.com/sharknadorki/image2.png

|3'

ps://s3-eu-west-1[.]Jamazonaws.com/jasonrwk5wg/image2.png

|:T

ps://s3-eu-west-1[.]Jamazonaws.com/frezaaaewrwty/image2.png

|3'

ps://s3-eu-west-1[.]amazonaws.com/cadeaad|54t4gw4/image2.png

ttps://s3-eu-west-1[.Jamazonaws.com/sharknadorki/image2.png
ttps://s3-eu-west-1[.Jamazonaws.com/jooosan/image2.png
ttps://s3-eu-west-1[.Jamazonaws.com/shhakkr/image2.png

=EE

www.goole[.Jcom

https://www.localizaip.com[.]br/api/iplocation.php

mrs04s09-in-f206.1e100][.]net
Ihr25s13-in-f78.1e100[.]net
dub08s01-in-f14.1e100[.]net
Ihr25s11-in-f46.1e100[.]net
Files:

* %APPDATA%\Macromedia

o %APPDATA%\Macromedia\desktop.txt
* %APPDATA%\TeamViewer

* %APPDATA%\TeamViewer\desktop.txt
* %APPDATA%\DMCache

* %APPDATA%\DMCache\desktop.txt
¢ %APPDATA%\AnyDesk

¢ %APPDATA%\AnyDesk\desktop.txt

Registry:

HKCU\Software\index

26/27



Mutexes:

e [7TFAHRE-375E-AEF3-BE9A-OBJT389F53]
o libeab4
¢ One-Instancedes

Thanks for reading. Follow me on Twitter for more posts like this one.

Chen Erlich

The latest Tweets from Chen Erlich (@chen_erlich). Security Researcher.
Opinions are on my own. #MalwareResearch...

twitter.com

27/27


https://twitter.com/chen_erlich

