Sodin ransomware exploits Windows vulnerability and
processor architecture

SL securelist.com/sodin-ransomware/91473/

.6kOoH 1,60 .

10 vO) ,0

Authors

57(+1-1 ¢ 48 Orkhan Mamedov

Expert Artur Pakulov

. Expert Fedor Sinitsyn

When Sodin (also known as Sodinokibi and REvil) appeared in the first half of 2019, it
immediately caught our attention for distributing itself through an Oracle Weblogic
vulnerability and carrying out attacks on MSP providers. In a detailed analysis, we

1/15

https://securelist.com/sodin-ransomware/91473/
https://securelist.com/author/orkhanmamedov/
https://securelist.com/author/artur-pakulov/
https://securelist.com/author/fedors/
https://threatpost.com/new-sodinokibi-ransomware-exploits-critical-oracle-weblogic-flaw/144233/
https://www.darkreading.com/attacks-breaches/attackers-exploit-msps-tools-to-distribute-ransomware/d/d-id/1335025

discovered that it also exploits the CVE-2018-8453 vulnerability to elevate privileges in
Windows (rare among ransomware), and uses legitimate processor functions to circumvent
security solutions.

According to our statistics, most victims were located in the Asia-Pacific region: Taiwan,
Hong Kong, and South Korea.

0% 2% 4% 6% 8% 10% 12% 14% 16%

kaspersly
Geographic spread of Sodin ransomware, April — June 2019

Technical description

Vulnerability exploitation

To escalate privileges, Trojan-Ransom.Win32.Sodin uses a vulnerability in win32k.sys;
attempts to exploit it were first detected by our proactive technologies (Automatic Exploit
Prevention, AEP) in August last year. The vulnerability was assigned the number CVE-2018-
8453. After the exploit is executed, the Trojan acquires the highest level of privileges.

2/15

https://securelist.com/cve-2018-8453-used-in-targeted-attacks/88151/
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/07/15121527/sodin-ransomware.png

=1 . Properties

Fo - s

Memory | Enviranment | Handles | GPU | Disk and Metwork | Comment
General Statistics Performance | Threads | Token Modules
User: NT ALTHORITY\SYSTEM

User 5ID: 5-1-5-18

Session: 0 Elevated: MfA Virtualized: Mot Allowed

App container SID: M/A

Information about the process token after exploit execution

debug@31:88801288 push
debug@31:88801298 mov ebx, [eax]

debug@31:88801292 lea eax, [ebp+ClassName]
debug@31:88801298 push eax 3 lpClassName
debug@31:88801299 push ebx 3 hkind
debug@3l:88a801294 call GetClassNameA
debug@3l:eeall2ag test eax, eax

debug@3l:eeadl2A2 jz short loc_D12FA

ladh ; nMaxCount

ol e =
debug@3l:28801244 cmp
debug@31:888012AB jnz

dword ptr [esi+l@4h], @
short loc D12FA

L

il s =

debug@3l:80@01240 lea
debug@31:888012B83 push

eax, [ebp+ClassName]
offset String2 ; “sysshadow"”

debug@31:

debug@31:888012B8 push eax
debug@31:88801289 call _strompi
debug@31:888012BF pop ecx
debug@31:888012C8 pop eCx
debug@31:888012C1 test eax, eax

aeen12cs jnz

short loc_D12D6

Lol e
debug@3l:@ee01206
debug@31:86801206 loc D12D6:
debugB31:888012D6 lea eax, [ebp+Classiame]
debug@31:888012DC push offset aMsctfimelUi B ;
debugB31:888012E1 push eax

"msctfime ui”

debug@31:888012E2 call _strompi
debugB3l:88a8012E8 pop ecx
debugB3l:e8a8012E9 pop eCx
debug@31:@288012EA test eax, eax

debug@31:@88012EC jnz

short loc D12FA

Exploit snippet for checking the window class

Depending on the processor architecture, one of two shellcode options contained in the
Trojan body is run:

3/15

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/07/02125321/sodin_ransom_01.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/07/02125406/sodin_ransom_02.png

Jtext:eebleAce

Ltext: 88016460 loc D16AGE:

Ltext:@8016AE8 push ebx

Ltext:@8016AEL push esi

.text: 88016462 call IsArchitectureAmdssd
Stext:@8016A67 test eax, eax

Ltext: 80016469 jz short loc_D16A77

L J
P
.text:88D16A6E mov ebx, offset g code_x64| |.text:88D16A77
Ltext:8eD16A7E mov esi, 96@88h Ltext:88D16AT7 loc DIBATY:
.text:88D16A7S jmp short loc_D16AS1 Ltext :8BD16ATT mov ebx, offset g_code_x86
| .text:88D16ATC mov esi, 3688h
7 =============== 5 UBROUTIMNE ====
i e =]
- text:08016A51 g_code_x86 proc near
Ltext: 88016481 loc_D16ASL: call %45
.text:@8D1EASL push edi pop e
.text: 88016482 push 48h ; '@ 3 flProtect sub ecx, S
Jtext: 88016484 push 388eh 3 flallecationType sub esp, 4ch
Ltext: 88016489 push esi 3 dwSize push ebp
Ltext:B80016ABA push a 3 lpAddress push abx
.text:80016ABC call VirtualAlloc push esi
.text:86D16A92 mov edi, eax push edi
.text:88016A94 test edi, edi mov ebp, ecx
.text:80016A96 jz short loc_D16AAB xor ecx, ecx
L |) mov esi, large fs:38h
L mov esi, [esi+@Ch]
Wlﬁ@ mov esi, [esi+lch]
Ltext:@8016A98 push esi
.text:@@D16A99 push ebx e DREs il :
.text:@8D16A9A push edi oy cax, [esit+d] ’
Ltext:@8D16A9E call memcpy oy edi} [esi+20h]
Ltext:@eD16AAR add esp, @ch oy esi} =
Ltext:@BD16AA3 push [ebp+arg_@] o [edi+18h] ox
Ltext:eeDleAl6 11 di - !
c ca == nz short loc_D25761
T] A

Procedure for selecting the appropriate shellcode option

Since the binary being analyzed is a 32-bit executable file, we are interested in how it
manages to execute 64-bit code in its address space. The screenshot shows a shellcode
snippet for executing 64-bit processor instructions:

3 MO er «HALHMueH
He= HepHEVL L
HugLAeHnlly

nIrrgraednly e
rrgIaeLnly 4
nly

Shellcode consisting of 32-bit and 64-bit instructions

4/15

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/07/02125408/sodin_ransom_03.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/07/02125402/sodin_ransom_04.png

In a 64-bit OS, the segment selector for 32-bit user mode code is 0x23, while the 64-bit
segment selector is 0x33. This is confirmed by looking at the Global Descriptor Table (GDT)
in the kernel debugger:

Part of the GDT in OS Windows 10 x64

The selector 0x23 points to the fourth segment descriptor (0x23 >> 3), and the selector 0x33
to the sixth (the null descriptor is not used). The NI flag indicates that the segment uses 32-
bit addressing, while the Lo flag specifies 64-bit. It is important that the base addresses of
these segments are equal. At the time of shellcode execution, the selector 0x23 is located in
the segment register cs, since the code is executed in a 32-bit address space. With this in
mind, let’s take a look at the listing of the very start of the shellcode:

Saving the full address 0x23:0xC

After executing the command for RVA addresses 6 and 7, the long return address is stored
at the top of the stack in the format selector:offset, and takes the form 0x23:0x0C. In the
stack at offset 0x11, a DWORD is placed whose low-order word contains the selector 0x33
and whose high-order word encodes the instruction retf, the opcode of which is equal to
O0xCB.

5/15

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/07/02125400/sodin_ransom_05.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/07/02125357/sodin_ransom_06.png

Switching to 64-bit mode

The next instruction call (at the address RVA 0x16) performs a near intrasegment jump to
this retf instruction (RVA 0x14), having sent the short return address (offset 0x1b) to the
stack. As such, at the time of execution of the retf instruction, the top of the stack contains
the address in the format selector:offset, where the selector equals 0x33 and the offset is
Ox1b. After executing the retf command, the processor proceeds to execute the code at this
address, but now in 64-bit mode.

64-bit shellcode

The return to 32-bit mode is performed at the very end of the shellcode.

Returning to 32-bit mode

The retf command makes a far intrasegment jump to the address 0x23:0x0C (it was placed
in the instruction stack at the very start of the shellcode, at the RVA address 6-7). This
technique of executing 64-bit code in a 32-bit process address space is called Heaven’s
Gate, and was first described around ten years ago.

Trojan configuration

6/15

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/07/02125354/sodin_ransom_07.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/07/02125350/sodin_ransom_08.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/07/02125349/sodin_ransom_09.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/07/02125344/sodin_ransom_10.png

Stored in encrypted form in the body of each Sodin sample is a configuration block
containing the settings and data required for the Trojan to work.

Decrypted Trojan configuration block

The Sodin configuration has the following fields:

Field Purpose

pk distributor public key

pid probably distributor id

sub probably campaign id

dbg debug build

fast fast encryption mode (maximum 0x100000 bytes)

wipe deletion of certain files and overwriting of their content with random bytes

wfld names of directories in which the Trojan deletes files
wht names of directories and files, and list of extensions not to be encrypted
prc names of processes to be terminated

dmn server addresses for sending statistics

net sending infection statistics

nbody ransom note template

nname ransom note file name template

exp use of exploit for privilege escalation

7/15

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/07/02125348/sodin_ransom_11.png

img text for desktop wallpaper

Cryptographic scheme

Sodin uses a hybrid scheme to encrypt victim files. The file contents are encrypted with the
Salsa20 symmetric stream algorithm, and the keys for it with an elliptic curve asymmetric
algorithm. Let’s take a closer look at the scheme.

Since some data is stored in the registry, this article uses the names given by the
ransomware itself. For entities not in the registry, we use invented names.

@ Registry Editor - O X
Eile Edit Miew Favorites Help
Fard || Mame Type Data
::-sperskF:Lab E REG_SZ (value not =et)
Mf"“” REG_BINARY 8626254121523223 Thfe2aba 11 7878 77 b8 18 8.
i N;:e REG_BINARY 01 4b 9 68 7 8d d0 63 92 cd ec c9 d3 41 1c f3 9d 9a fc...
scape
e P REG_SZ mcd530
. Palicies REG_BINARY bd 0b €9 de 3164 b0 1c 73 9F 38 d1 ab 13 3f 33 d3 f1 57...
| I ety 2 stat REG_BINARY 43 7F c8 93 fe 6f OF 68 85 16 76 aa 79 3a 09 57 41 73 6f b
. RegisteredApplicati || Flsub_key REG_BINARY dl6 Odl ff 40 44 OF 39 Oe d2 dd 0 4b 67 4c 2f bb 0 7d 35...
: WMware, Inc.
- Wowtd32ZNode
System
Volatile Environment
< >
Computer\HKEY_CURRENT_USER\SOFTWARE\recfg

Data saved by the Trojan in the registry

Key generation

The Sodin configuration block contains the pk field, which is saved in the registry under the
name sub_key — this is the 32-byte public key of the Trojan distributor. The key is a point on
the Curve25519 elliptic curve.

When launched, the Trojan generates a new pair of elliptic curve session keys; the public key
of this pair is saved in the registry under the name pk_key, while the private key is encrypted
using the ECIES algorithm with the sub_key key and stored in the registry under the name
sk_key. The ECIES implementation in this case includes the Curve25519 elliptic curve, the
SHA3-256 cryptographic hash, and the AES-256 block cipher in CFB mode. Other ECIES
implementations have been encountered in Trojans before, for example, in SynAck targeted
ransomware.

Curiously, the same private session key is also encrypted with another public key hardcoded
into the body of the Trojan, regardless of the configuration. We will call it the public skeleton
key. The encryption result is stored in the registry under the name 0_key. It turns out that
someone who knows the private key corresponding to the public skeleton key is able to

8/15

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/07/02125344/sodin_ransom_12.png
https://securelist.com/synack-targeted-ransomware-uses-the-doppelganging-technique/85431/

decrypt the victim’s files, even without the private key for sub_key. It seems like the Trojan
developers built a loophole into the algorithm allowing them to decrypt files behind the
distributors’ back.

48| sk_key_data = RegQuery{HKEY_LOCAL_MACHINE, &software_recfg, &sk_key, &sk_key tupe, &sk_key_size};
49| if { tsk_key_data)

5a sk_key_data = RegQuery(HKEY_CURRENT_USER, &software_recfqg, &sk_key, &sk_key_type, &sk_key_size);
51| 0_key_data = RegQuery(HKEY_LOCAL_MACHIMNE, &software_recfg, &0_key, &0_key tuype, &0_key size);

52| if { *0_key_data)

53 0_key_data = RegQuery({HKEY_CURRENT_USER, &software_recfg, &0_key, &0_key_type, &0_key_size);
54 1if { sub_key_data
55 && sub_key size == 32

56 && sub_key type == REG_BINHARY
57 && pk_key_data

58 && pk_key size == 32

59 && pk_key_type == REG_BINARY
60 && sk_key data

61 && sk_key size == 88

62 && sk_key_type == REG_BINARY
63 && 0_key_data

64 &k 0_key size == B8

65 && 0_key_type == REG_BINARY)

66| {

67 memcpy{g_sub_key, sub_key data, 32});
68 memcpy{g_pk_key, pk_key data, 32);
69 memcpy{g_sk_key, sk _key data, 88);
7a memcpy{g_8_key, 0_key data, 88);

ER

72| else

73 {

74 curve25519_generate_keys(session_priv, g_pk_key);

75 pk_key_size = 32;

76 sub_key_size = 32;

77 sk_key_data = ECIES_encrypt(g_sub_key, session_priv, 32, &sk_key size);

78 0_key_data = ECIES_encrypt{g_skeleton_pub_key, session_priv, 32, &0_key size);

79 zero_men{session_priv, 32u);

8a if { tsk_key_data || t0_key_data)

81 return 8;

82 memcpy{g_sk_key, sk_key_data, sk_key_size);

83 memcpy{g_8_key, 0_key data, 0_key size);

84 if (*RegSet(HKEY_LOCAL_MACHINE, &software_recfg, &sub_key, 3u, g_sub_key, sub_key size}))
85 RegSet{HKEY_CURRENT_USER, &software_recfg, &sub_key, 3u, g_sub_key, sub_key size};

86 if { tRegSet{HKEY_LOCAL_MACHIMNE, &software_recfg, &pk_key, 3u, g_pk_key, pk_key size) }
87 RegSet{HKEY_CURRENT_USER, &software_recfg, &pk_key, 3u, g_pk_key, pk_key_size);

88 if (tRegSet(HKEY_LOCAL_MACHINE, &software_recfg, &sk_key, 3u, g_sk_key, sk_key_size))
89 RegSet{HKEY_CURRENT_USER, &software_recfg, &sk_key, 3u, g_sk_key, sk_key_size);

Snippet of the procedure that generates key data and stores some of it in the registry

File encryption

During encryption of each file, a new pair of elliptic curve asymmetric keys is generated,
which we will call file_pub and file_priv. Next, SHA3-256(ECDH(file_priv, pk_key)) is
calculated, and the result is used as the symmetric key for encrypting file contents with the
Salsa20 algorithm. The following information is also saved in the encrypted file:

9/15

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/07/02125346/sodin_ransom_13.png

sk_key db 88 dup(?)}

0_key db 88 dup(?)}
file_pub db 32 dup(?}
nonce db 8 dup(?)
file_pub_crc32 dd ?
flag_fast dd ?

zero_encr_by salsa dd ?

Data stored in each encrypted file

In addition to the fields discussed above, there is also a nonce (random initialization 8 bytes
for the Salsa20 cipher), file_pub_crc32 (checksum for file_pub), flag_fast (if set, only part
of the data in the file is encrypted), zero_encr_by_salsa (null dword encrypted by the same
Salsa20 key as the file contents — seemingly to check the correctness of the decryption).

The encrypted files receive a new arbitrary extension (the same for each infection case), the
ransom note is saved next to them, and the malware-generated wallpaper is set on the
desktop.

10/15

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/07/02125329/sodin_ransom_14.png

| mc530-readme - Notepad — O

Eile Edit Format NMiew Help

---=== Welcome. Again. ===---
[+] Whats Happen? [+]

Your files are encrypted, and currently unavailable. You can check it: all files on you
computer has expansion mc9538.

By the way, everything is possible to recover (restore), but you need to follow our
instructions. Otherwise, you cant return your data (MEVER).

[+] What guarantees? [+]

Tts just a business. We absolutely do not care about you and your deals, except getting
benefits. If we do not do our work and liabilities - nobody will not cooperate with us.
Its not in our interests.

To check the ability of returning files, You should go to our website. There you can
decrypt one file for free. That is our guarantee.

If you will not cooperate with our service - for us, its does not matter. But you will
lose your time and data, cause just we have the private key. In practise - time is much
more valuable than money.

[+] How to get access on website? [+]
You have two ways:

1) [Recommended] Using a TOR browser!

a) Download and install TOR browser from this site: https://torproject.org/

b) Open our website:
http://aplebzudiwgazapdgksbvrcvbzenjppkbxbréwketf56nfbag2nmyoyd.onion/6758647830BDBB96

2) If TOR blocked in your country, try to use VPN! But you can use our secondary
website. For this:

a) Open your any browser (Chrome, Firefox, Opera, IE, Edge)

b) Open our secondary website: http://decryptor.top/6758647336BDEB96

Warning: secondary website can be blocked, thats why first wariant much better and more
available.

When you open our website, put the following data in the input form:
Key:

Q3/Ik/5vD2iFFnaqeTolX8Fzb7gABAHEWXEWUyp2X0RupEeo7 JWF QD39 TPHFKONC
hlobMkqz270MIXHFuBPsyA3gHEMiok cN+/xA1CBGIVAj8yik /uJEPtQsG5bK 11D
Pp98jqDbBilURTVeppflimcGIK3hvTINoa5Alzy8eG2nHXye JRQIrISBum2X5NQg
Yzo0Bq+ikFjBVI8pfoxrLupCzoXgly IneV /uPcmoBvNuXW7sziTyrUF8FLz7Y9T

Cybercriminals demands

11/15

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/07/02125340/sodin_ransom_15.png

All of your files are encrypted!

Find mc9530-readme.txt and follow instuctions

Fragment of the desktop wallpaper created by the ransomware

Network communication

If the corresponding flag is set in the configuration block, the Trojan sends information about
the infected machine to its servers. The transmitted data is also encrypted with the ECIES
algorithm using yet another hardcoded public key.

Part of the Sodin configuration responsible for network communication

Field Purpose

ver Trojan version

12/15

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/07/02125327/sodin_ransom_16.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/07/02125322/sodin_ransom_17.png

pid

probably distributor id

sub probably campaign id

pk distributor public key

uid infection id

sk sk_key value (see description above)
unm infected system username

net machine name

arp machine domain/workgroup

Ing system language

bro whether language or layout is from the list (below)
0s OS version

bit architecture

dsk information about system drives

ext extension of encrypted files

During the execution process, the Trojan checks the system language and available
keyboard layouts:

switch { 1ng) ui[8] = Bx419; // Russian (Russia)
{ uh[1] = Bx422; // Ukrainian (Ukraine)
case LANG_ROMANIAHN: uk[2] = Bx423; /¢ Belarusian (Belarus)
case LANG_RUSSIAN: uh[3] = Bxh28; /4 Tajik (Cyrillic, Tajikistan)
case LANG UKRAINIAM: ul[#] = Bx42B; /4 Armenian (Armenia)
case LRNG:BELRBUSIHN: ul[5] = Bx42C; // hzerbaijani (Latin, fAzerbaijan)
case LANG ESTOMIAM: UL[6] = Bxu43T; /{ Georgian (Georgia)
case LANG_LATUTAN: U:[;] = gx:i:; ﬁ Eazakh E:azakhs;an;
. u = Bx ; rouz rgyzstan
2::: t::g_#;:?ﬂ?HlﬂH. uh{?} = BxL442; r Tﬂrggen (¥u2£menistan)
- B UL[10] = Oxnka3; /4 Uzbek (Latin, Uzbekistan)
casE LAbd_FrRST = un[11] = Bxhhh; /7 Tatar (Russia)
case LANG_ARMENIAN: us[12] = 8x818; // Romanian (Moldova)
case LANG_RZERI: uh[13] = Ox819; // Russian (Moldova)
case LANG_GEORGIAN: uL[14] = OxB2C; // nzerbaijani (Cyrillic, Azerbaijan)
case LANG_KAZAK: uL[15] = Bx843; 7/ Uzbek (Cyrillic, Uzbekistan)
case LANG_KYRGYZ: u4[16] = Bx45A; /4 Syriac (Syria)
case LANG_TURKMEHN: Uh[17] = Ox28081; // arabic (Syria)
case LANG_UZBEK: un[= éetu;erneFaultuILanguage();
case LANG TATAR: ul = GetSystemDefaultUILanguage();
result = 1; v2 = B3
hr'eak; while Uh[u?] = ub && ull[u?] t=wul)
default: {)
result = @; if (++u2 >= 18)
break: , return 0;
return 1;

13/15

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/07/02125333/sodin_ransom_18.png

If matches are detected in the list, the malware process terminates short of sending

statistics.

MITRE ATT&CK techniques

Status Severity

I High 800

E High 660
I High 660
200

(=] smoenn —

Description

The process Swindir\Ssystem32\vssadmin.exe has deleted shadow copies of user files (MITRE: T1089 Disabling Security Tools). This action is typical for the malware of the Trojan-Ransom
family.

Process started with user privilege level has obtained superuser privilege {MITRE T1068 Exploitation for Privilege Escalation)
The security token has been changed in the trusted process $selfpath\$selfname.exe (MITRE: T1134 Access Token Manipulation).

The process Swindir\Ssystem32\vssadmin.exe has obtained the privilege SeBackupPrivilege (MITRE: T1134 Access Token Manipulation)

Activity
svchost.exe
Activity Activity
Services exe VSSVC exe
Activity
svchost.exe
Activity
r svchostexe
Activity Activity d
cmd exe vssadmin exe
L Activity
svchostexe
Activity
svchost.exe -
£ Suspicious Activity
The process has deleted shadow
copies of uzer files (MITRE T1089 Dis...
Activity
svchost exe
Activity — Suspicious Activity
y o— ~— Executable has obtained the privilege

$selfname exe et (MITRE T1134 Access Token Manipul
tivity

lsm.exe

E suspicious Activity
[Process started with user orivilege
level has obtained superuser privileg...

[Suspicious Activity
[~ User process has obtained a system
security token (MITRE T1134 Access

Activity
Isass.exe

—

More information about Kaspersky cybersecurity services can be found here:
https://www.kaspersky.com/enterprise-security/cybersecurity-services

I0C

1ce1ca85bff4517a1ef7e8f9a7c22b16

o Malware Descriptions

o Malware Technologies

¢ Ransomware

e Trojan

¢ Vulnerabilities and exploits

Authors

14/15

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/07/02125326/sodin_ransom_19.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2019/07/02125336/sodin_ransom_20.png
https://www.kaspersky.com/enterprise-security/cybersecurity-services
https://securelist.com/tag/malware-descriptions/
https://securelist.com/tag/malware-technologies/
https://securelist.com/tag/ransomware/
https://securelist.com/tag/trojan/
https://securelist.com/tag/vulnerabilities-and-exploits/

« Expert _Orkhan Mamedov

 Expert ArturPakulov

. Expert Fedor Sinitsyn

Sodin ransomware exploits Windows vulnerability and processor architecture

Your email address will not be published. Required fields are marked *

15/15

https://securelist.com/author/orkhanmamedov/
https://securelist.com/author/artur-pakulov/
https://securelist.com/author/fedors/

