
1/12

The BlackBerry Cylance Threat Research Team

Threat Spotlight: Ratsnif - New Network Vermin from OceanLotus
threatvector.cylance.com/en_us/home/threat-spotlight-ratsnif-new-network-vermin-from-oceanlotus.html

RESEARCH & INTELLIGENCE / 07.01.19 / The BlackBerry Cylance Threat Research Team

Overview

The OceanLotus Group (aka APT32, CobaltKitty | previous reports: The SpyRATs of OceanLotus; OceanLotus
APT Group Leveraging Steganography) is using a suite of remote access trojans dubbed "Ratsnif" to leverage
new network attack capabilities. Blackberry Cylance threat researchers have analyzed the Ratsnif trojans, which
offer a veritable swiss-army knife of network attack techniques. The trojans, under active development since
2016, combine capabilities like packet sniffing, gateway/device ARP poisoning, DNS poisoning, HTTP injection,
and MAC spoofing.

We delved into four distinct Ratsnif samples, three of them developed in 2016, the fourth created during the latter
half of 2018.

Sample 1

 MD5 516ad28f8fa161f086be7ca122351edf

 SHA256 b4e3b2a1f1e343d14af8d812d4a29440940b99aaf145b5699dfe277b5bfb8405

 Filename javaw.exe, Client.exe

 Path X:\Project\BotFrame\Debug\Client.exe

 Size 1.32 MB (1,387,520 bytes)

 File Type PE32 executable for MS Windows (console) Intel 80386 32-bit

https://threatvector.cylance.com/en_us/home/threat-spotlight-ratsnif-new-network-vermin-from-oceanlotus.html
https://threatvector.cylance.com/en/category/research-and-intelligence
https://threatvector.cylance.com/en/author/the-cylance-threat-research-team
https://threatvector.cylance.com/en_us/home/report-the-spyrats-of-oceanlotus.html
https://threatvector.cylance.com/en_us/home/report-oceanlotus-apt-group-leveraging-steganography.html

2/12

 Alias OceanLotus APT32 Ratsnif

 Compile
Time

 2016-08-05 07:57:13

Overview

The earliest example of Ratsnif uncovered thus far was compiled on the same day that its C2 domain was first
activated:

It appears to be a debug build, and closely resembles a later variant from September 2016 that will be the main
focus of analysis for the three 2016 variants described in this article.

Sample 2

MD5 b2f8c9ce955d4155d466fbbb7836e08b

SHA256 b214c7a127cb669a523791806353da5c5c04832f123a0a6df118642eee1632a3

Filename javaw.exe, Client.exe

Path X:\Project\BotFrame\Debug\Client.exe

Size 1.32 MB (1,387,520 bytes)

File type PE32 executable for MS Windows (console) Intel 80386 32-bit

Alias OceanLotus APT32 Ratsnif

Compile
 Time

 2016-08-06 04:30:06

Overview

Compiled less than 24 hours after the previous sample, this build contains only one minor difference in
functionality, whereby a call to pcap_dump_flush() has been removed prior to recompilation:

 Figure 1. Call to pcap_dump_flush in
b4e3b2a1f1e343d14af8d812d4a29440940b99aaf145b5699dfe277b5bfb8405

 Figure 2. Missing call to pcap_dump_flush in
b214c7a127cb669a523791806353da5c5c04832f123a0a6df118642eee1632a3

3/12

In addition, the CodeView debugging information has changed, reflecting the new "age" of the sample after
recompilation:

 Figure 3. Age of 0x14 in b4e3b2a1f1e343d14af8d812d4a29440940b99aaf145b5699dfe277b5bfb8405

 Figure 4. Age of 0x15 in b214c7a127cb669a523791806353da5c5c04832f123a0a6df118642eee1632a3

Both samples were submitted to VirusTotal within a minute of being compiled and contain the same path as the
PDB information. It seems likely this sample was automatically submitted to an online scanning service by the
developer:

 Figure 5. VirusTotal submission showing date/time and path

Sample 3

MD5 7f0ac1b4e169edc62856731953dad126

SHA256 b20327c03703ebad191c0ba025a3f26494ff12c5908749e33e71589ae1e1f6b3

Filename javaw.exe, adobe.exe

Path N/A

Size 432 KB (442,880 bytes)

File Type PE32 executable (DLL) (GUI) Intel 80386, for MS Windows

Alias OceanLotus APT32 Ratsnif

Compile
 Time

 2016-09-13 09:26:42

Overview

Remarkably similar in functionality to the previous samples from August 2016, this sample is a release build and
was likely one of the earlier Ratsnifs to be deployed by OceanLotus in-the-wild.

Threat Features

C2 over HTTP
Packet sniffing
ARP poisoning
DNS spoofing
HTTP redirection
Remote shell

Analysis

4/12

Upon execution, Ratsnif creates a run once mutex named "onceinstance", initialises Winsock version 2.2, and
harvests system information such as the username, computer name, workstation configuration (via
NetWkstaGetInfo API), Windows system directory and network adapter information. This information will then be
sent to the attacker's C2 server via an HTTP post to the /cl_client_online.php API endpoint. Next, a logging
thread is created, which is used to route log messages to the C2 via HTTP POST requests to /cl_client_logs.php.
The malware then proceeds to load wpcap.dll, before importing the following functions:

pcap_sendqueue_transmit
pcap_findalldevs
pcap_freealldevs
pcap_open_live
pcap_sendqueue_alloc
pcap_next_ex
pcap_sendqueue_queue
pcap_sendpacket
pcap_close
pcap_sendqueue_destroy
pcap_dump_open
pcap_dump_ftell
pcap_dump_flush
pcap_dump_close
pcap_dump

With WinPcap successfully loaded, a further HTTP POST request is made to /cl_client_cmd.php, which is used
to obtain a command code from the attacker. This code will check for commands every 10 seconds. C2
commands are decrypted using AES with a hard-coded static key via Windows APIs, before being dispatched by
a simple command processor.

C2

All observed Ratsnif samples have been hardcoded with one or more C2 domains, regardless of whether they
are used. This sample contains 2 hard-coded domains, although only one appears to have ever been active:

search[.]webstie[.]net
dns[.]domain-resolve[.]org (inactive)

The C2 server itself is expected to expose a fairly intuitively named web API, supporting the following endpoints:

 URL Description

 /cl_client_online.php POST containing harvested system information

 /cl_client_cmd.php GET C2 command

 /cl_client_cmd_res
 .php

 POST result of C2 command

 /cl_client_logs.php POST log message

The malware contains support for the following commands issued via the cl_client_cmd.php HTTP response:

5/12

Sample 4

MD5 88eae0d31a6c38cfb615dd75918b47b1

SHA256 7fd526e1a190c10c060bac21de17d2c90eb2985633c9ab74020a2b78acd8a4c8

Filename N/A

Path N/A

Size 745 KB (762,880 bytes)

File Type PE32 executable (DLL) (GUI) Intel 80386, for MS Windows

Alias OceanLotus APT32 Ratsnif

Compile
 Time

 Wed, 08 Aug 2018 02:52:52 UTC

Overview

Surfacing during the latter half of 2018 and wrapped in a bespoke OceanLotus shellcode loader, this sample was
first reported in a blog from Macnica Networks. Compared to the 2016 variants this sample introduces a
configuration file and does not rely on C2 for operation. It also adds new features in the form of HTTP injection,
protocol parsing, and SSL hijacking.

Threat Features

Deployed by OceanLotus loader
Use of separately supplied configuration file, tailored to the victim’s network environment (as opposed to
backdoor commands in the previous versions)
Use of separately supplied SSL certificates to perform SSL hijacking
Use of WolfSSL library (version 3.11) for decryption of SSL traffic (https://github.com/wolfSSL/wolfssl)
Use of http_parser.c for parsing HTTP traffic
(https://elixir.bootlin.com/zephyr/v1.13.0/source/subsys/net/lib/http/http_parser.c)
Packet sniffing focused on extracting login credentials and other sensitive data via protocol parsing
ARP poisoning
DNS spoofing
HTTP redirection
HTTP injection

Analysis

For this particular sample, the actual sniffer executable is Base64 encoded within a loader DLL and wrapped in
two layers of shellcode. The loader DLL decodes the payload, copies it to memory and executes the 1 stage
shellcode, which will decompress the binary and execute the 2 stage shellcode in a separate thread. The 2
stage shellcode will inject the sniffer executable into memory and hook several API functions responsible for

st

nd nd

http://blog.macnica.net/blog/2019/04/oceanlotus-218a.html
https://github.com/wolfSSL/wolfssl
https://elixir.bootlin.com/zephyr/v1.13.0/source/subsys/net/lib/http/http_parser.c

6/12

returning the process command line (GetCommandLineA, GetCommandLineW, _acmdln, _wcmdln), so they
return a hardcoded string instead. The string contains the parameter that specifies a path to the config file, as
well as the executable’s original path:

 C:\Users\Administrator\Desktop\api\temp\royal\HkYh9CvH7.exe -p
 C:\ProgramData\setting.cfg

Figure 6. Embedded command-line

It is not immediately obvious why the attackers used this convoluted method to pass the config path to the
malware.

The configuration file is a simple text file, Base64 encoded, where the first line is ignored, and each subsequent
line specifies a parameter. For example:

 [unused_line]
 -ip [ATTACKER IP ADDRESS]
 -ga [DEFAULT GATEWAY]
 -subnet [SUBNET MASK]
 -sniff -ssl_ip [IP ADDRESS]
 -html_inject [BROWSER PROCESS NAME]
 -dlog_ip [IP ADDRESS]
 -mac [ATTACKER MAC ADDRESS] "true"|"false"
 -name [DOMAIN NAME] [REDIRECTION IP]
 -all
 -dnsttl [INT VALUE]
 -log [LOGFILE PATH]
 -pass [CREDENTIALS DUMP PATH]
 -dwn_ip [IP ADDRESS]

Figure 7. Configuration file options

However, there is a bug in parsing the value of the dwn_ip parameter, which will result in a memory read violation
if the value is present in the configuration:

 Figure 8: Bug in the code: the value of "dwn_ip" is passed as a string, while print_debug_msg expects a pointer
to a string

Once executed, the sniffer will read the configuration from the specified file, decode it using Base64 and parse it
to an in-memory structure. If the "-sniff" parameter is specified in the configuration, the malware will add a firewall
exception and disable Large Send Offload (LSO) for each network adapter in the registry:

 netsh advfirewall firewall add rule name=\"Core Networking - Router Solicitation\" dir=in action=allow
program={self_path} enable=yes

Figure 9. Command-line used to add Windows firewall rule

 wmic path win32_networkadapter where index=%d call disable

Figure 10. Command-line used to disable network adapters prior to disabling LSOs

After importing the same APIs from wpcap.dll as the 2016 variants (with the addition of pcap_geterr), the
malware creates threads responsible for ARP poisoning and DNS spoofing.

7/12

In order to be able to decrypt the SSL traffic, the malware performs SSL hijacking, using an open source library
called WolfSSL and separately supplied certificate and private key files. For that purpose, it creates an internal
WolfSSL server, listening on the first available port in the range 65000 – 65535:

 Figure 11: Use of WolfSSL

Unlike the 2016 variants of Ratsnif that stored all packets to a PCAP file, the 2018 variant employs multiple
sniffer classes for harvesting sensitive information from packets. This will minimize the amount of data the
attacker has to collect, exfiltrate and process, and also reveals what information the attacker is interested in.

The malware can sniff traffic for the following protocols/ports:

 Interface
Ports

 Headers

 CSniffFtp 21,
990

 ABOR ACCT ADAT ALLO APPE AUTH CCC CDUP CONF CWD DELE ENC EPRT
EPSV FEAT HELP HOST LANG LIST LPRT LPSV MDTM MIC MKD MLSD MLST
MODE NLST OPTS PASS PASV PBSZ PORT PROT PWD QUIT REIN REST RETR
RMD RNFR RNTO SITE SIZE SMNT STAT STOR STOU STRU SYST TYPE USER
XCUP XMKD XPWD XRCP XRMD XRSQ XSEM XSEN 230

CSniffImap

 143,
993

 CAPABILITY LOGOUT STARTTLS AUTHENTICATE LOGIN SELECT EXAMINE
CREATE RENAME LSUB STATUS APPEND CHECK CLOSE EXPUNGE FETCH
STORE UID

CSniffLdap

 389,
636,
10389,
10636

 Various

 CSniffNntp 119 AUTHINFO USER AUTHINFO PASS ANONYMOUS 281

 CSniffPop 110,
995

 RCEV RCVD RSET +OK USER PASS RETR QUIT

 CSniffSmb 445 Various

CSniffSmtp

 25,
465

 HELO MAIL RCPT SEND SOML SAML VRFY EXPN TURN FROM

 CSniffTds 1433 SELECT name, password_hash FROM master.sys.sql_logins where is_disabled = 0;
-- priv

CSniffTelnet

 23 Login Failed login: password:

 SniffHttp2 80,
443

 Various

8/12

Each sniffer class interface contains two methods for extracting sensitive information from the incoming and
outgoing packets, respectively. These typically rely on searching for cleartext header strings to facilitate
credential theft:

 Figure 12. Searching for login and password commands in the Telnet protocol

In addition, the HTTP sniffer interface is also able to perform injection to insert arbitrary attacker supplied content
into HTML.

C2

Although this sample contains a Base64 encoded C2 URL hardcoded in the .rdata section (the same address as
in the 2016 versions), the malware never seems to use it; instead, it logs the captured information into text files
for further exfiltration by another module.

Example

To recreate conditions in which the sample would operate, a default gateway was configured on 192.168.8.135
and was running iNetSim to act as the DNS and HTTP servers. The attacker machine was located at
192.168.8.134 and the victim at 192.168.8.138. Ratsnif was configured to operate as follows:

 TEST CONFIG
 -ip "192.168.8.134"

 -ga "192.168.8.135"
 -subnet "255.255.255.0"

 -sniff
 -ssl_ip "192.168.8.254"

 -html_inject "iexplore.exe"
 -dlog_ip "192.168.8.254"

 -mac "00:0C:29:59:62:46" "true"
 -name "www.google.com" "192.168.8.135"

 -dnsttl "100"
 -log "C:\ratsnif.log"

 -pass "C:\ratsnif.pcap"
 -dwn_ip

Figure 13. Configuration used for testing

Figure 14 shows the malware sending ARP packets asking for the MAC addresses of all the machines on the
subnet specified in the config file, whilst ignoring itself (192.168.8.134) and the default gateway (192.168.8.135):

 Figure 14. ARP Broadcasts

Figure 15 shows the malware sending ARP packets asking for the MAC addresses of all the machines on the
subnet specified in the config file, whilst ignoring itself (192.168.8.134) and the default gateway (192.168.8.135):
ARP Broadcasts

Once it has MAC addresses for all machines on the subnet, Ratsnif will then send unsolicited ARP packets to
those addresses, updating the MAC address of the default gateway for each victim:

 Figure 15. ARP Poisoning

Figure 16 shows the effect on the victim machine, with the attacker IP address and the default gateway IP
address (192.168.8.135) both now sharing the same physical address:

9/12

 Figure 16. arp -a results showing poisoned ARP Table on the victim machine

Once the ARP table is poisoned, all traffic destined for the default gateway will be routed through Ratsnif and can
be stored and manipulated prior to retransmission.

Finally, Figure 17 shows a poisoned DNS response for www.google.com, whereby the DNS query was
intercepted by Ratsnif, modified to point to an attacker controlled IP address and the fake response sent to the
original requestor:

 Figure 17. Ratsnif log file output showing ARP poisoning and DNS spoofing in action

C2

search.webstie.net

Whois

Attribute Value

Server whois.web4africa.net

Registrar WEB4AFRICA INC

Email contact@privacyprotect.org

Name Domain Admin, C/O ID#10760

Organization Privacy Protection Service INC d/b/a PrivacyProtect.org

Street PO Box 16

City Nobby Beach

State Queensland

Postal QLD 4218

Country AUSTRALIA

Phone 4536946676

http://www.google.com/

10/12

NameServers ns21.cloudns.net

 ns22.cloudns.net

 ns23.cloudns.net

 ns24.cloudns.net

History

Obtained via Shodan, this history shows when the C2 server exposed various ports, including HTTP, SMB and
RDP, for the purpose of controlling Ratsnif and other OceanLotus malware:

 Figure 18. Shodan history for search.webstie.net

Conclusions

Ratsnif is an intriguing discovery considering the length of time it has remained undetected, likely due to limited
deployment. It offers a rare glimpse of over two years of feature development, allowing us to observe how threat
actors tailor tooling to their nefarious purposes. While all samples borrow heavily from open-source
code/snippets, overall development quality is deemed to be poor. Simply put, Ratsnif does not meet the usual
high standards observed in OceanLotus malware.

Appendix

Indicators of Compromise (IOCs)

 Indicator Type Description

 b4e3b2a1f1e343d14af8d812d4a29440940b99aaf145b5699dfe277b5bfb8405
SHA256

 Ratsnif

b214c7a127cb669a523791806353da5c5c04832f123a0a6df118642eee1632a3
SHA256

 Ratsnif

b20327c03703ebad191c0ba025a3f26494ff12c5908749e33e71589ae1e1f6b3
SHA256

 Ratsnif

7fd526e1a190c10c060bac21de17d2c90eb2985633c9ab74020a2b78acd8a4c8
SHA256

 Ratsnif

 onceinstance Mutex Mutex name

 search[.]webstie[.]net Domain C2

 66.85.185.126 IP
search[.]webstie[.]net

11/12

 dns[.]domain-resolve[.]org Domain C2

 X:\Project\BotFrame\Debug\Client.pdb PDB PDB Path

 ntdata.tmp File Packet capture
output

 Core Networking - Router Solicitation
Windows
Firewall
Rule

 7fd5…

MITRE

 Tactic ID Name Notes

 Discovery T1040 Network Sniffing Sniffs packets and saves to file

 T1046 Network
Service
Scanning

 ARP/SMB

 T1082 System
Information
Discovery

 User/computer name, system
directory and workstation information

 Command
and Control

 T1043 Commonly Used Port HTTP/HTTPS

 T1065 Uncommonly
Used Port

 65000 - 65536

 T1001 Data
Obfuscation

 RSA/AES C2 encryption

 Impact T1493 Transmitted Data Manipulation Performs packet interception,
modification and retransmission

The BlackBerry Cylance Threat Research Team

About The BlackBerry Cylance Threat Research Team

The BlackBerry Cylance Threat Research team examines malware and suspected malware to better identify its
abilities, function and attack vectors. Threat Research is on the frontline of information security and often deeply
examines malicious software, which puts us in a unique position to discuss never-seen-before threats.

https://attack.mitre.org/techniques/T1040/
https://attack.mitre.org/techniques/T1046/
https://attack.mitre.org/techniques/T1082/
https://attack.mitre.org/techniques/T1043/
https://attack.mitre.org/techniques/T1065/
https://attack.mitre.org/techniques/T1001/
https://attack.mitre.org/techniques/T1493/

12/12

Back

