News - Malware & Hoax

. tgsoft.it/english/news_archivio_eng.asp

24/06/2019
17:14

Ransomware REvil - Sodinokibi: Technical analysis and Threat
Intelligence Report

The Sodinokibi ransomware, also known as REvil, made its first
appearance in April 2019 and seems to have filled the hole left behind
GandCrab

1/27

https://www.tgsoft.it/english/news_archivio_eng.asp?id=1004

Sodinokibi ransomware, also known as REvil, made it first
appearance in April 2019, where it looks to exploit the Oracle WebLogic
Server vulnerability to propagate itself.

C.R.A.M. (Research Centre Anti-Malware) of TG Soft has analysed
ransomware evolution in the last few months.

Download the report in PDF: Technical analysis and Threat
Intelligence REPORT

Last update: 2019-08-08

Introduction

SUMMARY

==> |nfection
Vector

==> Sodinokibi
Ransomware
Analysis

==> Calculate
the private and
public keys
==> sk_key
Data Structure
==> (0_key Data
Structure

==> R_eg&ry
Key “stat”

==> Ransom
instruction

==> %
encryption
==> C2 Server
==> Ransom
payment

==> How does
decryption
work?

==> Versions
==> Telemetry
==> Conclusion

2/27

https://www.tgsoft.it/immagini/news/20190705Sodinokibi/Sodinokibi_eng.pdf

In Italy it made first appearance in May 24th 2019, with a RDP attack, as we
posted in the tweet of May 28th 2019:

si e

The authors of Sodinokibi ransomware, even if they are the first versions of .
their creation, seem to have a long experience in this threats of cyber-crime.

Some researchers have identified the similarities with GandCrab ransomware,

whose project was shut down in beginning June. It seems that Sodinokibi
ransomware is the right candidate to fill the hole left behind GandCrab.

Infection Vector

Sodinokibi ransomware uses different methods of propagation:
o Oracle WebLogic Server Vulnerability
o RDP attacks
e Spam Campaigns
o Watering hole
e Exploit kit and malvertising

In Italy, we have observed that Sodinokibi ransomware used various methods of
propagation. All such methods have been found in Italy except Oracle WeblLogic Server
vulnerability.
The first attack that we have record was on 24th May 2019, in this case the infection vector
was through RDP attack. This kind of infection vector execute a brute force on credentials, it
has already been used by other ransomware as Dharma.
Interestingly, the IP 151.106.56[.]254 used by cyber criminal to access via RDP was the
same IP dentified in other RDP attacks in June of this year.
Affiliates have used spam campaigns to distributed Sodinokibi ransomware, that was
recorded in June. A new campaign was discovered which deals:

e Booking.com

« DHL

“Booking.com” campaign in the summer months, is very apt choose with the summer
holiday season approaches, it may induce the victims to open the attachment.
In the images below, we can see the two malspam campaigns of Sodinokibi.

3/27

https://www.tgsoft.it/immagini/news/20190705Sodinokibi/tweet_tgsoft.PNG

2 = Booking.com - New booking! (1571165841, Monday, 17 June 2019) - Messaggio (HTML) - o X € DHL Pacco Ritardato. - MozillaThunderbird - o0 x

Da DHL <emai om> gy © Rispondi % Rispondiatutti|v = Inoltra Altro v
i 19/06/2019, 13:41

Booking

1l Feedback

Attenzione
Booking.com - New booking! (1571165841, Monday, 17 June 2019)

Dear Customer,

Stato dell'ordine: Ritardata
You just received a new booking from a Booking com guest Servizio: Spedizione Espressa
Numero di pacco: U163815219N

Please review the new booking detais attached 10 this e-mail Assicurazione: S|

Kind rega Numero di tracking: 6274827364
The Booking.com Team

i prega di scaricare / stampare il file dell'etichetta
allegata (PDF) per i dettagli del pacco.

Grazle per aver utilizzato | nostri servizi
OHL globale.

(€)2015 Copyright DHL INC 2013, A Rights Reserved.

0 Soha v

In Italy the first case of watering hole was recorded on website “winrar.it” a distributor of
WinRar in Italy. For the whole day on Wednsday the 19th June was downloaded Sodinokibi
instead of setup of WinRar.

In 2016 “winrar.it” website was already attacked by APT StrongPity, here too this was
watering hole attack, in which the setup of WinRar was modified to include and downloaded
also StrongPity spy malware.

If in 2016 the attack on “winrar.it” was organized by a professional cyber-espionage
organization, in the attack of this year the attackers have replaced the setup of WinRar with
Sodinokibi. Who downloaded WinRar in the afternoon of 19th June, could find something
strange in the downloaded file, the icons, actually, are not like the WinRar ones, as we can
see in the figures below:

@ HHMSN-

WinRAR-x6 WinRAR-x6
4-571it.exe 4-5Tit.exe

In addition, the execution of file does not downloaded WinRar, as has been the case of
StronPity ransomware.

Attackers have poorly exploited the watering hole attack to winrar.it.

In other cases involving the spread of Sodinokibi, registered in Italy on 7th June 2019, were
utilized malvertising attack .

The authors of Sodinokibi seem to be very active in spreading the ransomware.

Back on top

4/27

https://www.tgsoft.it/immagini/news/20190705Sodinokibi/Mail_BOOKING.png
https://www.tgsoft.it/immagini/news/20190705Sodinokibi/Mail_DHL.png
https://www.tgsoft.it/english/news_archivio_eng.asp?id=781

Sodinokibi Ransomware Analysys

Then we analyze Sodinokibi version 1.1.
When the file infected from ransomware is executed, Sodinokibi generates a different mutex
for each build, as en example :

Global\D382D713-AA87-457D-DDD3-C3DDD8DFBC96

A section of the file infected is decrypted with RC4, this section contains the configuration of
the malware structured in this way:

"pk": ",
"pid": ",
"sub": ",
"dbg": ,
"fast": ,
"wipe": ,
"wht": {
"fld":],
"fs": [],
"ext": []
3
"wfld": [],
"prc”:],
"dmn": ",
"net":
"nbody": ",
"nname"; ",
"exp":,
"img": "

In the table below we see the description of the fields:

Field Description

pk Public Key in base64
pid Identifier of distributor
sub Identifier of subscription
dbg Debug: true/false

5/27

fast True/False

wipe True/False

wht -> fld Folder exclusions

wht ->fls Files exclusions

wht -> ext Exclusion of the extension

wfld Wipe folder

prc Process to terminate

dmn Domains C2

net Files encryption in the network: true/false

nbody Instructions for payment

nname {EXT}-readme.txt (EXT is the extension of file encrypted)
exp Exploit True/False

img Image contained in alert encryption on the desktop

6/27

If "exp" field is "true" then a 32 or 64 bit shellcode is executed with
the exploit CVE-2018-8453 through the elevation of privilege.

The next step is create a registry key REcfqg if it is not already
exist:

If the key do not have permissions, it is created in

HKEY_LOCAL_MACHINE\SOFTWARE\recfg

HKEY_CURRENT_USER.
The following values are created within REcfg:

pk_key
sk_key
0 _key
rnd_ext
stat

Back on top

Calculate the private and public keys

Now the private and the public keys are calculated, as we can see in the figure:

FIEE

loc_132388:

lea eax, [ebp+var_88]

push offset pk_key_14D5AB8

push eax

call _Calcola_Key Privata_Pubblica_1355B8 ; Calcola_ Hey Privata Pubblica (pHKeyPriwata, pKeyPubblica)
push 28h

pop ebx ; ebx = 28Bh

lea eax, [ebp+var_L]

moy [ebp+var_C], ebx ; 26h

push eax

push ebx ; ebx = 206h

lea eax, [ebp+uvar_88]

push eax

push offset pk_config__14D588

call sub_13597B ; pBuff_Key = (key, buffer IH, size IH, size out)
mou edi, eax ; buffer output per sk_key
lea eax, [ebp+var_8]

push eax

push ebx

lea eax, [ebp+uvar_8R8]

push eax

push offset unk_14C828 ; master key pubblica
call sub_13597B ; pBuff_Key = (key, buffer IH, size IH, size out)
mou esi, eax ; buffer output 8 key

lea eax, [ebp+var_88]

push ebx

push eax

call _Wrp_ZeroHemory_ 135966

add esp, 36h

test edi, edi

jz loc_1324Fy

Private and public keys are calculated in this way:

7/27

https://www.tgsoft.it/immagini/news/20190705Sodinokibi/asm_shellcode.PNG
https://www.tgsoft.it/immagini/news/20190705Sodinokibi/asm_preparazione_chiavi_privata_pubblica.png

il e 5

arg_8= dword ptr B8
arg_4= dword ptr HCh

; Calcola Key Privata Pubblica {pKeyPrivata, pKeyPubblica)
; Attributes: bp-based frame

_Calcola Key Privata Pubblica 1355B8 proc near

push ebp

mou ehp, esp

push [ebp+arg_A] ; key privata

call _Calcola_HumeroRandom_28h_135608

pop ECX

test eax, eax

jnz short loc_ 1355CA ; key pubblica

Y Y
= =
pop ebp
retn loc_1355CA:

push [ebp+arg 4] ; key pubblica
push [ebp+arg_A] » key privata
call sub_1355DC ; (pKeyPrivata, pHKeyPubblica)
pop BCX
Xor eax, eax
pop BCX
inc eax
pop ebhp
retn

The private key was generated from random number of 256 bit, from the figure we can see
the random number generation subroutine PRNG (PseudoRandom Number Generators):

_Calcola Key Privata Pubblica 1355B8 endp

8/27

https://www.tgsoft.it/immagini/news/20190705Sodinokibi/asm_calcola_key_privata_pubblica.png

A J
M=
Xor ec®, ecx
cmp [ebp+arg_u],
jbe short loc_ 134622

BCx

v
FIEE
mou esi, [ebprarg_8]

¥

FIZE

loc_134613:

Xor

edx, edx

'z

ol s =
loc_134615:
rdrand ebx
jb short loc_ 134628
Y L J
e =
inc edx
cmp edx, 18h loc_134628:
j1 short loc_134615| mov [ecx+esi], bl
inc ecx
cnp ecx, [ebp+arg 4]
jb short loc_134613

RandHumber_1345B5 endp

The function to generate PRNG use the hardware Intel lvy Bridge, based on
NIST’s SP 800-90 guidelines, through the call to assembly rdrand

instruction.

The random number generated, before it becomes private key, is elaborated

in this way:

At this point, starting from private key was generated public key. The private and public keys

A J A J
il 55 M=
b{ild eax, eax| [jmp short loc_134622

are generated using ECC (Elliptic Curve Cryptography).

The keys (private and public) are both two numbers of 256 bit, which define two points on the

elliptic curve.

The Exchange of the keys is made with the “Elliptic Curve Diffie-Hellman” (ECDH) method,

where:

daPg = dgPa

9/27

https://www.tgsoft.it/immagini/news/20190705Sodinokibi/asm_prng_random_number.png
https://www.tgsoft.it/immagini/news/20190705Sodinokibi/asm_last_step_chiave_privata.PNG

Given G a fixed point of the curve, where:
e dp = private key of A (secret random number)
o Pp = G*dp = public key of A (G multiplied by da)
e dg = private key of B (secret random number)
e Pg = G*dg = public key of B

Sodinokibi use eliptic curve “Curve25519”, in which G={9}, developed by Dan Bernestein, as
supposed in the post of Eric Klonowski (@noblebarstool) on Twitter.

After Sodinokibi has generated the ECC pair of keys in the memory, which we call dk_key
(private key) and pk_key (public key), the public key is stored in the recfg regisry key inside
of the value pk_key:

HKEY_LOCAL_MACHINE\SOFTWARE\recfg
[pk_key] = Public Key

Back on top

sk_key Data Structure

At this point sk_key data structure is generated by the call to Sub_13597B subroutine:
pBuff_sk_key = Sub_13597B (key_pubblica_json, key_privata, size IN, size out)

The Sub_13597B aims to encrypt the private key generated inside sk_key data structure.

The Sub_13597B takes 4 input parameters:

e key_ pubblica_json: public key “pk” inside the json configuration section
o key privata: private key generated “dk”

e size IN: size of “dk”

e size out: sk_key structure dimension

10/27

Sub_13597B subroutine execute the following steps:
Allocate a buffer of 0x58 byte and copy the private key (dk_key) “key_privata”
from offset 0x4 into buffer

1.

2.

Calculate a new pairs of ECC keys, one private (dk_new) and one
public (pk_new)

Calculate dk_new*pk -> shared_key_new (where pk is public key inside
the json configuration section) and the result is “hashato” with SHA-3.

. Calculate a random number of 16 byte -> random_16, it will be used as

IV (initialization vector forAES)

. Encrypts the buffer allocated from 0 to 0x24 via AES-256 CTR through

the 1V initialization vector and SHA-3 (shared_key new)

. Copy the public key pk_new into buffer allocated at offset 0x24
. Copy the random number random_16 into buffer allocated at offset 0x44
. Calculate the CRC32 of the buffer allocated from 0 to 0x24 and save the

result at offset 0x54

. Sub_13597B subroutine returns the pointer to buffer that is allocated to

of 0x58 byte inside the sk_key data structure.

sk_key data structure, as we see on the right figure, will be stored in the
registry under the same name.

We can see the call to AES-256 in CTR mode, in the figure below:

sk_key

dwCheck

Private key (dk_key)
encrypted with AES
256 CTR (sha-3
(ECDH (dk_new, pk)),

random number)

New Public Key
(pk_new)

Random number

11/27

https://www.tgsoft.it/immagini/news/20190705Sodinokibi/sk_key.PNG

push [ebp+arg_4] ; Bx188 -> 256

push eax UAR 114 -3 out expanded_key
call _Wep_RES_2%6_Expand_Enc_Key 136A9F ; (out, Bx100, iH)
add esp, OCh
test eax, eax
jz short loc_1356D8
(L
h 4
e
push esi
nov esi, [ebprarg_ B8]
push edi
lea edi, [ebpsvar_16]
movsd ; copio im war1® il contenuto di Buff In 2 (18h bytes)
maowsd
maowsd
maowsd
mou edi, [ebprarg_18] ; size
test edi, edi
jz short loc_1356CH
1
I
push ebx
maw ebx, [ebp+arg_[E]
v e
FPIE
loc_135682: ; output
lea eax, [ebpevar_2@]
push eax
lea eax, [ebpsvar_18] ; randon number IV
push Bax
lea eax, [ebpewar_114] ; expanded key
push Bax
call AES_CTR_136A83 ; ottengo var2@ da variih e vari@
push 16h
pop esi
onp edi, esi
lea eax, [ebpswar_ 28]
cmovh esi, edi
push sl ; 1@h
push eax ; var 20 @ outuput di aes cipher
push ehx ; buffer infout
call Cifra_con_Xor_13586D ; Cifra_con_xor (buff infout, key, size)
add esp, 18h
lea eax, [ebpewar_1]
add ebx, esi 7 Ebx = ebx + Bx10
sub edi, esi ;oedi = edi - @x1@
]
loc_1356B3:
add byte ptr [eax], 1
jnz short loc_1356BB
I 1
k]
e [l 1 =
dec Bax
jnp short loc_135%683) (loc_13%6B8:
test edi, edi
jnz short loc_135682 ; output
il
L

AES CTR takes the following scheme:

12/27

https://www.tgsoft.it/immagini/news/20190705Sodinokibi/asm_aes_ctr.PNG

AES CTR mode

V+1 IV +2

Block Cipher
Encryption

Block Cipher
Encryption

Block Cipher

K —
Y Encryption

i £
Plaintext —

Ciphertext Ciphertext Ciphertext

Back on top

0_key Data Structure

0_key data structure is generated in a similar way, by the call to Sub_13597B
subroutine:

pBuff_0_key = Sub_13597B (master_key_pubblica, key_privata, size IN, size out)

The procedure for generation of 0_key data structure is similar to that of sk_key
data structure, in this case it is used a “master public key” stored inside a
executable file instead of the public key pk (the one inside the json configuration
section).

The “embedded” master public key is:

79CD20FCE73EE1B8 1A 4338 12 C156 28 1A

04 C92255E0D7 08 BB 9F 0B 1F 1C B9 13 06 35

Inside the 0_key data structure we have the dk private key encrypted through the

“‘master public key”. 0_key data structure, as we see in the figure on the right, will
be saved in the registry under the same name.

Registry Key “rnd_ext”

The value “rnd_ext” is stored inside the registry key REcfg, it contains the encrypted file
extension randomly calculated.

Registry Key “stat””

The value “stat” is stored inside the registry key REcfg, it contains the following string
formatted:

13/27

https://www.tgsoft.it/immagini/news/20190705Sodinokibi/schema_aes_ctr.PNG
https://www.tgsoft.it/immagini/news/20190705Sodinokibi/0_key.PNG

{llver":%d’"pidll:"%sll’"Sub":llo/osll’llpk":"%S"’lluid":ll%sll’llsk":"%sll’

"unmll:"%S"’llnet":ll%s , grpll:"%sll’"Ingll:"%S"’llbroll:%s’"osll:ll%sll’
llbitll:%d’lldSkll:ll%Sll’lleXt":ll%S"}

It is stored in “stat” in encrypted and base64 encoded form.

Name Description

ver Version of Sodinokibi

pid PID of json

sub SUB of json

pk PK ofl json

uid CRC32 of “processor brand string” and Volume Serial Number (8 bytes)

sk sk_key in BASEG4

unm Username

net Name of computer

Grp Name of workgroup or domain

Ing Language ID

bro True / False if the ID of language is a "friend"

Os Operating System

Bit Value: 86 or 64

Dsk Information of diski in base 64 (drive and free space)

Ext Extension of encrypted filei

Countries considered “friends” on the basis of the “bro” value:

¢ Romania

¢ Russia

e Ucraina

e Bielorussia

e Estonia

o Lettonia

e Lituania

14/27

o Tajikistan

e Iran

e Armenia

e Azerbaijan

e Georgia

o Kazakistan

o Kyrgyzstan
e Turkmenistan
o Uzbekistan

The Sodinokibi ransomware ends the current process if the keyboard language belong to the
list of countries considered "friends".

The “stat” formatted string is encrypted with a master public key stored inside a executable
file.

The master public key “embedded” is:
36 7D 49 30 85 35 C2 C3 68 60 4B 4B 7A BE 83 53
AB E6 8E 42 F9 C6 62 A5 DO 6A AD C6 F1 7D F6 1D

Back on top

Ransom instruction

Ransom instruction are prepared from the body, which is extracted from the “nbody” field of
the json configuration.
The body is formatted with the following value:

e uid

e rnd_ext

 statin base 64

The “uid” is the user ID calculated from CRC of “processor brand string” and Volume Serial
Number, which is used to compose the URL where to make the ransom payment:
o http://aplebzu47wgazapdgks6vrcv6zenjppkbxbréwketf56nf6ag2nmyoyd.onion/<uid>
 http://decryptor.top/<uid>

Terminate Processes and delete Shadow Copy

The processes listed in the JSON configuration under “prc” are killed and the Windows
Shadow copy with the following command are deleted:

15/27

cmd.exe /c vssadmin.exe Delete Shadows /All /Quiet & bcdedit /set {default}
recoveryenabled No & bcdedit /set {default} bootstatuspolicy ignoreallfailures

Wipe

Then the malware checks the "wipe" value in the JSON configuration and if set to true it
deletes all the files contained in the folders that correspond to the "wfld" value of the JSON
configuration.

File encryption

A Thread is created which is pending on function “GetQueuedCompletionStatus”.

Files on local disk and network folder are numbered (if the “net” parameter of JSON
configuration is a “true” value) then proceed with file encryption.

In every folder is created a .lock file and the instructions regarding the ransom with name
{random extension}-readme.txt.

Files and folders that correspond to the JSSON "wht" field containing the subfields "fld", "fls"
and "ext", which are respectively for "folder", "files" and "extension" are excluded from
encryption.

Here is an example:

"wht": {
"fld": ["google", "mozilla", "$windows.~bt", "programdata"”, "$recycle.bin", "program

files (x86)", "appdata", "msocache", "program files", "windows.old", "$windows.~ws",
"application data", "perflogs", "windows", "boot", "intel", "system volume information", "tor
browser"],

"fls": ["bootsect.bak", "autorun.inf", "ntldr", "ntuser.dat.log", "ntuser.ini", "boot.ini",
"ntuser.dat", "bootfont.bin", "desktop.ini", "thumbs.db", "iconcache.db"],

"ext": ["exe"]

}

For each file intended to encryption is generated a Salsa20 key, as follows:

16/27

push
call
lea
push
lea
push
push
call
lea
push
push
call
mow
lea
push
push
push
1lea
push
call
lea
push
push
call
add
push
push
call
push
push
call
add
push
push
push
call
mou
add
pop
mou
mow
pop
mou
pop
mou
pop
retn

eax ; var_28

_Calcola_Key Privata_Pubblica_1355B8 ; Calcola Key Privata Pubblica {pKeyPrivata, pEeyPubblica)
eax, [ebp+var_u8]

eax

eax, [ebp+uvar_28]

offset pk_key_14D05A8 ; pk_key del registro

eax ; var 28

_Calcola_SHA3_ECDH_135822 ; (Buffer IH, Key, Buffer 0OUT)
eax, [ebp+uar_28]

28h

eax

_Wrp_ZeroMemory_ 135266

esi, [ebp+arg_B] ; struttura dati

eax, [ebp+var_u48] ; key di cifratura che viene copiata nella tabella master di SalsaZa
48h

188h

eax

edi, [esi+188h]

edi

_ Set_Salsa_Tabella_136EA3

eax, [ebp+var_u8]

28h

eax

_Wrp_ZeroHemory_135966

esi, BF8h

8 ; size vettore

esi ; Buffer Uettore Inizializzazione
_Calcola_RandomMumber_ 135788 ; Calcola RandomMumber {PBuffer, dwSize)
esi ; puntatore al Uettore di Inizializzazione IV

edi ; edi punta alla struttura Dati offset Bx188 Tbl Haster Salsa
_Set_IV_Tabella_3alsa_136EBS

esp, 44h

208h ; size

ebx ; buffer

Li]

_CRC32_1356DC ; calcola in eax il CRC32 (val, buffer, size)
ecx, [ebp+arg_8] ; struttura dati
esp, BCh

edi

[ecx+1086h], eax ; crc32 del buffer DB
eax, dword_14D714

esi

[ecx+184h], eax

ebx

esp, ebp

ebp

_CalcolaKey5alsa2@ 13289C endp

Encryption algorithm used by Sodinokibi is Salsa20.

The encryption key for Salsa20 is obtained in this way:

4.

. Calculate a new pairs of ECC private/public keys (dk_new_file, pk_new_file)
Calculate SHA-3 (dk_new_file*pk_key) -> shared_key_ salsa (where pk_key is a public
key stored inside registry under pk_key voice). In shared_key salsa we will obtained

the key which is plugged in Salsa20 master table.

Calculate a random number of 8 byte for the initialization vector of the Salsa20 master

table.
Composes the Salsa20 master table.

It is created in memory a data structure that holds:

Handle of the file to be encrypted
sk_key

0 _key

pk_new_file

Initialization vector of Salsa20
The CRC32 of pk_new_file

17/27

https://www.tgsoft.it/immagini/news/20190705Sodinokibi/asm_salsa20key.PNG

o Master table of Salsa20

This data structure is passed to the Thread created previously through the API functions:

o CreateloCompletationPort
¢ PostQueuedCompletionStatus

The thread is pending on the GetQueuedCompletionStatus API function, when it receives a
new call it starts the file encryption phase through the Salsa20 algorithm and then appends a

part of the data structure that contains the following fields:

e sk_key
0_key
pk_new file

The size of the appending part varies according to the version of the Sodinokibi malware.

Initialization vector of Salsa20
The CRC32 of pk_new_file

versions 1.0 and 1.1 the length is OXEO bytes whereas in version 1.2 it is 0XE4 bytes.

In the figure we can see the encryption scheme of Sodinokibi version 1.1:

REvil — Sodinokibi v. 1.1: encryption scheme

Private key Public key

0x0

private key 0x4

(dk_key)

public key
(pk_key)

public key
json (pk)

. 0x24
master public
key

new public

new private
key (dk_new)

key (pk_new)

0x44

new private
key file
(dk_new_file)

new public
key file
(pk_new_file)

0x54

0x58

Back on top

Desktop image

sk_key

dwCheck

Private key (dk_key)
encrypted with AES
256 CTR (sha-3
(ECDH (dk_new, pk)),
random number)

New Public Key
(pk_new)

Random number

0x0

0ox4

0x24

0x44

0x54

0x58

0_key

New Public Key
(pk_new)

Random number

File encrypted
0x0

File encrypted with
Salsa20

The Salsa20 key:
SHA-3 (dk_new_file
* pk_key) =
shared_key_salsa
End
original
file

+0x58

0_key
+0x58

pk_new_file
+0x20
IV Salsa20

+0x08
+ 0x04 GHs2

+0x04

18/27

https://www.tgsoft.it/immagini/news/20190705Sodinokibi/sodinokibi_encryption_scheme.PNG

At the end of the files encryption, the next step is to modify the desktop -
image , which we can see in the figure on the right.

The image is generated using API functions for the graphics and the text is

inserted using “DrawText” function, that is loaded in “img” field through
JSON configuration.

C2 Server

We find a list of 1079 domains inside the JSON configuration. Sodinokibi makes a
connection with each domain of this list generating a URL through a DGA algorithm using the
following terms:

Term Extension

wp-content * jpg
pictures o gif
news e png
pics

admin

data

temp

graphic

game

static

assets

tmp

uploads

images

include

image

content

https://[<host>/<term 1>/<term 2>/<random chars>.<extension>
Some examples:

https://stagefxinc|[.Jcom/wp-content/pictures/pmkapi.jpg
https://birthplacemag[.]Jcom/admin/pictures/hpxxqgbak.gif
https://clemenfoto[.]Jdk/news/pics/ohxkyt.gif
https://wineandgo[.]Jhu/admin/pics/ahlpbrzo.jpg
https://lexced[.]Jcom/data/temp/hpttgdyg.png

Sodinokibi transmits through a "POST" to each domain of the list the "stat" data structure in
encrypted form.

19/27

https://www.tgsoft.it/immagini/news/20190705Sodinokibi/sodinokibi_desktop.jpg

From our analysis only the following domains responded with "HTTP / 1.1 200 OK":

www(.]zuerich-umzug[.]Jch geitoniatonaggelon[.]gr
belofloripal[.]be insane[.]Jagency
www[.]soundseeing[.]Jnet acb-gruppel[.]Jch
utilisacteur|.]fr www[.]Jcardsandloyalty[.]Jcom
www[.]airserviceunlimited[.]Jcom wwwl.]sbit[.]ag
www[.Jmediahub[.]co[.]nz yourhappyevents|.]fr
www][.]irizar[.Jcom tieronechic[.Jcom
www[.]cleanroomequipment|.Jie mariajosediazdemeral.Jcom
wwwl[.]pinkxgayvideoawards[.Jcom www[.]skyscanner[.]ro
www[.Jrhino-turf[.Jcom 11[.Jin[.]Jua
mike[.Jmatthies[.]de funworx[.]de
drbenveniste[.Jcom www[.Jomnicademy[.Jcom
scotlandsroute66[.]Jco[.Juk www[.]bratek-immobilien[.]de
m2graph[.]fr metroton[.]ru

But this does not mean that one of these domains is that of Sodinokibi C2 Server.
Back on top

Ransom payment

According to the ransom instructions, the victim have to connect to the following domains for
the payment methods:
e http://aplebzu47wgazapdgks6vrcvb6zcnjppkbxbrowketf56nféag2nmyoyd|.Jonion/<uid>
e http://decryptor[.]Jtop/<uid>

Victims are requested to enter first thing (img.1), the random extension and the “Key” value
contained in ransom instructions (it is the “stat” version encrypted on base64).

When victims input this data the payment amount is generated (img.2) and are provided
information on how to purchase BitCoin (img.3), and in addition a support chat is included
(img.4), as we can see in the following images:

. - — — : —
B A B o

img.1 img.2 img.3 img.4

The wallet for payment is generated automatically for each victim, the ransom price is $
2,500 it doubles to $ 5,000 if payment is not made within 7 days.

20/27

https://www.tgsoft.it/immagini/news/20190705Sodinokibi/Riscatto1.png
https://www.tgsoft.it/immagini/news/20190705Sodinokibi/Riscatto2.jpg
https://www.tgsoft.it/immagini/news/20190705Sodinokibi/Riscatto3.jpg
https://www.tgsoft.it/immagini/news/20190705Sodinokibi/Riscatto4.jpg

How does decryption work?

The only way to recover the encrypted files by Sodinokibi is with a “dk_key” private key. The
decryption key is encrypted inside “sk_key” and “0_key’”.

The attacker recovered “dk_key” in these ways:

1. Decrypting sk_key
2. Decrypting 0_key

Now in order to decrypt “sk_key” the attacker use a secret key, the private key
“dk” , which only they know. The private key “dk” is the symmetric key of the
public key “pk” stored in the json configuration.

The public key “pk_new” is put in unencrypted way inside “sk_key” structure.

It is calculated the value: dk * pk_new = shared_key new

The “shared_key new” is the same as: dk_new™pk.

The private key (dk_key) is encrypted with AES-256 CTR through the "SHA-3
(shared_key new" and the random number (/V) which is on offset 0x44.
Decrypting the buffer from 0x4 to 0x24 with AES-256, through "SHA-3
(shared_key new)" and the random number you get "dk_key".

Now the same procedure can be performed to decrypted “0_key”, in this case is
used the master private key, which only the authors of Sodinokibi know, to get
“‘dk_key’.

Now we know dk_key so to determinate the encryption key used in Salsa20 we
execute the following operation:

SHA-3 (dk_key *pk_new _file) = shared_key salsa

Where the public key pk_new _file is put in unencrypted way at the end of the
encrypted file.

shared_key salsa is also equals to SHA-3 (dk_new_file*pk_key)

In shared_key salsa we will have the key that is inserted in the Salsa20 master
table.
Now it is possible to decrypt the files through shared _key salsa.

21/27

https://www.tgsoft.it/immagini/news/20190705Sodinokibi/sk_key.PNG
https://www.tgsoft.it/immagini/news/20190705Sodinokibi/file_encrypted.PNG

Private key

private key
(dk_key)

private key
json (dk)

" master
private key

Public key

0x0

0x4

0x24

new public
key (pk_new)

0x44

new public
key file 0x54
(pk_new _file)

Back on top

Versions

0x58

REvil — Sodinokibi v. 1.1: decryption scheme

sk_key

dwCheck

Private key (dk_key)
encrypted with AES
256 CTR (sha-3
(ECDH (dk_new, pk)),
random number)

New Public Key
{pk_new)

Random number

0x0

0x4

0x24

0x44

0x54

0x58

0_key

New Public Key
(pk_new)

Random number

File encrypted
0x0

File encrypted with
Salsa20

The Salsa20 key:

SHA-3 (dk_key *
pk_new file) =

shared_key salsa

End
original
file
+0x58 -
0_key
+0x58
pk_new_file
+0x20
IV Salsa20
+0x08
+0x04 CRE32

+ 0x04

The authors of Sodinokibi have developed the following versions:

Version Date

Size appending data

1.0a 2019-04-23 0xe0
1.0b 2019-04-27 O0xe0
1.0c 2019-04-29 0xe0
1.1 2019-05-05 O0xe0
1.2 2019-06-10 Oxe4
1.3a 2019-07-08 Oxe4
1.3b 2019-08-02 Oxe4

Version 1.2

In version 1.2 the registry key "sub_key " has been added which contains the public key of
the json configuration (pk) and the data size in the encrypted files is Oxe4 bytes, where an

additional control dword with value 0 has been added.

Version 1.3

22/27

https://www.tgsoft.it/immagini/news/20190705Sodinokibi/sodinokibi_decryption_scheme.PNG

In this version has been added a field called “svc” in the json config. This
field contains a list of services to delete, as we can see in the figure.

Furthermore to verify if the victim is from a “friend” country, in addition to
check of language of keyboard has been added checks on the default
language and on system language, as we can see in the figure.

It uses WQL to determinate the creation of processes:

SELECT * FROM __InstanceCreationEvent WITHIN 1 WHERE Targetinstance ISA
'Win32_Process'

Furthermore it uses a new key of registry instead of “REcfg”:
HKEY_LOCAL_MACHINE\SOFTWARE\QtProject\OrganizationDefaults

Inside to QtProject\OrganizationDefaults are saved the following values:
* pvg
o sxsP
-« BDDC8
o f7gVD7
e Xu7Nnkd
e sMMnxpgk

Table of comparison for the version 1.2 and 1.3:

Vers. 1.2: REcfg Vers. 1.3a: QtProject\OrganizationDefaults

sub_key pvg
pk_key sxsP
sk_key BDDCS8

23/27

https://www.tgsoft.it/immagini/news/20190705Sodinokibi/delete_service.PNG
https://www.tgsoft.it/immagini/news/20190705Sodinokibi/check_language.PNG

0_key frgvD7
rnd_ext Xu7Nnkd
stat sMMnxpgk

Telemetry

The trend of Sodinokibi malware campaigns has been monitored between April and July

2019.

In the table below we can see the campaigns monitored:

Data Campagna
25/04/2019
25/04/2019
25/04/2019
25/04/2019
25/04/2019

24/05M19
03/06/19

18/06/19
19/06/19

19/06/19
19/06/19
24/06/19
26/06/19
25/06/19
01/07/19

Campagna
Oracle Weblogic
Oracle Weblogic
Oracle Weblogic
Oracle Weblogic
Oracle Weblogic

ROP
Malpam

Malspam — Booking

PK
nAjfiPcolyelwwCkM1hLhXo5HUQMrAB+7m8eHzerho=
nAjfiPcolyelwwCkM1hLhXo5HUQMrAB+7m8eHzerho=
nAjfiPcolyelwwCkM 1hLhXo5HUQMrAB+7maeHzerho=
nAjfiPcolyelwwCkM1hLhXo5HUQMrAB+7m8eHzerho=
nAjfiPcolyelwwCkM1hLhXo5HUQMrAB+7m8eHzerho=
a54FxmOM4c90SBAgCYwayk IvG2ImcbOvaHKwO80Kegl=
a54FxmOM4c90SBAgCYwayk IvG2ImcbOvaHKwO80Kegl=
a54FxmOM4ca0SBAgCYwAykIvB2ImcbOvaHKwO80Kegl=
M3lgbCUZrigXgALTUaGwWTKBESUvA+CcRaszto0xglA=
TmrkEVUZ29HHz 1 nfhwl0CEpdl5syGzUCmeoyAJAnZSHyY=
4hKQrOidBEIUTPATUa0uTipRsh2y956X 1K+yyLUjA=
eY|9jfld2wirBiZk/ABs pJesaySHEg+XbmHRQOS55NBKE=
wighPcoO83YChvmGl4ySs7ZiTUaTSYAKDDXIM/hONjQ=
KewB0OHCSStmaZwEnoW4XuhBiys|35yKugEHSPM4PTRA=
in3ch)XiLLzcA1anNSmnitkeldSpGVimVugwvms3g=
eYI9jfild2wirBiZk/ABspJesaySHEq+XbmHRQS5MNBKE=
ClwOJS0hyaamJ5eplhJrLMSUJdwH29Ky8tH+Yn3Welzg=
duPwGxBEa19yzAI2Z7 JhOVXw15502We 3CWVDWITuwhBU=
2Dj6WyDEOKECV)adXX+ogDuXN/iXnldryWifa6/B0=
pzprCaxbhNFhM/+glIEgCrd2pnCoyRdai+Baa0UhWAwW=
m7cFgORjIUsRFyd4odzerlk+3i0TwITNGLASYER|QIMQ=
pzprCaxbhNFhM/+glIEgCrd2pnCoyRdai+Baa0UhWAwW=
UsgGGTWKYrgvh5QFI+53Jc7 aj8ntwij0C4aidi2A+jg=
MOtiPgA45LBcXACRHIBAIFayVBMSMEF4)jppDRO+0HU=
pzprCaxbhNFhM/+glIEgCrd2pnCoyRdai+Baa0UhWAwW=
p+HVJIIHGF12r1 Q7 fPSAF3Y36mODmMS4bbOtZMLKszAI=
1LSb3+cEVUYZYvzUDBnBwFiIQC cZYZOMIZwlU CyOHNTTY =
TWQXz00r53eh4ps)ZngYlilQ+Pjrrisz6Y+0owi=
F5YmIEK1fBNSETSKF7sRgBES+QRpLLYtkOOMNCITEZWM=
Kikn8udbrebS5jbzcimlkGAbDGMIWXIKs85rOWrmJ230=
jDEpLiwlUHIEoWBKadIZ4ATSCLmMEI0UKIzdzZ\W 7 XautWE=
W2TWFCLDTFMuBvSVNGeASMNHYUMT SRELE+hIUKWXKEME=
PdQtqjCAKZmIIN 1Fbw1ZGic+XVz00TwidGm1gdXGsXg=
XEKVRMdkoLhmeigRMY9Vedj+3uVeOODgMAMAVZ2ZmA=
KewB0OHCSStmaZwEnoW4XuhBiys|35yKugEHSPM4PTRA=
TSVNLPYVdO4yhjOWFntNHZ0bsHYz2DzRIF+HjkQuTmE=
J5ImSQ5XEGHGIHDYNSEBZRCDIONIROtet7 eKcBptChk=

Malspam — DHL Clw0JS0hyaamJSeplhJrLNSUJdwH29Ky8t+Yn3WelLzg=
J5ImSQ5XEGHGIHDYNSEBZRCDIONIROtet7 eKcBptChk=
wEmMwEEIFMUJDMKSY4RADLCGXEMPgMNXIaY42ERURKM=
VYOXIZZ84mknj8GgTa0Gyi9eAgOKvECTvqCPE3Jkg=

Winrar VYOXIZZ84mknj8GgTa0Gyi9eAgOKvECTvqCPE3Jkg=
Winrar VYOXIZZ84mknj8GgTa0Gyi9eAgOKvECTvqCPE3Jkg=
RigEK gmLSnM9s+6Z0sKo1tV0sbddERjBKUJ4pkgE6+TtRWHY=

Targeting South Korea
Malspam — Booking
RigEK

wEmMwEEIFMUJDMKSY4RQADLCGXEMP gMXIaY42EhURKM=
RILYZ|LnGa3gAlx5s3sIwl0iZjJFSxHjZaDYwHKaBI=
Zrui0sITobzVivTWuNIgEPZyX|BMEStAZe SxQTET]Y=

SUB Versione Data compilazione

1.0a
1.0a
1.0a
1.0a
1.0a
1.0b
1.0c
1.0c
1.0c
1.0c

2019-04-23 18:21:53
2019-04-23 18:21:53
2019-04-23 18:21:53
2019-04-23 18:21:53
2019-04-23 18:21:53
2019-04-27 18:11:51
2019-04-29 19:06:06
2019-04-29 19:06:06
2019-04-29 19:06:06
2019-04-29 19:06:06
2019-05-05 17:38:48
2019-05-19 18:08:46
2019-05-22 18:42:29
2019-05-22 18:42:29
2019-05-22 18:42:29
2019-05-22 18:42:29
2019-05-24 14:41:21
2019-05-24 14:41:21
2019-05-24 14:41:21
2019-05-24 14:41:21
2019-06-03 18:09:45
2019-06-03 18:09:51
2019-06-03 18:09:51
2019-06-03 18:09:51
2019-06-03 18:09:51
2019-06-03 18:09:51
2019-06-03 18:09:51
2019-06-03 18:09:51
2019-06-03 18:09:51
2019-06-10 15:29:32
2019-06-10 15:29:32
2019-06-10 15:29:32
2019-06-10 15:29:32
2019-06-10 15:29:32
2019-06-10 15:29:32
2019-06-10 15:29:32
2019-06-10 15:29:32
2019-06-10 15:29:32
2019-06-18 19:36:45
2019-06-18 19:36:45
2019-06-18 19:36:45
2019-06-18 19:36:45
2019-06-18 19:36:45
2019-06-18 19:36:45
2019-06-18 19:36:45
2019-06-24 15:53:35
2019-06-24 15:53:35

The fields from the table are the following:
1. Campaign Date
2. Type of Campaign
3. PK (public key inside the JSON configuration)
4. PID present in JSON configuration

24/27

https://www.tgsoft.it/immagini/news/20190705Sodinokibi/statistiche.PNG

5. SUB present in JSON configuration
6. Sodinokibi version
7. Date the master file of Sodinokibi is compiled

PID field identify the group has acquired the service Sodinokibi ransomware (RAAS). SUB
field probably identify “SUBSCRIPTION” that is the period of validity of the service.

The pairs of PID & SUB with identical value have the same public key (PK), how we can see
in the case of PID:7 and SUB: 3.

The campaign with PID 7 was the first to use Oracle Weblogic vulnerability to distribute the
ransomware on 25 April 2019 (SUB:3), the same group seems to be associated with the
Watering Hole attack campaign to distributor of WinRar in Italy on 19" June 2019 with a new
SUB: 474.

As we can see, the group with PID: 7 has purchased more subscription periods. Using the
three parameters PID-SUB-PK, one can identify the campaign associated with the same
actor.

Until early July of this year, the PID 40 was the highest value, this suggests that there are at
least 40different groups. The highest value of SUB was 607 which could indicate that at least
607 subscription periods have been purchased.

We compare in the graphic here below, the date of compilation of the malware and the SUB
value present in json configuration. It is possible to see how the curve growth strongly
suggesting that the Sodinokibi CryptoMalware is distributed with the “as-a-service” method.

650
B35 807

23/, 10 27404, 10 29404, 19 19,05, 19 22;.515‘,],9 3“-’105,,9 93/05,?9 fﬂz‘o@,m 18/0g, o 24106, o

DATA

Back on top

25/27

https://www.tgsoft.it/immagini/news/20190705Sodinokibi/grafico_statistiche.PNG

Conclusion

The authors of Sodinokibi are individuals with a certain level of technical knowledge and
probably this ransomware is not their first creation and it is actively developed.

This project is developed to be distributed with model RaaS (Ransomware-as-a-Service).

Sodinokibi ransomware uses for file encryption the algorithm Salsa20 with a key exchange
method based on ECDH.

Sodinokibi operation spreads wide in the last month, through a different methods to distribute
the ransomware via Malspam, RigEK, RDP attacks, ecc. The attackers with the recent
decision to shutting down GandCrab Ransomware operation left a hole, that seem to
exploited by Sodinokibi.

I0C

MD5:
DB42F17991A7BA10218649B978D78674
E713658B666FF04C9863EBECB458F174
16863F6727BC5DD44891678EBCA492D2
FD3F3AF76D31D8F134E2E02463D89D29
6E543C13594F987A6051BC3D9456499F
CCFDE149220E87E97198C23FB8115D5A
FB68A02333431394A9A0CDBFF3717B24
692870E1445E372DDD82AEDD2D43F9B8
DB6D3A460DEDE97CA7E8CS5FBFAEF3AT72
48A673157DA3940244CEODFB3ECBS8EY
79F2341510D9FB5291AEFC3E69D 18253
3DF42FA9732864A9755F5C8FB7ED456A

URL:
aplebzu47wgazapdgks6vrcvbzcnjppkbxbréwketf56nféag2nmyoyd|[.Jonion
decryptor|.]top

Back on top

Authors: Gianfranco Tonello, Michele Zuin and Federico Girotto
TG Soft's Research Centre (C.R.A.M.)

Any information published on our site may be used and published on other websites, blogs, forums, facebook and/or
in any other form both in paper and electronic form as long as the source is always and in any case cited explicitly
“Source: CRAM by TG Soft www.tgsoft.it” with a clickable link to the original information and / or web page from

26/27

which textual content, ideas and / or images have been extrapolated.
It will be appreciated in case of use of the information of C.R.A.M. by TG Soft www.tgsoft.it in the report of summary
articles the following acknowledgment/thanks “Thanks to Anti-Malware Research Center C.R.A.M. by TG Soft of
which we point out the direct link to the original information: [direct clickable link]”

27/27

