
1/43

hasherezade May 31, 2019

Hidden Bee: Let’s go down the rabbit hole
blog.malwarebytes.com/threat-analysis/2019/05/hidden-bee-lets-go-down-the-rabbit-hole/

Some time ago, we discussed the interesting malware, Hidden Bee. It is a Chinese miner,
composed of userland components, as well as of a bootkit part. One of its unique features is
a custom format used for some of the high-level elements (this format was featured in my
recent presentation at SAS).

Recently, we stumbled upon a new sample of Hidden Bee. As it turns out, its authors
decided to redesign some elements, as well as the used formats. In this post, we will take a
deep dive in the functionality of the loader and the included changes.

Sample

831d0b55ebeb5e9ae19732e18041aa54 – shared by @James_inthe_box

Overview

The Hidden Bee runs silently—only increased processor usage can hint that the system is
infected. More can be revealed with the help of tools inspecting the memory of running
processes.

Initially, the main sample installs itself as a Windows service:

https://blog.malwarebytes.com/threat-analysis/2019/05/hidden-bee-lets-go-down-the-rabbit-hole/
https://blog.malwarebytes.com/threat-analysis/2018/08/reversing-malware-in-a-custom-format-hidden-bee-elements/
https://www.youtube.com/watch?v=0ndK-Az0RO4
https://www.virustotal.com/#/file/fd9edb6d9ac9674e797e51b3767e45a2eb23343c2ce88e64ef20d26f641064af/detection
https://twitter.com/james_inthe_box/status/1117526091101396992?s=21

2/43

Hidden Bee service
However, once the next component is downloaded, this service is removed.

The payloads are injected into several applications, such as svchost.exe, msdtc.exe,
dllhost.exe, and WmiPrvSE.exe.

If we scan the system with hollows_hunter, we can see that there are some implants in the
memory of those processes:

Results of the

scan by hollows_hunter
Indeed, if we take a look inside each process’ memory (with the help of Process Hacker), we
can see atypical executable elements:

https://github.com/hasherezade/hollows_hunter

3/43

Hidden Bee implants are placed in RWX memory
Some of them are lacking typical PE headers, for example:

Executable in one of the multiple customized formats used by Hidden Bee
But in addition to this, we can also find PE files implanted at unusual addresses in the
memory:

Manually-loaded PE files in the memory of WmiPrvSE.exe

4/43

Those manually-loaded PE files turned out to be legitimate DLLs: OpenCL.dll and
cudart32_80.dll (NVIDIA CUDA Runtime, Version 8.0.61). CUDA is a technology belonging
to NVidia graphic cards. So, their presence suggests that the malware uses GPU in order to
boost the mining performance.

When we inspect the memory even closer, we see within the executable implants there are
some strings referencing LUA components:

Strings referencing LUA scripting language, used by Hidden Bee components
Those strings are typical for the Hidden Bee miner, and they were also mentioned in the
previous reports.

We can also see the strings referencing the mining activity, i.e. the Cryptonight miner.

https://www.virustotal.com/#/file/bc0d5b5d63cf39bf2da62271f7ff8615bfd550a803a72ea70204746e03bfdfd2/details
https://www.virustotal.com/#/file/88931308f09fb89222a5a84e5ad9b6074f43db5dbc0f0f6321c5b58691dff2df/details
https://www.freebuf.com/column/174581.html

5/43

List of modules:

bin/i386/coredll.bin
dispatcher.lua
bin/i386/ocl_detect.bin
bin/i386/cuda_detect.bin
bin/amd64/coredll.bin
bin/amd64/algo_cn_ocl.bin
lib/amd64/cudart64_80.dll
src/cryptonight.cl
src/cryptonight_r.cl
bin/i386/algo_cn_ocl.bin
config.lua
lib/i386/cudart32_80.dll
src/CryptonightR.cu
bin/i386/algo_cn.bin
bin/amd64/precomp.bin
bin/amd64/ocl_detect.bin
bin/amd64/cuda_detect.bin
lib/amd64/opencl.dll
lib/i386/opencl.dll
bin/amd64/algo_cn.bin
bin/i386/precomp.bin

https://gist.github.com/malwarezone/b83a5db804aa2379f4a4647aab18f771#file-dispatcher-lua
https://gist.github.com/malwarezone/b83a5db804aa2379f4a4647aab18f771#file-config-lua

6/43

And we can even retrieve the miner configuration:

configuration.set("stratum.connect.timeout",20)

configuration.set("stratum.login.timeout",60)

configuration.set("stratum.keepalive.timeout",240)

configuration.set("stratum.stream.timeout",360)

configuration.set("stratum.keepalive",true)

configuration.set("job.idle.count",30)

configuration.set("stratum.lock.count",30)

configuration.set("miner.protocol","stratum+ssl://r.twotouchauthentication.online:17555/")

configuration.set("miner.username",configuration.uuid())

configuration.set("miner.password","x")

configuration.set("miner.agent","MinGate/5.1")

view raw config.lua hosted with ❤ by GitHub

Inside

Hidden Bee has a long chain of components that finally lead to loading of the miner. On the
way, we will find a variety of customized formats: data packages, executables, and
filesystems. The filesystems are going to be mounted in the memory of the malware, and
additional plugins and configuration are retrieved from there. Hidden Bee communicates with
the C&C to retrieve the modules—on the way also using its own TCP-based protocol.

The first part of the loading process is described by the following diagram:

https://gist.github.com/malwarezone/b83a5db804aa2379f4a4647aab18f771/raw/2b96dc5e3ef2029c315bba7deb57c07cd6cf9c26/config.lua
https://gist.github.com/malwarezone/b83a5db804aa2379f4a4647aab18f771#file-config-lua
https://github.com/

7/43

Each of the .spk packages contains a custom ‘SPUTNIK’ filesystem, containing more
executable modules.

https://blog.malwarebytes.com/wp-content/uploads/2019/05/hidden_bee_loader-2.png

8/43

Starting the analysis from the loader, we will go down to the plugins, showing the inner
workings of each element taking part in the loading process.

The loader

In contrast to most of the malware that we see nowadays, the loader is not packed by any
crypter. According the header, it was compiled in November 2018.

While in the former edition the modules in the custom formats were dropped as separate
files, this time the next stage is unpacked from inside the loader.

https://blog.malwarebytes.com/wp-content/uploads/2019/05/bee_plugins-1.png

9/43

The loader is not obfuscated. Once we load it with typical tools (IDA), we can clearly see how
the new format is loaded.

The loading function

Section .shared contains the configuration:

Encrypted configuration. The last 16 bytes after the data block is the key.
The configuration is decrypted with the help of XTEA algorithm.

10/43

Decrypting the configuration

The decrypted configuration must start from the magic WORD “pZ.” It contains the C&C and
the name under which the service will be installed:

Unscrambling the NE format

The NE format was seen before, in former editions of Hidden Bee. It is just a scrambled
version of the PE. By observing which fields have been misplaced, we can easily reconstruct
the original PE.

https://www.freebuf.com/column/174581.html

11/43

The

loader, unpacking the next stage
NE is one of the two similar formats being used by this malware. Another similar one starts
from a DWORD 0x0EF1FAB9 and is used to further load components. Both of them have an
analogical structure that comes from slightly modified PE format:

Header:

WORD magic; // 'NE'
 WORD pe_offset;

 WORD machine_id;

12/43

The conversion back to PE format is trivial: It is enough to add the erased magic numbers:
MZ and PE, and to move displaced fields to their original offsets. The tool that automatically
does the mentioned conversion is available here.

In the previous edition, the parts of Hidden Bee with analogical functionality were delivered in
a different, more complex proprietary format than the one currently being analyzed.

Second stage: a downloader (in NE format)

As a result of the conversion, we get the following PE:
(fddfd292eaf33a490224ebe5371d3275). This module is a downloader of the next stage. The
interesting thing is that the subsystem of this module is set as a driver, however, it is not
loaded like a typical driver. The custom loader loads it into a user space just like any typical
userland component.

The function at the module’s Entry Point is called with three parameters. The first is a path of
the main module. Then, the parameters from the configuration are passed. Example:

0012FE9C 00601A34 UNICODE "\"C:\Users\tester\Desktop\new_bee.exe\""
 0012FEA0 00407104 UNICODE "NAPCUYWKOxywEgrO"

 0012FEA4 00407004 UNICODE "118.41.45.124:9000"

Calling the Entry Point of the manually-loaded NE module
The execution of the module can take one of the two paths. The first one is meant for adding
persistence: The module installs itself as a service.

If the module detects that it is already running as a service, it takes the second path. In such
a case, it proceeds to download the next module from the server. The next module is packed
as as Cabinet file.

https://github.com/hasherezade/bee_parser/tree/master/bee_lvl2_converter
https://blog.malwarebytes.com/threat-analysis/2018/08/reversing-malware-in-a-custom-format-hidden-bee-elements/
https://www.virustotal.com/#/file/3a1c218de4d653dff06a68cfc12b958766dcb869450c9dd06928be819beb365c/details

13/43

The

downloaded Cabinet file is being passed to the unpacking function
It is first unpacked into a file named “core.sdb”. The unpacked module is in a customized
format based on PE. This time, the format has a different signature: “NS” and it is different
from the aforementioned “NE” format (detailed explanation will be given further).

It is loaded by the proprietary loader.

14/43

The loader enumerates all the executables in a directory: %Systemroot%\Microsoft.NET\
and selects the ones with the compatible bitness (in the analyzed case it was selecting 32bit
PEs). Once it finds a suitable PE, it runs it and injects the payload there. The injected code is
run by adding its entry point to APC queue.

Hidden Bee component injecting the next stage (core.sdb) into a new process
In case it failed to find the suitable executable in that directory, it performs the injection into
dllhost.exe instead.

Unscrambling the NS format

As mentioned before, the core.sdb is in yet another format named NS. It is also a customized
PE, however, this time the conversion is more complex than the NE format because more
structures are customized. It looks like a next step in the evolution of the NE format.

Header of the NS format

https://blog.malwarebytes.com/wp-content/uploads/2019/05/core_sdb.png

15/43

We can see that the changes in the PE headers are bigger and more lossy—only minimalist
information is maintained. Only few Data Directories are left. Also the sections table is
shrunk: Each section header contains only four out of nine fields that are in the original PE.

Additionally, the format allows to pass a runtime argument from the loader to the payload via
header: The pointer is saved into an additional field (marked “Filled Data” on the picture).

Not only is the PE header shrunk. Similar customization is done on the Import Table:

Customized part of the NS format’s import table
This custom format can also be converted back to the PE format with the help of a dedicated
converter, available here.

Third stage: core.sdb

The core.sdb module converted to PE format is available here:
a17645fac4bcb5253f36a654ea369bf9.

The interesting part is that the external loader does not complete the full loading process of
the module. It only copies the sections. But the rest of the module loading, such as applying
relocations and filling imports, is done internally in the core.sdb.

The loading function is just at the Entry Point of

core.sdb
The previous component was supposed to pass to the core.sdb an additional buffer with the
data about the installed service: the name and the path. During its execution, core.sdb will
look up this data. If found, it will delete the previously-created service, and the initial file that
started the infection:

https://blog.malwarebytes.com/wp-content/uploads/2019/05/custom_import_table1.png
https://github.com/hasherezade/bee_parser/tree/master/bee_lvl2_converter
https://malshare.com/sample.php?action=detail&hash=a17645fac4bcb5253f36a654ea369bf9

16/43

Removing the initial

service
Getting rid of the previous persistence method suggests that it will be replaced by some
different technique. Knowing previous editions of Hidden Bee, we can suspect that it may be
a bootkit.

After locking the mutex in a format Global\SC_{%08lx-%04x-%04x-%02x%02x-
%02x%02x%02x%02x%02x%02x}, the module proceeds to download another component.
But before it goes to download, first, a few things are checked.

17/43

Checks done before download of the next module
First of all, there is a defensive check if any of the known debuggers or sniffers are running.
If so, the function quits.

The blacklist
Also, there is a check if the application can open a file ‘\??\NPF-{0179AC45-C226-48e3-
A205-DCA79C824051}’.

If all the checks pass, the function proceeds and queries the following URL, where GET
variables contain the system fingerprint:

sltp://bbs.favcom.space:1108/setup.bin?
id=999&sid=0&sz=a7854b960e59efdaa670520bb9602f87&os=65542&ar=0

18/43

The hash (sz=) is an MD5 generated from VolumeIDs. Then follows the (os=) identifying
version of the operating system, and the identifier of the architecture (ar=), where 0 means
32 bit, 1 means 64bit.

The content downloaded from this URL (starting from a magic DWORD 0xFEEDFACE –
79e851622ac5298198c04034465017c0) contains the encrypted package (in !rbx format),
and a shellcode that will be used to unpack it. The shellcode is loaded to the current process
and then executed.

The

‘FEEDFACE’ module contains the shellcode to be loaded
The shellcode’s start function uses three parameters: pointer to the functions in the previous
module (core sdb), pointer to the buffer with encrypted data, size of the encrypted data.

The loader

calling the shellcode

Fourth stage: the shellcode decrypting !rbx

The beginning of the loaded shellcode:

https://malshare.com/sample.php?action=detail&hash=79e851622ac5298198c04034465017c0

19/43

The shellcode does not fill any imports by itself. Instead, it fully relies on the functions from
core.sdb module, to which it passes the pointer. It makes use of the following function:
malloc, mecpy, memfree, VirtualAlloc.

Example:

calling malloc via core.sdb
Its role is to reveal another part. It comes in an encrypted package starting from a marker
!rbx. The decryption function is called just at the beginning:

Calling the decrypting function (at

Entry Point of the shellcode)
First, the function checks the !rbx marker and the checksum at the beginning of the
encrypted buffer:

20/43

Checking

marker and then checksum
It is decrypted with the help of RC4 algorithm, and then decompressed.

After decryption, the markers at the beginning of the buffer are checked. The expected
format must start from predefined magic DWORDs: 0xCAFEBABE,0, 0xBABECAFE:

21/43

The !rbx package format

The !rbx is also a custom format with a consistent structure.

DWORD magic; // "!rbx"
DWORD checksum;
DWORD content_size;
BYTE rc4_key[16];
DWORD out_size;
BYTE content[];

The custom file system (BABECAFE)

22/43

The full decrypted content has a consistent structure, reminiscent of a file system. According
to the previous reports, earlier versions of Hidden Bee used to adapt the ROMS filesystem,
adding few modifications. They called their customized version “Mixed ROM FS”. Now it
seems that their customization process has progressed. Also the keywords suggesting
ROMFS cannot be found. The headers starts from the markers in the form of three
DWORDS: { 0xCAFEBABE, 0, 0xBABECAFE }.

The layout of BABECAFE FS:

https://malshare.com/sample.php?action=detail&hash=a93c90a210aed61255dc34102335af8d

23/43

We notice that it differs at many points from ROM FS, from which it evolved.

The structure contains the following files:

/bin/amd64/coredll.bin
/bin/i386/coredll.bin
/bin/i386/preload
/bin/amd64/preload
/pkg/sputnik.spk
/installer/com_x86.dll (6177bc527853fe0f648efd17534dd28b)
/installer/com_x64.dll
/pkg/plugins.spk

The files /pkg/sputnik.spk and /pkg/plugins.spk are both compressed packages in a custom
!rsi format.

Beginning of the !rsi package in the BABECAFE FS
Each of the spk packages contain another custom filesystem, identified by the keyword
SPUTNIK (possibly the extension ‘spk’ is derived from the SPUTNIK format). They will be
unpacked during the next steps of the execution.

Unpacked plugins.spk: 4c01273fb77550132c42737912cbeb36
Unpacked sputnik.spk: 36f3247dad5ec73ed49c83e04b120523.

Selecting and running modules

Some executables stored in the filesystem are in two version: 32 and 64 bit. Only the
modules relevant to the current architecture are loaded. So, in the analyzed case, the loader
chooses first: /bin/i386/preload (shellcode) and /bin/i386/coredll.bin (a module in NS custom
format). The names are hardcoded in the loader within the loading shellcode:

http://lxr.linux.no/#linux+v4.15.14/Documentation/filesystems/romfs.txt
https://www.virustotal.com/#/file/04d62f3c9ab18370184a5aad9717434b5a8f71abadb92fcbc00b04d7dfa49a7d/details
https://malshare.com/sample.php?action=detail&hash=4c01273fb77550132c42737912cbeb36
https://malshare.com/sample.php?action=detail&hash=36f3247dad5ec73ed49c83e04b120523

24/43

Searching the modules in the custom file system
After the proper elements are fetched (preload and coredll.bin), they are copied together into
a newly-allocated memory area. The coredll.bin is copied just after preload. Then, the
preload module is called:

Redirecting execution to

preload
The preload is position-independent, and its execution starts from the beginning of the page.

25/43

Entering

‘preload’
The only role of this shellcode is to prepare and run the coredll.bin. So, it contains a custom
loader for the NS format that allocates another memory area and loads the NS file there.

Fifth stage: preload and coredll

After loading coredll, preload redirects the execution there.

coredll at its

Entry Point
The coredll patches a function inside the NTDLL— KiUserExceptionDispatcher—redirecting
one of the inner calls to its own code:

26/43

A patch inside KiUserExceptionDispatcher
Depending on which process the coredll was injected into, it can take one of a few paths of
execution.

If it is running for the first time, it will try to inject itself again—this time into rundll32. For the
purpose of the injection, it will again unpack the original !rbx package and use its original
copy stored there.

Entering the unpacking function

Inside the unpacking function: checking the

magic “!rbx”
Then it will choose the modules depending on the bitness of the rundll32:

27/43

It selects the pair of modules (preload/coredll.bin) appropriate for the architecture, either from
the directory amd64 or from i386:

If the injection failed, it makes another attempt, this time trying to inject into dllhost:

28/43

Each time it uses the same, hardcoded parameter (/Processid: {...}) that is passed to
the created process:

The thread context of the target process is modified, and then the thread is resumed, running
the injected content:

Now, when we look inside the memory of rundll32, we can find the preload and coredll being
mapped:

29/43

Inside the injected part, the execution follows a similar path: preload loads the coredll and
redirects to its Entry Point. But then, another path of execution is taken.

The parameter passed to the coredll decides which round of execution it is. On the second
round, another injection is made: this time to dllhost.exe. And finally, it proceeds to the final
round, when other modules are unpacked from the BABECAFE filesystem.

30/43

Parameter deciding which path to take
The unpacking function first searches by name for two more modules: sputnik.spk and
plugins.spk. They are both in the mysterious !rsi format, which reminds us of !rbx, but has a
slightly different structure.

31/43

Entering the function unpacking the first !rsi package:

The function unpacking the !rsi format is structured similarly to the !rbx unpacking. It also
starts from checking the keyword:

32/43

Checking “!rsi”

keyword
As mentioned before, both !rsi packages are used to store filesystems marked with the
keyword “SPUTNIK”. It is another custom filesystem invented by the Hidden Bee authors that
contain additional modules.

The “SPUTNIK” keyword is checked after the

module is unpacked
Unpacking the sputnik.spk resulted in getting the following SPUTNIK module:
455738924b7665e1c15e30cf73c9c377

It is worth noting that the unpacked filesystem has inside of it four executables: two pairs
consisting of NS and PE, appropriately 32 and 64 bit. In the currently-analyzed setup, 32 bit
versions are deployed.

The NS module will be the next to be run. First, it is loaded by the current executable, and
then the execution is redirected there. Interestingly, both !rsi modules are passed as
arguments to the entry point of the new module. (They will be used later to retrieve more

https://malshare.com/sample.php?action=detail&hash=455738924b7665e1c15e30cf73c9c377

33/43

components.)

Calling the

newly-loaded NS executable

Sixth stage: mpsi.dll (unpacked from SPUTNIK)

Entering into the NS module starts another layer of the malware:

Entry Point of the NS module: the !rsi modules, perpended with their size, are passed
The analyzed module, converted to PE is available here:
537523ee256824e371d0bc16298b3849

https://malshare.com/sample.php?action=detail&hash=455738924b7665e1c15e30cf73c9c377

34/43

This module is responsible for loading plugins. It will also create a named pipe through which
it is will communicate with other modules. It sets up the commands that are going to be
executed on demand.

This is how the beginning of the main function looks:

Like in previous cases, it starts from finishing to load itself (relocations and imports). Then, it
patches the function in NTDLL. This is a common prolog in many HiddenBee modules.

Then, we have another phase of loading elements from the supplied packages. The path that
will be taken depends on the runtime arguments. If the function received both !rsi packages,
it will start by parsing one of them, retrieving loading submodules.

First, the SPUTNIK filesystem must be unpacked from the !rsi package:

35/43

After being unpacked, it is mounted. The filesystems are mounted internally in the memory:
A global structure is filled with pointers to appropriate elements of the filesystem.

36/43

At the beginning, we can see the list of the plugins that are going to be loaded:
cloudcompute.api, deepfreeze.api, and netscan.api. Those names are being appended to
the root path of the modules.

Each module is fetched from the mounted filesystem and loaded:

https://blog.malwarebytes.com/wp-content/uploads/2019/05/retrieve_plugins.png
https://malshare.com/sample.php?action=detail&hash=62a44aace15cb728f1f5f96a1c2a4a37
https://malshare.com/sample.php?action=detail&hash=95a2387f103608f6eebcc64a01aefece
https://malshare.com/sample.php?action=detail&hash=4b2d33b818f53377620ac159e9f8a613

37/43

Calling the function to load the plugin
Consecutive modules are loaded one after another in the same executable memory area.
After the module is loaded, its header is erased. It is a common technique used in order to
make dumping of the payload from the memory more difficult.

The cloudcompute.api is a plugin that will load the miner. More about the plugins will be
explained in the next section of this post.

Reading its code, we find out that the SPUTNIK modules are filesystems that can be
mounted and dismounted on demand. This module will be communicating with others with
the help of a named pipe. It will be receiving commands and executing appropriate handlers.

Initialization of the commands’ parser:

The function setting up the commands: For each name, a handler is registered. (This is
probably the Lua dispatcher, first described here.)

https://www.freebuf.com/column/175106.html

38/43

When plugins are run, we can see some additional child processes created by the process
running the coredll (in the analyzed case it is inside rundll32):

Also it triggers a firewall alert, which means the malware requested to open some ports
(triggered by netscan.api plugin):

39/43

We can see that it started listening on one TCP and one UDP port:

The plugins

As mentioned in the previous section, the SPUTNIK filesystem contains three plugins:
cloudcompute.api, deepfreeze.api, and netscan.api. If we convert them to PE, we can see
that all of them import an unknown DLL: mpsi.dll. When we see the filled import table, we
find out that the addresses have been filled redirecting to the functions from the previous NS
module:

https://malshare.com/sample.php?action=detail&hash=62a44aace15cb728f1f5f96a1c2a4a37
https://malshare.com/sample.php?action=detail&hash=95a2387f103608f6eebcc64a01aefece
https://malshare.com/sample.php?action=detail&hash=4b2d33b818f53377620ac159e9f8a613

40/43

So we can conclude that the previous element is the mpsi.dll. Although its export table has
been destroyed, the functions are fetched by the custom loader and filled in the import tables
of the loaded plugins.

First the cloudcompute.api is run.

This plugin retrieves from the filesystem a file named “/etc/ccmain.json” that contains the list
of URLs:

Those are addresses from which another set of modules is going to be downloaded:

["sstp://news.onetouchauthentication.online:443/mlf_plug.zip.sig","sstp://news.onetouc

41/43

It also retrieves another component from the SPUTNIK filesystem: /bin/i386/ccmain.bin. This
time, it is an executable in NE format (version converted to PE is available here:
367db629beedf528adaa021bdb7c12de)

This is the component that is injected into msdtc.exe.

The

HiddenBee module mapped into msdtc.exe
The configuration is also copied into the remote process and is used to retrieve an additional
package from the C&C:

https://malshare.com/sample.php?action=detail&hash=367db629beedf528adaa021bdb7c12de

42/43

This is the plugin responsible for downloading and deploying the Mellifera Miner: core
component of the Hidden Bee.

Next, the netscan.api loads module /bin/i386/kernelbase.bin (converted to PE:
d7516ad354a3be2299759cd21e161a04)

The miner in APT-style

https://malshare.com/sample.php?action=detail&hash=d7516ad354a3be2299759cd21e161a04

43/43

Hidden Bee is an eclectic malware. Although it is a commodity malware used for
cryptocurrency mining, its design reminds us of espionage platforms used by APTs. Going
through all its components is exhausting, but also fascinating. The authors are highly
professional, not only as individuals but also as a team, because the design is consistent in
all its complexity.

Appendix

https://github.com/hasherezade/hidden_bee_tools – helper tools for parsing and converting
Hidden Bee custom formats

https://www.bleepingcomputer.com/news/security/new-underminer-exploit-kit-discovered-
pushing-bootkits-and-coinminers/

Articles about the previous version (in Chinese):

Our first encounter with the Hidden Bee:

https://blog.malwarebytes.com/threat-analysis/2018/07/hidden-bee-miner-delivered-via-
improved-drive-by-download-toolkit/

https://github.com/hasherezade/hidden_bee_tools
https://www.bleepingcomputer.com/news/security/new-underminer-exploit-kit-discovered-pushing-bootkits-and-coinminers/
https://blog.malwarebytes.com/threat-analysis/2018/07/hidden-bee-miner-delivered-via-improved-drive-by-download-toolkit/

