
1/33

May 29, 2019

HiddenWasp Malware Stings Targeted Linux Systems
intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/

Written by Ignacio Sanmillan - 29 May 2019

Get Free Account

Join Now

Top Blogs

How to Write YARA Rules That Minimize False Positives

Generate Advanced YARA Rules Based on Code Reuse Incorporating YARA into daily
security operations can... Read more

Boost Your SOC Skills: How to Detect Good Apps Gone Bad

Threat actors have a wide range of tools and techniques they can use in cyber... Read more

https://www.intezer.com/blog-hiddenwasp-malware-targeting-linux-systems/
https://analyze.intezer.com/
https://www.intezer.com/blog/threat-hunting/yara-rules-minimize-false-positives/
https://www.intezer.com/blog/threat-hunting/yara-rules-minimize-false-positives/
https://www.intezer.com/blog/malware-analysis/how-to-detect-legitimate-apps-used-by-attackers/
https://www.intezer.com/blog/malware-analysis/how-to-detect-legitimate-apps-used-by-attackers/


2/33

TeamTNT Cryptomining Explosion 🧨

This post was originally published as a white paper in September 2021. Get the full... Read
more

Overview

• Intezer has discovered a new, sophisticated malware that we have named “HiddenWasp”,
targeting Linux systems.

• The malware is still active and has a zero-detection rate in all major anti-virus systems.

• Unlike common Linux malware, HiddenWasp is not focused on crypto-mining or DDoS
activity. It is a trojan purely used for targeted remote control.

• Evidence shows in high probability that the malware is used in targeted attacks for victims
who are already under the attacker’s control, or have gone through a heavy
reconnaissance.

• HiddenWasp authors have adopted a large amount of code from various publicly available
open-source malware, such as Mirai and the Azazel rootkit. In addition, there are some
similarities between this malware and other Chinese malware families, however the
attribution is made with low confidence.

• We have detailed our recommendations for preventing and responding to this threat.

1. Introduction

Although the Linux threat ecosystem is crowded with IoT DDoS botnets and crypto-mining
malware, it is not very common to spot trojans or backdoors in the wild.

Unlike Windows malware, Linux malware authors do not seem to invest too much effort
writing their implants. In an open-source ecosystem there is a high ratio of publicly available
code that can be copied and adapted by attackers.

In addition, Anti-Virus solutions for Linux tend to not be as resilient as in other platforms.
Therefore, threat actors targeting Linux systems are less concerned about implementing
excessive evasion techniques since even when reusing extensive amounts of code, threats
can relatively manage to stay under the radar.

Nevertheless, malware with strong evasion techniques do exist for the Linux platform.
There is also a high ratio of publicly available open-source malware that utilize strong
evasion techniques and can be easily adapted by attackers.

We believe this fact is alarming for the security community since many implants today have
very low detection rates, making these threats difficult to detect and respond to.

https://www.intezer.com/blog/malware-analysis/teamtnt-cryptomining-explosion/
https://www.intezer.com/blog/malware-analysis/teamtnt-cryptomining-explosion/
https://www.intezer.com/blog/linux/elf-malware-analysis-101-linux-threats-no-longer-an-afterthought/


3/33

We have discovered further undetected Linux malware that appear to be enforcing
advanced evasion techniques with the use of rootkits to leverage trojan-based implants.

In this blog we will present a technical analysis of each of the different components that
this new malware, HiddenWasp, is composed of. We will also highlight interesting code-
reuse connections that we have observed to several open-source malware.

The following images are screenshots from VirusTotal of the newer undetected malware
samples discovered:

2. Technical Analysis

When we came across these samples we noticed that the majority of their code was
unique:

https://analyze.intezer.com/#/analyses/2d35f5f3-5be7-4df8-b125-c08b76d17616


4/33

Similar to the recent Winnti Linux variants reported by Chronicle, the infrastructure of this
malware is composed of a user-mode rootkit, a trojan and an initial deployment script. We
will cover each of the three components in this post, analyzing them and their interactions
with one another.

2.1 Initial Deployment Script:

When we spotted these undetected files in VirusTotal it seemed that among the uploaded
artifacts there was a bash script along with a trojan implant binary.

We observed that these files were uploaded to VirusTotal using a path containing the name
of a Chinese-based forensics company known as Shen Zhou Wang Yun Information
Technology Co., Ltd.

Furthermore, the malware implants seem to be hosted in servers from a physical server
hosting company known as ThinkDream located in Hong Kong.

https://analyze.intezer.com/#/analyses/3379a0d7-2fd9-46b0-90f8-86200a67c0fd
https://medium.com/chronicle-blog/winnti-more-than-just-windows-and-gates-e4f03436031a
http://www.china-forensic.com/ccfc/en/


5/33

Among the uploaded files, we observed that one of the files was a bash script meant to
deploy the malware itself into a given compromised system, although it appears to be for
testing purposes:



6/33

Thanks to this file we were able to download further artifacts not present in VirusTotal
related to this campaign. This script will start by defining a set of variables that would be
used throughout the script.

Among these variables we can spot the credentials of a user named ‘sftp’, including its
hardcoded password. This user seems to be created as a means to provide initial
persistence to the compromised system:

Furthermore, after the system’s user account has been created, the script proceeds to clean
the system as a means to update older variants if the system was already compromised:



7/33

The script will then proceed to download a tar compressed archive from a download server
according to the architecture of the compromised system. This tarball will contain all of the
components from the malware, containing the rootkit, the trojan and an initial deployment
script:



8/33

After malware components have been installed, the script will then proceed to execute the
trojan:



9/33

We can see that the main trojan binary is executed, the rootkit is added to LD_PRELOAD
path and another series of environment variables are set such as the ‘I_AM_HIDDEN’. We
will cover throughout this post what the role of this environment variable is. To finalize, the
script attempts to install reboot persistence for the trojan binary by adding it to /etc/rc.local.

Within this script we were able to observe that the main implants were downloaded in the
form of tarballs. As previously mentioned, each tarball contains the main trojan, the rootkit
and a deployment script for x86 and x86_64 builds accordingly.

The deployment script has interesting insights of further features that the malware
implements, such as the introduction of a new environment variable ‘HIDE_THIS_SHELL’:



10/33

We found some of the environment variables used in a open-source rootkit known as
Azazel.

It seems that this actor changed the default environment variable from Azazel, that one
being HIDE_THIS_SHELL for I_AM_HIDDEN. We have based this conclusion on the fact
that the environment variable HIDE_THIS_SHELL was not used throughout the rest of the
components of the malware and it seems to be residual remains from Azazel original code.

The majority of the code from the rootkit implants involved in this malware infrastructure are
noticeably different from the original Azazel project. Winnti Linux variants are also known to
have reused code from this open-source project.

2.2 The Rootkit:

The rootkit is a user-space based rootkit enforced via LD_PRELOAD linux mechanism.

It is delivered in the form of an ET_DYN stripped ELF binary.

This shared object has an DT_INIT dynamic entry. The value held by this entry is an
address that will be executed once the shared object gets loaded by a given process:

https://github.com/chokepoint/azazel/search?q=HIDE_THIS_SHELL&unscoped_q=HIDE_THIS_SHELL


11/33

Within this function we can see that eventually control flow falls into a function in charge to
resolve a set of dynamic imports, which are the functions it will later hook, alongside with
decoding a series of strings needed for the rootkit operations.



12/33

We can see that for each string it allocates a new dynamic buffer, it copies the string to it to
then decode it.

It seems that the implementation for dynamic import resolution slightly varies in comparison
to the one used in Azazel rootkit.

When we wrote the script to simulate the cipher that implements the string decoding
function we observed the following algorithm:

https://github.com/chokepoint/azazel/blob/master/config.py


13/33

We recognized that a similar algorithm to the one above was used in the past by Mirai,
implying that authors behind this rootkit may have ported and modified some code from
Mirai.

After the rootkit main object has been loaded into the address space of a given process and
has decrypted its strings, it will export the functions that are intended to be hooked. We can
see these exports to be the following:

https://github.com/jgamblin/Mirai-Source-Code/blob/master/mirai/bot/scanner.c#L963


14/33

For every given export, the rootkit will hook and implement a specific operation accordingly,
although they all have a similar layout. Before the original hooked function is called, it is
checked whether the environment variable ‘I_AM_HIDDEN’ is set:



15/33

We can see an example of how the rootkit hooks the function fopen in the following
screenshot:



16/33

We have observed that after checking whether the ‘I_AM_HIDDEN’ environment variable is
set, it then runs a function to hide all the rootkits’ and trojans’ artifacts. In addition,
specifically to the fopen function it will also check whether the file to open is ‘/proc/net/tcp’
and if it is it will attempt to hide the malware’s connection to the cnc by scanning every entry
for the destination or source ports used to communicate with the cnc, in this case 61061.
This is also the default port in Azazel rootkit.

https://github.com/chokepoint/azazel/blob/master/config.py


17/33

The rootkit primarily implements artifact hiding mechanisms as well as tcp connection hiding
as previously mentioned. Overall functionality of the rootkit can be illustrated in the following
diagram:



18/33

2.3 The Trojan:

The trojan comes in the form of a statically linked ELF binary linked with stdlibc++. We
noticed that the trojan has code connections with ChinaZ’s Elknot implant in regards to
some common MD5 implementation in one of the statically linked libraries it was linked with:



19/33

In addition, we also see a high rate of shared strings with other known ChinaZ malware,
reinforcing the possibility that actors behind HiddenWasp may have integrated and modified
some MD5 implementation from Elknot that could have been shared in Chinese hacking
forums:



20/33

When we analyze the main we noticed that the first action the trojan takes is to retrieve its
configuration:



21/33

The malware configuration is appended at the end of the file and has the following
structure:



22/33

The malware will try to load itself from the disk and parse this blob to then retrieve the static
encrypted configuration.



23/33

Once encryption configuration has been successfully retrieved the configuration will be
decoded and then parsed as json.

The cipher used to encode and decode the configuration is the following:



24/33

This cipher seems to be an RC4 alike algorithm with an already computed PRGA generated
key-stream. It is important to note that this same cipher is used later on in the network
communication protocol between trojan clients and their CNCs.

After the configuration is decoded the following json will be retrieved:

Moreover, if the file is running as root, the malware will attempt to change the default
location of the dynamic linker’s LD_PRELOAD path. This location is usually at
/etc/ld.so.preload, however there is always a possibility to patch the dynamic linker binary to
change this path:



25/33

Patch_ld function will scan for any existent /lib paths. The scanned paths are the following:

The malware will attempt to find the dynamic linker binary within these paths. The dynamic
linker filename is usually prefixed with ld-<version number>.



26/33

Once the dynamic linker is located, the malware will find the offset where the
/etc/ld.so.preload string is located within the binary and will overwrite it with the path of the
new target preload path, that one being /sbin/.ifup-local.

To achieve this patching it will execute the following formatted string by using the xxd hex
editor utility by previously having encoded the path of the rootkit in hex:

Once it has changed the default LD_PRELOAD path from the dynamic linker it will deploy a
thread to enforce that the rootkit is successfully installed using the new LD_PRELOAD path.
In addition, the trojan will communicate with the rootkit via the environment variable



27/33

‘I_AM_HIDDEN’ to serialize the trojan’s session for the rootkit to apply evasion mechanisms
on any other sessions.

After seeing the rootkit’s functionality, we can understand that the rootkit and trojan work
together in order to help each other to remain persistent in the system, having the rootkit
attempting to hide the trojan and the trojan enforcing the rootkit to remain operational. The
following diagram illustrates this relationship:



28/33

Continuing with the execution flow of the trojan, a series of functions are executed to
enforce evasion of some artifacts:

These artifacts are the following:

By performing some OSINT regarding these artifact names, we found that they belong to a
Chinese open-source rootkit for Linux known as Adore-ng hosted in GitHub:

https://github.com/yaoyumeng/adore-ng


29/33

The fact that these artifacts are being searched for suggests that potentially targeted Linux
systems by these implants may have already been compromised with some variant of this
open-source rootkit as an additional artifact in this malware’s infrastructure. Although those
paths are being searched for in order to hide their presence in the system, it is important to
note that none of the analyzed artifacts related to this malware are installed in such paths.

This finding may imply that the target systems this malware is aiming to intrude may be
already known compromised targets by the same group or a third party that may be
collaborating with the same end goal of this particular campaign.

Moreover, the trojan communicated with a simple network protocol over TCP. We can see
that when connection is established to the Master or Stand-By servers there is a handshake
mechanism involved in order to identify the client.



30/33

With the help of this function we where able to understand the structure of the
communication protocol employed. We can illustrate the structure of this communication
protocol by looking at a pcap of the initial handshake between the server and client:



31/33

We noticed while analyzing this protocol that the Reserved and Method fields are always
constant, those being 0 and 1 accordingly. The cipher table offset represents the offset in
the hardcoded key-stream that the encrypted payload was encoded with. The following is
the fixed keystream this field makes reference to:

After decrypting the traffic and analyzing some of the network related functions of the trojan,
we noticed that the communication protocol is also implemented in json format. To show
this, the following image is the decrypted handshake packets between the CNC and the
trojan:

After the handshake is completed, the trojan will proceed to handle CNC requests:



32/33

Depending on the given requests the malware will perform different operations accordingly.
An overview of the trojan’s functionalities performed by request handling are shown below:

2.3. Prevention and Response

Prevention: Block Command-and-Control IP addresses detailed in the IOCs section.

Response: We have provided a YARA rule intended to be run against in-memory artifacts
in order to be able to detect these implants.

In addition, in order to check if your system is infected, you can search for “ld.so” files — if
any of the files do not contain the string ‘/etc/ld.so.preload’, your system may be
compromised. This is because the trojan implant will attempt to patch instances of ld.so in
order to enforce the LD_PRELOAD mechanism from arbitrary locations.

4. Summary

We analyzed every component of HiddenWasp explaining how the rootkit and trojan
implants work in parallel with each other in order to enforce persistence in the system.

https://github.com/intezer/yara-rules/blob/master/HiddenWasp.yar


33/33

We have also covered how the different components of HiddenWasp have adapted pieces
of code from various open-source projects. Nevertheless, these implants managed to
remain undetected.

Linux malware may introduce new challenges for the security community that we have not
yet seen in other platforms. The fact that this malware manages to stay under the radar
should be a wake up call for the security industry to allocate greater efforts or resources to
detect these threats.

Linux malware will continue to become more complex over time and currently even
common threats do not have high detection rates, while more sophisticated threats have
even lower visibility.

IOCs

 
103.206.123[.]13
103.206.122[.]245
http://103.206.123[.]13:8080/system.tar.gz
http://103.206.123[.]13:8080/configUpdate.tar.gz
http://103.206.123[.]13:8080/configUpdate-32.tar.gz
e9e2e84ed423bfc8e82eb434cede5c9568ab44e7af410a85e5d5eb24b1e622e3
f321685342fa373c33eb9479176a086a1c56c90a1826a0aef3450809ffc01e5d
d66bbbccd19587e67632585d0ac944e34e4d5fa2b9f3bb3f900f517c7bbf518b
0fe1248ecab199bee383cef69f2de77d33b269ad1664127b366a4e745b1199c8
2ea291aeb0905c31716fe5e39ff111724a3c461e3029830d2bfa77c1b3656fc0
d596acc70426a16760a2b2cc78ca2cc65c5a23bb79316627c0b2e16489bf86c0
609bbf4ccc2cb0fcbe0d5891eea7d97a05a0b29431c468bf3badd83fc4414578
8e3b92e49447a67ed32b3afadbc24c51975ff22acbd0cf8090b078c0a4a7b53d
f38ab11c28e944536e00ca14954df5f4d08c1222811fef49baded5009bbbc9a2
8914fd1cfade5059e626be90f18972ec963bbed75101c7fbf4a88a6da2bc671b

Ignacio Sanmillan
Nacho is a security researcher specializing in reverse engineering and malware analysis.
Nacho plays a key role in Intezer\'s malware hunting and investigation operations, analyzing
and documenting new undetected threats. Some of his latest research involves detecting
new Linux malware and finding links between different threat actors. Nacho is an adept ELF
researcher, having written numerous papers and conducting projects implementing state-of-
the-art obfuscation and anti-analysis techniques in the ELF file format.


