
1/7

norfolk May 7, 2019

“Filesnfer” Tool (C#, Python)
norfolkinfosec.com/filesnfer-tool-c-python/

On 6 May 2019, Symantec published reporting on a series of tools possibly used by APT3
(or a broader China-based espionage apparatus), including a previously publicly unreported
backdoor dubbed “Filesnfer.”* Several hashes were made available for this malware,
including one for a variant written in C++, one for a variant written in Python (compiled via
Py2Exe), and one purportedly written in PowerShell.

The hash for the PowerShell file is unavailable on VirusTotal; however, analysis of the
Python code can be used to identify a different file uploaded to the Hybrid Analysis platform
that is delivered via a PowerShell loader, written in C#, and contains significant code-level
and unique-string overlaps with the Python variant. This file was also not made available for
download on the platform, but the strings for the loaded C# code in this sandbox run are
enough to find an additional sample of the entire decompiled code on VirusTotal.

This blog contains a brief technical overview of each of these variants, and the pivoting
method described. If you’re just here for the C# (“PowerShell”) hash:
8de3b2eac3fa25e2cf9042d1b952f0d9. For analysis of these files, keep reading.

* (Symantec notes that the connection between this backdoor and APT3 was provided to
them through collaboration with another vendor).
Py2Exe Filesnfer

MD5: a3932533efc04ac3fe89fb5b3d60128a
 SHA1: 2a01d103b2bb66cba2cdb201f09933fee2055db3

 SHA256: 3dbe8700ecd27b3dc39643b95b187ccfd44318fc88c5e6ee6acf3a07cdaf377e

As Symantec notes, this file is a compiled Python executable built using Py2Exe. The
python-exe-unpacker available on Github can be used to partially decompile the code,
although it did encounter an error during this analysis that prevented a full dump from being
created:

https://norfolkinfosec.com/filesnfer-tool-c-python/
https://www.symantec.com/blogs/threat-intelligence/buckeye-windows-zero-day-exploit
https://github.com/countercept/python-exe-unpacker


2/7

Decompilation error of the Py2Exe-

compiled file

Despite this limitation, it’s still possible to infer some of the functionality and, as described
above, identify a complete dump of the C# version through additional pivoting. The Python
code defines several classes including:

– DirItem
 – TransArgs

 – LoadCert
 – Monitor

 – Timer

In addition, the following functions are defined:

– print_log(xtype, pstr, btime=True)
 – Recv(sock, size, timeout=3, bLoop=True)

 – SendPacket(sock, buf)
 – RecvPacket(sock, size=0)

 – GenFileName(strFile)
 – UnitConv(fSize)

 – PutFileData(pSocket, sourceFile, Length, types=0, lLen=0, Speeds=10485760, bZip=True)
 – GetFileData(gSocket, destFile, Length, types, lLen, bZip=True)

 – SendDirList(sock, filepath)
 – ServerLoopPro

 – ServerX(host, port)
 – handler(signum, frame)

Of these, ServerLoopPro failed to decompile. The rest of the available code can be used to
determine the intent and functionality of this section, however. On execution, the “main” block
of the code defines variables that call the Monitor, Timer, and LoadCert classes, which set a
backconnect Boolean to “True,” initiates a “timer” interval, and defines a certificate and key
respectively. 

 



3/7

“Main” initiating the Monitor and Timer classes

The malware then performs a series of checks on any supplied parameters to make sure that
they are properly formatted. The code then calls the “ServerX” function if a host and port
have been specified.

ServerX and ServerLoopPro

The ServerX function operates as the second “parent” routine within the decompiled code.
ServerX will read a specified host and port and attempt to open a socket connection to this
location (using the certificate and key defined earlier). From here, it creates a thread for the
ServerLoopPro function.

ServerLoopPro did not properly decompile during this analysis, but the code provided offers
insight into the functionality. The code references several “orders” that are compared to
integer constants. If these conditions are not met, the code jumps to a different location,
often performing a similar comparison against a different value. In addition, there are several
references to the functions defined above, such as PutFileData and GetFileData:

 



4/7

References to “PutFileData”

and “Order”
A likely inferences is that these functions are part of a command structure contained within
the ServerLoopPro routine. Thus, analyzing these functions lends insight into the likely
commands available to the attackers. PutFileData and GetFileData read and write content to
and from the infected device. SendDirList enumerates the contents of a specified directory
back to the attacker:

Snipper of “SendDirList”
PowerShell/C# Filesnfer

MD5: 8de3b2eac3fa25e2cf9042d1b952f0d9
 SHA1: 23b1c6b81fd7d4d6ea0bc81109ce886a45967180

 SHA256: 6972ba198ed0d30de9f66be5777ecdba2d657078f138325ee6db225c20b29e6e



5/7

As noted above, the hash Symantec provided for the “PowerShell” version of this tool is not
available on VirusTotal; however, searching for the unique function strings ServerLoopPro
and ServerX leads to a Hybrid Analysis sandbox report containing a likely variant.

Pivoting results from unique strings in

Python file
Although the file is not available for download, analysis of the strings in memory suggests an
encrypted payload delivered via a PowerShell file (that also opens a firewall exception). In
addition, the malware launches “csc.exe,” the legitimate Microsoft C# compiler, and appears
to compile and run a file with this tool. Analysis of the C# code in the sandbox report reveals
the similar function names as well as the suspected “order” commands:

Encrypted contents of the PowerShell file
 

Identical function names within the C# code as well as “order” references



6/7

A VirusTotal content search on these unique strings reveals a nearly identical C# file
(8de3b2eac3fa25e2cf9042d1b952f0d9). Much like the Python variant, the C# variant defines
several similar structures and classes at the start:

Class and structure definitions within

the C# variant of Filesnfer
 In some cases, the code overlaps are almost identical:

Directory listing function in Python variant (left) compared to C# variant (right)
 



7/7

As a whole, the C# variant functions in largely the same fashion, with some slight
differences. The “Main” routine only requires a listening port (in this case, port 47000) to pass
to ServerX (interestingly, the entire file is also held within a class named “xserver”). ServerX
can allow the malware to act as a proxy in addition to calling ServerLoopPro; in turn,
ServerLoopPro can receive “order” (just as inferred in the Python sample). Several of these
orders are commented by the malware author, and include the following (largely self-
explanatory) options:

– list
– download
– upload
– del
– exec
– read interval
– set interval
– change dir
– process list

Example of command structure within the C# variant
Concluding Thoughts

Symantec’s article notes that the Filesnfer backdoor was observed by a undisclosed
additional vendor, and that corroborating analysis tying it to the APT3 threat actor is
unavailable at this time; as such, this blog post is only intended to highlight the functionality
of this backdoor (and identify a publicly available variant of the C#/PowerShell version).
Regardless of the operator, the backdoor is capable of providing several basic but important
capabilities, including file transfers, command execution, and basic reconnaissance.


