Dissecting Emotet’s network communication protocol

@ intOxcc.svbtle.com/dissecting-emotet-s-network-communication-protocol

April 22, 2019

_’_r"/

L e ;
Request Packet format

Communication protocol for any malware lies at the core of its functionality . It is the
essential way for any malware to communicate and receive further commands . Emotet has
a complex communication format .

Its peculiarities are the way the protocol is built and sent across the network . Knowing
internal details of its communication format is essential to keep tabs on it . In this post we are
going to analyze Emotet communication format .

we will be skipping the unpacking and reconstruction part , as it is irrelevant to this topic of
discussion .

In this post , we will be specifically looking for areas of interest in the binary , there will be
some parts that are analyzed preemptively .

An unpacked emotet sample has around ~100 functions , as populated by IDA . Going
through each of them to look for communication subroutines would be “A short in the dark” .
The easiest way would be to look for network API calls and xrefs would sort out most of the
dirty work for us

1/10

https://int0xcc.svbtle.com/dissecting-emotet-s-network-communication-protocol
https://svbtleusercontent.com/8W23UpkDJf2KpMcM2pxB5L0xspap.png

Ca - U LA

ta: IDCI-'-]LM]BGI ; HINTERNET stdecall InternethnnectH{HIHTERNET hInternet, LPCWSTR lpszServ

ta:00412c80 InternetConnectW dd [N

ta:0041ACE4
ta:0041ACES
ta:0041ACEG
ta:0041ACR7T
ta:0041ACESE

r6EEEEEEEEER

¥refs to InternetConnectW
1AC Direction Typ Address Text

E Up r sub_401380+3B call InternetConnectW
ta:0041AC LPVOI
ta:0041A0 Help Search Cancel “
ta:0041AC Line1of1
ta:0041ACSH db o
ta:0041AC99 db o
ta:0041AC9A db 0
ta:0041AC9B db 0

Luckily in emotet., there is only one xref to this API call , which perhaps would be the
subroutine where the communication to c2 server happens . This subroutine receives an
encrypted and compressed packet with parameters like c2 server, port and sends it out .
Xrefing back few subroutines would land us to the place where the packet is formulated . For
comprehension , let’'s name this subroutine as ConnectAndSend

2/10

https://svbtleusercontent.com/dEwHmD7Z3h28VjAoBMEFBh0xspap.png

Tracking back xfrefs , we finally reach to the subroutine where the packet is generated . And
, based on API calls and variables used , we can easily name few local variables and

subroutines used , for example Botid, crc32, etc

Based on how stack variable are set , we get an idea that a struct is formulated . The

definition of the structure would be as following

push ebp

mow ebp, esp

sub esp, 190h

push esi

push edi

call GetTickCount

KoY edx, edx

mov [ebp+botID], offset aDesktopx6vd5ii ; "DESKTOPXEVASI
mov ecx, OEA&Qh

div ecx

mow eax, dword 41AFS0

push offset aDesktopx6v45ii ; "DESKTOPX6VAS5IIN T761FDS00™
mow [ebp+Uptime], eax

lea esi, [edx+0CD140h]

call lstrlenh

mow [ebp+BotIdLen], eax

lea eax, [ebp+VersionInformation]

push eax ;i lpVersiconInformation

[mow [ebp+VersionInformation.dwOSVersionInfoSize], 11Ch
call RtlGetVersion

lea eax, [ebp+var T0]

push eax

call GetNativeSystemInfo

Mov e X eax, [ebp+var_76]

imul eax, 64h

add eax, [ebp+VersionInformation.dwMajorVersion]
lea ecx, [eax+eax*4]

mov eax, [ebp+VersionInformation.dwMinorVersion]
lea eax, [eax+ecx*2]

imul ecx, eax, 64h

movex eax, [ebp+var 70]

add ecx, eax

mow eax, large £s:30h

inlsa" [ebp+0OsVer], ecx

lea ecx, [ebp+ProcList]

MmO eax, [eax+1D4h]

Imow [ebp+terminalSessionID], eax

uiled iy eax, Crci2

mow [ebp+C3c32Hash], eax

call sub_4022E0

IN 7

|

=2

=

o

3/10

https://svbtleusercontent.com/3Qrq2uNWJp3YNGj9ahhwRp0xspap.png

struct Emotet_BotInfo

{
DWORD Uptime;

BYTE *BotID;

DWORD BotIDLen;

DWORD MajMinOSversion;
DWORD TermSessID;

DWORD Crc32HashBinary;
BYTE *ProclList;

DWORD ProlistLen;

DWORD PluginsInstalled[];
DWORD PluginsLen;

};

Uptime - Measure of uptime of the infection

BotID - Botnet Identifier (unique per infection)

BotIDLen - Length of BotID

MajMinOSversion *- Operating system identifier

*TerminalSessID - Terminal Session ID

Crc32HashBinary - CRC32 hash of binary

ProclList - List of running processes (comma segregated)

Pluginsinstalled - Array of DWORD consisting of MODID’s of plugins installed

This structure is passed on to a function that calculates total round size based on some bit
shifts . This shifting gives us a clue about the format of the packet . Lets look at these
patterns

4/10

push ebp

mov ebp, esp

sub esp, 1l4h

push ebx

mov ebx, ecx ; Param
mov edx, 1

push esi

push edi

mov [ebp+basePacket], ebx
mov eax, [ebx]

mov [ebp+NumPasses], edx
cmp eax, 127

jbe short Bytelen

=
I?ZL ecx, [ecx+0]
vy

P
loc _408C20:

shr eax,

inc edx

cmp eax, /Fh

ja short loc 408C20

Translating it to a code snippet would roughly be equivalent to

134303

[i]ale]afelefelals]sfolal1]ela]]2

n .
a|a]ofofifale 1fefofolafrfa ofof1]ef1]1]2

a|ofojofa]zle @lilefeleie]i]a olola|efi]1]1

134 133 23

towrite = number & Ox7f
number >>= 7

This code encodes an integer to LEB128 or Little Endian Base 128 format (VARINT). And
one of the serialized buffer formats that support it is the google protobuf format , this clue

again makes the reversing equation easy for us . Some old emotet analysis blogs support
our assumption .

5/10

https://svbtleusercontent.com/8WkQbK67VQWhqemqqvuVue0xspap.png
https://svbtleusercontent.com/vNzZG5i8bi15k6xiGFqf980xspap.jpg

Emotet has two packets one being encapsulated in the other . The inner layer lets call it base
packet. Base packet fundamentally is a group of entries with metadata information .
Metadata includes type of data and an index number particular to the entry . Entries have a
simple structure , but varies according to the type of entry

Struct EmotetEntry

{
VARINT ULEB128_EntryLength ;

BYTE Data[ULEB128_EntryLength];

}

Emotet’s base packet has three type of data entries, and are marked by numbers in the
metadata

Type of element and type of data entry is specified in the metadata field

so, the complete definition of base packet would be something like this

struct BaseEmotetPacket

{
BYTE MetaData
Struct EmotetEntry
{
VARINT ULEB128 EntryLength ;
BYTE Data[ULEB128_EntryLength];
}
}nl;

MetaData is a bitfield data type , which consists of
**0-3 bits - Type of data field ™
**3-7 bits - Index Number of Data field ™

Where index is a incremental number and type is an enum

Enum Type
{

Type 5 : Machine dependent endian WORD size integer
Type 2 : Buffer Struct { VARINT ULEN128_Size, BYTE data[ULEN128_Size];
Type O : ULEN128 encoded variant

}

The code to add an entry in base packet can be defined in python as

6/10

def AppendElement(protoBuf, type, value, itemNum):
protoBuf = protoBuf + struct.pack("B", ((itemNum << 3) | type) & Oxff)

if type == 5: #DWORD Copy 32bit integer as it is
return protoBuf + struct.pack("I", value)

if type == 2: # Memory Buffer struct {VARINT ULEB128_Size, void * buf}
return protoBuf + encode(len(value)) + value

if type == 0: # encode DWORD in ULEB128
return protoBuf + encode(value)

Later on , base packet is compressed and further more encapsulated in another packet

The definition of the final packet is almost the same as the base packet , but the only subtle
difference is that it only has one field , which is the encapsulated base packet

struct FinalPacket

{
BYTE MetaData;
Struct BaseEmotetPacket BasePacket;
}
mov [ebptvar 14], 10000b
mov ecx, [ebptarg O]
lea eax, [ebp+var C]
push eax
mov edx, [ecx+4]
mov ecx, [ecx]
call ZlibCompress
mov ecx, [ebpt+arg 4]
add esp, 4
mov [ebptvar 10], eax
lea edx, [ecx+4]
mov [ebptarg 0], edx
mowv dword ptr [edx], O
mov dword ptr [ecx], O
test eax, eax
jz loc 406A6E
|

7/10

https://svbtleusercontent.com/nioJVWuizTWKf16igYtDnD0xspap.png

[l e 2

This data is sent to c2 server immediately after encrypting the final packet .

lea edx, [ebptvar 14]
lea ecx, [ebptvar 1C]
call EncapsulateBasePacket
mov ebx, ds:HeapFree
mov esi, ds:GetProcessHeap
test eax, eax
jz loc 406A44
& l
il it =
lea eax, [ebptvar 24]
mov ecx, edi
push eax
lea edx, [ebpt+var 1C]
call EncryptPacket
add esp, 4
test eax. eax

Response Packet format

8/10

https://svbtleusercontent.com/nioJVWuizTWKf16igYtDnD0xspap.png

|

SHVE = AW ﬂUUElVI

Response data from c2 from received is decompressed , and the plain text data is supplied
to a subroutine for deserialization .

= 2 L-"‘
L]
OVEX edx, byte ptr [eax]
ineg eax
o ecx, edx
and edx, 7
shr ecx, 3
Cmp eax, esi
jnb short loc_408El6
.-'r L i
L)
test edx, edx
jnz short loc_40BELlF
_ i A= 3
- = - =
Fﬁb ecx, I
jnz short loc_408Elé] |loc_40B8ELlF:
cmp edx, 2
L jnz short loc 40BEl6
R -‘ [= *
= - =
Eov [edi], edx rap ecx, edx
or ecx, BeCcxX jnz short loc_ 40BEGA
id i Ak i
bl = == =]
v dword ptr [edi+B], 0
loc_408BDF1: or 8CK, BCXK loc_40BE6A:
o bl, [eax] jemip ecx, 3
ing eax jnz short loc_408Elé
VEX edx, bl
F:d edx, 7Fh
shl edx, cl
lor [edi], edx
test bl, bl
jns short loc 408E09
———————— r—— T
p_: fondl o — |ﬂ_:

d ecx, 7 v dword ptr [edi+10h], 0
mp eax, esi loc_408E3l: Kor BCcx, ecx
ib short loc 408DF1 v bl, [eax]

inc aax
E:vzx edx, bl
land edx, 7Fh
shl edx, cl
or [edi+B], edx
test Bl, bl
ins short loc_ 40BE4A
11 — 1 is
E=E] E==
add ecx, 71 .
loc 40BE09: cmp eax, esi loc_40BE78:
VEIX ecx, bl b short loc 40BE31 Imow bl, [eax])
shr ecx, 7 & inc eax
not ecx MOVEX edx, bl
test cl, and edx, 7Fh
jnz short loc_408DD0 shl edx, cl
or [edi+10h], edx
test bl, bl
jns short loc_408E91
—_—t

The response data field uses the same variable length integer encoding and is almost

structured

Response format is complex and tentative for each type of request and bot configuration .

in the same way .

Similarly like base request packet, this structure consists of a type and number bitfield ,
which determines which type of data field is it . In case of response , it has three of them

9/10

https://svbtleusercontent.com/veTs1ZU6Rk1Dfy7ZWpjrdA0xspap.png

1 : Main module packet *
*2 : Binary update data
3 : Deliverables data

struct EmotetResponse

{

unsigned char
unsigned char
unsigned char

unsigned char
unsigned char

Number : 4;
Type : 4;
ModID; // Each module has modid (© for main module)

Number : 4;
Type : 4;

VARINT UpdateBinLen; // Varint Type ULEB128 Encoded
BYTE BinaryBlob[UpdateBinLen]; // Update Binary PE FILE

unsigned char
unsigned char

Number : 4;
Type : 4;

VARINT deliverablesLen;

struct deliverables_

{

unsigned char Number : 4;
unsigned char Type : 4;
unsigned char ModID; // PluginModid

unsigned char ExeFlag; // "" 3 - Plugin , 2 - WriteElevatedExecute, 1 -

writeExecute"""

VARINT PluginLen; // Varint Type ULEB128 Encoded
BYTE PluginBinaryBlob[PluginLen]; // Update Binary PE FILE

29

Kudos

29

Kudos

10/10

