
1/18

CARBANAK Week Part One: A Rare Occurrence
fireeye.com/blog/threat-research/2019/04/carbanak-week-part-one-a-rare-occurrence.html

Threat Research

Michael Bailey, James T. Bennett

Apr 22, 2019

10 mins read

Threat Research

Malware

https://www.fireeye.com/blog/threat-research/2019/04/carbanak-week-part-one-a-rare-occurrence.html

2/18

carbanak-week-banner

It is very unusual for FLARE to analyze a prolifically-used, privately-developed backdoor only to
later have the source code and operator tools fall into our laps. Yet this is the extraordinary
circumstance that sets the stage for CARBANAK Week, a four-part blog series that commences
with this post.

CARBANAK is one of the most full-featured backdoors around. It was used to perpetrate
millions of dollars in financial crimes, largely by the group we track as FIN7. In 2017, Tom
Bennett and Barry Vengerik published Behind the CARBANAK Backdoor, which was the
product of a deep and broad analysis of CARBANAK samples and FIN7 activity across several

https://www.fireeye.com/resources?f%5B0%5D=layout:article_blog
https://www.fireeye.com/resources/behind-the-carbanak-backdoor

3/18

years. On the heels of that publication, our colleague Nick Carr uncovered a pair of RAR
archives containing CARBANAK source code, builders, and other tools (both available in
VirusTotal: kb3r1p and apwmie).

FLARE malware analysis requests are typically limited to a few dozen files at most. But the
CARBANAK source code was 20MB comprising 755 files, with 39 binaries and 100,000 lines of
code. Our goal was to find threat intelligence we missed in our previous analyses. How does an
analyst respond to a request with such breadth and open-ended scope? And what did we find?

My friend Tom Bennett and I spoke about this briefly in our 2018 FireEye Cyber Defense
Summit talk, Hello, Carbanak! In this blog series, we will expound at length and share a written
retrospective on the inferences drawn in our previous public analysis based on binary code
reverse engineering. In this first part, I’ll discuss Russian language concerns, translated
graphical user interfaces of CARBANAK tools, and anti-analysis tactics as seen from a source
code perspective. We will also explain an interesting twist where analyzing the source code
surprisingly proved to be just as difficult as analyzing the binary, if not more. There’s a lot here;
buckle up!

File Encoding and Language Considerations

The objective of this analysis was to discover threat intelligence gaps and better protect our
customers. To begin, I wanted to assemble a cross-reference of source code files and concepts
of specific interest.

Reading the source code entailed two steps: displaying the files in the correct encoding, and
learning enough Russian to be dangerous. Figure 1 shows CARBANAK source code in a text
editor that is unaware of the correct encoding.

https://www.virustotal.com/#/file/783b2eefdb90eb78cfda475073422ee86476aca65d67ff2c9cf6a6f9067ba5fa/detection
https://www.virustotal.com/#/file/4116ec1eb75cf336a3fdde253c28f712668d0a325a74c41445c7fa87c4e9b7a5/detection
https://www.fireeye.com/learn/tracks.html%23technical-3

4/18

File without proper decoding

Figure

1: File without proper decoding
Two good file encoding guesses are UTF-8 and code page 1251 (Cyrillic). The files were mostly
code page 1251 as shown in Figure 2.

5/18

Code Page 1251 (Cyrillic) source code

Figure

2: Code Page 1251 (Cyrillic) source code
Figure 2 is a C++ header file defining error values involved in backdoor command execution.
Most identifiers were in English, but some were not particularly descriptive. Ergo, the second
and more difficult step was learning some Russian to benefit from the context offered by the
source code comments.

FLARE has fluent Russian speakers, but I took it upon myself to minimize my use of other
analysts’ time. To this end, I wrote a script to tear through files and create a prioritized
vocabulary list. The script, which is available in the Mandiant vocab_scraper GitHub repository,
walks source directories finding all character sequences outside the printable lower ASCII
range: decimal values 32 (the space character) through 126 (the tilde character “~”) inclusive.
The script adds each word to a Python defaultdict_ and increments its count. Finally, the script
orders this dictionary by frequency of occurrence and dumps it to a file.

The result was a 3,400+ word vocabulary list, partially shown in Figure 3.

https://github.com/mandiant/vocab_scraper

6/18

Top 19 Cyrillic character sequences from the
CARBANAK source code

Figure 3: Top 19 Cyrillic character sequences

from the CARBANAK source code
I spent several hours on Russian language learning websites to study the pronunciation of
Cyrillic characters and Russian words. Then, I looked up the top 600+ words and created a
small dictionary. I added Russian language input to an analysis VM and used Microsoft’s on-
screen keyboard (osk.exe) to navigate the Cyrillic keyboard layout and look up definitions.

One helpful effect of learning to pronounce Cyrillic characters was my newfound recognition of
English loan words (words that are borrowed from English and transliterated to Cyrillic). My
small vocabulary allowed me to read many comments without looking anything up. Table 1
shows a short sampling of some of the English loan words I encountered.

Cyrillic English Phonetic English Occurrences Rank

Файл f ah y L file 224 5

сервер s e r v e r server 145 13

адрес a d r e s address 52 134

команд k o m a n d command 110+ 27

бота b o t a bot 130 32

плагин p l ah g ee n plugin 116 39

7/18

сервис s e r v ee s service 70 46

процесс p r o ts e s s process 130ish 63

Table 1: Sampling of English loan words in the CARBANAK source code

Aside from source code comments, understanding how to read and type in Cyrillic came in
handy for translating the CARBANAK graphical user interfaces I found in the source code
dump. Figure 4 shows a Command and Control (C2) user interface for CARBANAK that I
translated.

Translated C2 graphical user interface

Figure

4: Translated C2 graphical user interface
These user interfaces included video management and playback applications as shown in
Figure 5 and Figure 6 respectively. Tom will share some interesting work he did with these in a
subsequent part of this blog series.

8/18

Translated video management application user interface

Figure

5: Translated video management application user interface

9/18

Translated video playback application user interface

Figure

6: Translated video playback application user interface
Figure 7 shows the backdoor builder that was contained within the RAR archive of operator
tools.

10/18

Translated backdoor builder application user interface

Figure

7: Translated backdoor builder application user interface
The operator RAR archive also contained an operator’s manual explaining the semantics of all
the backdoor commands. Figure 8 shows the first few commands in this manual, both in
Russian and English (translated).

11/18

Operator manual (left: original Russian; right: translated to English)

Figure

8: Operator manual (left: original Russian; right: translated to English)

Down the Rabbit Hole: When Having Source Code Does Not Help

In simpler backdoors, a single function evaluates the command ID received from the C2 server
and dispatches control to the correct function to carry out the command. For example, a
backdoor might ask its C2 server for a command and receive a response bearing the command
ID 0x67. The dispatch function in the backdoor will check the command ID against several
different values, including 0x67, which as an example might call a function to shovel a reverse
shell to the C2 server. Figure 9 shows a control flow graph of such a function as viewed in IDA
Pro. Each block of code checks against a command ID and either passes control to the
appropriate command handling code, or moves on to check for the next command ID.

12/18

A control flow graph of a simple command handling function

Figure

9: A control flow graph of a simple command handling function
In this regard, CARBANAK is an entirely different beast. It utilizes a Windows mechanism called
named pipes as a means of communication and coordination across all the threads, processes,
and plugins under the backdoor’s control. When the CARBANAK tasking component receives a
command, it forwards the command over a named pipe where it travels through several
different functions that process the message, possibly writing it to one or more additional named
pipes, until it arrives at its destination where the specified command is finally handled.
Command handlers may even specify their own named pipe to request more data from the C2
server. When the C2 server returns the data, CARBANAK writes the result to this auxiliary
named pipe and a callback function is triggered to handle the response data asynchronously.
CARBANAK’s named pipe-based tasking component is flexible enough to control both inherent
command handlers and plugins. It also allows for the possibility of a local client to dispatch
commands to CARBANAK without the use of a network. In fact, not only did we write such a
client to aid in analysis and testing, but such a client, named botcmd.exe, was also present in
the source dump.

https://docs.microsoft.com/en-us/windows/win32/ipc/named-pipes

13/18

Tom’s Perspective

Analyzing this command-handling mechanism within CARBANAK from a binary perspective
was certainly challenging. It required maintaining tabs for many different views into the
disassembly, and a sort of textual map of command ids and named pipe names to describe the
journey of an inbound command through the various pipes and functions before arriving at its
destination. Figure 10 shows the control flow graphs for seven of the named pipe message
handling functions. While it was difficult to analyze this from a binary reverse engineering
perspective, having compiled code combined with the features that a good disassembler such
as IDA Pro provides made it less harrowing than Mike’s experience. The binary perspective
saved me from having to search across several source files and deal with ambiguous function
names. The disassembler features allowed me to easily follow cross-references for functions
and global variables and to open multiple, related views into the code.

Control flow graphs for the named pipe message handling functions

Figure

10: Control flow graphs for the named pipe message handling functions

Mike’s Perspective

14/18

Having source code sounds like cheat-mode for malware analysis. Indeed, source code
contains much information that is lost through the compilation and linking process. Even so,
CARBANAK’s tasking component (for handling commands sent by the C2 server) serves as a
counter-example. Depending on the C2 protocol used and the command being processed,
control flow may take divergent paths through different functions only to converge again later
and accomplish the same command. Analysis required bouncing around between almost 20
functions in 5 files, often backtracking to recover information about function pointers and
parameters that were passed in from as many as 18 layers back. Analysis also entailed
resolving matters of C++ class inheritance, scope ambiguity, overloaded functions, and control
flow termination upon named pipe usage. The overall effect was that this was difficult to
analyze, even in source code.

I only embarked on this top-to-bottom journey once, to search for any surprises. The effort gave
me an appreciation for the baroque machinery the authors constructed either for the sake of
obfuscation or flexibility. I felt like this was done at least in part to obscure relationships and
hinder timely analysis.

Anti-Analysis Mechanisms in Source Code

CARBANAK’s executable code is filled with logic that pushes hexadecimal numbers to the
same function, followed by an indirect call against the returned value. This is easily
recognizable as obfuscated function import resolution, wherein CARBANAK uses a simple
string hash known as PJW (named after its author, P.J. Weinberger) to locate Windows API
functions without disclosing their names. A Python implementation of the PJW hash is shown in
Figure 11 for reference.

def pjw_hash(s):
 ctr = 0

 for i in range(len(s)):
 ctr = 0xffffffff & ((ctr << 4) + ord(s[i]))

 if ctr & 0xf0000000:
 ctr = (((ctr & 0xf0000000) >> 24) ^ ctr) & 0x0fffffff

 return ctr

Figure 11: PJW hash

This is used several hundred times in CARBANAK samples and impedes understanding of the
malware’s functionality. Fortunately, reversers can use the flare-ida scripts to annotate the
obfuscated imports, as shown in Figure 12.

https://www.mandiant.com/resources/precalculated-string-hashes-reverse-engineering-shellcode

15/18

Obfuscated import resolution annotated with FLARE's shellcode hash search

Figure

12: Obfuscated import resolution annotated with FLARE's shellcode hash search
The CARBANAK authors achieved this obfuscated import resolution throughout their backdoor
with relative ease using C preprocessor macros and a pre-compilation source code scanning
step to calculate function hashes. Figure 13 shows the definition of the relevant API macro and
associated machinery.

16/18

API macro for import resolution

Figure

13: API macro for import resolution
The API macro allows the author to type API(SHLWAPI, PathFindFileNameA)(…) and have it
replaced with GetApiAddrFunc(SHLWAPI, hashPathFindFileNameA)(…). SHLWAPI is a
symbolic macro defined to be the constant 3, and hashPathFindFileNameA is the string hash
value 0xE3685D1 as observed in the disassembly. But how was the hash defined?

The CARBANAK source code has a utility (unimaginatively named tool) that scans source code
for invocations of the API macro to build a header file defining string hashes for all the Windows
API function names encountered in the entire codebase. Figure 14 shows the source code for
this utility along with its output file, api_funcs_hash.h.

17/18

Source code and output from string hash utility

Figure

14: Source code and output from string hash utility
When I reverse engineer obfuscated malware, I can’t help but try to theorize about how authors
implement their obfuscations. The CARBANAK source code gives another data point into how
malware authors wield the powerful C preprocessor along with custom code scanning and code
generation tools to obfuscate without imposing an undue burden on developers. This might
provide future perspective in terms of what to expect from malware authors in the future and
may help identify units of potential code reuse in future projects as well as rate their
significance. It would be trivial to apply this to new projects, but with the source code being on
VirusTotal, this level of code sharing may not represent shared authorship. Also, the source
code is accessibly instructive in why malware would push an integer as well as a hash to
resolve functions: because the integer is an index into an array of module handles that are
opened in advance and associated with these pre-defined integers.

Conclusion

18/18

The CARBANAK source code is illustrative of how these malware authors addressed some of
the practical concerns of obfuscation. Both the tasking code and the Windows API resolution
system represent significant investments in throwing malware analysts off the scent of this
backdoor. Check out Part Two of this series for a round-up of antivirus evasions, exploits,
secrets, key material, authorship artifacts, and network-based indicators. Part Three and Part
Four are available now as well!

https://www.fireeye.com/resources/carbanak-week-part-two-continuing-carbanak-source-code-analysis
https://www.mandiant.com/resources/carbanak-week-part-three-behind-the-backdoor
https://www.mandiant.com/resources/carbanak-week-part-four-desktop-video-player

