C/C++ Runtime Library Code Tampering in Supply Chain

@ trendmicro.com/en_us/research/19/d/analyzing-c-c-runtime-library-code-tampering-in-software-supply-chain-
attacks.html

April 22, 2019

For the past few years, the security industry’s very backbone — its key software and server
components — has been the subject of numerous attacks through cybercriminals’ various
works of compromise and modifications. Such attacks involve the original software’s being
compromised via malicious tampering of its source code, its update server, or in some cases,
both. In either case, the intention is to always get into the network or a host of a targeted
entity in a highly inconspicuous fashion — which is known as a supply chain attack.
Depending on the attacker’s technical capabilities and stealth motivation, the methods used
in the malicious modification of the compromised software vary in sophistication and
astuteness.

Four major methods have been observed in the wild:

1. The injection of malicious code at the source code level of the compromised software,
for native or interpreted/just-in-time compilation-based languages such as C/++, Java,
and .NET.

2. The injection of malicious code inside C/C++ compiler runtime (CRT) libraries, e.g.,
poisoning of specific C runtime functions.

1/9

https://www.trendmicro.com/en_us/research/19/d/analyzing-c-c-runtime-library-code-tampering-in-software-supply-chain-attacks.html

3. Other less intrusive methods, which include the compromise of the update server such
that instead of deploying a benign updated version, it serves a malicious implant. This
malicious implant can come from the same compromised download server or from
another completely separate server that is under the attacker’s control.

4. The repackaging of legitimate software with a malicious implant. Such trojanized
software is either hosted on the official yet compromised website of a software
company or spread via BitTorrent or other similar hosting zones.

This blog post will explore and attempt to map multiple known supply chain attack incidents
that have happened in the last decade through the four methods listed above. The focus will
be on Method 2, whereby a list of all poisoned C/C++ runtime functions will be provided,
each mapped to its unique malware family. Furthermore, the ShadowPad incident is taken as
a test case, documenting how such poisoning happens.

Methods 1 and 2 stand out from the other methods because of the nature of their operation,
which is the intrusive and more subtle tampering of code — they are a category in their own
right. However, Method 2 is far more insidious since any tampering in the code is not visible
to the developer or any source code parser; the malicious code is introduced at the time of
compilation/linking.

Examples of attacks that used a combination of Methods 1 and 3 are:

o The trojanization of MediaGet, a BitTorrent client, via a poisoned update (mid-February
2018). The change employed involved a malicious update component and a trojanized
copy of the file mediaget.exe.

o The Nyetya/MeDoc attack on M.E.Doc, an accounting software by Intellect Service,
which delivered the destructive ransomware Nyetya/NotPetya by manipulating its
update system (April 2017). The change employed involved backdooring of the .NET
module ZvitPublishedObjects.dll.

o The KingSlayer attack on EventID, which resulted in the compromise of the Windows
Event Log Analyzer software’s source code (service executable in .NET) and update
server (March 2015).

An example of an attack that solely made use of Method 3 is the Monju incident, which
involved the compromise of the update server for the media player GOM Player by GOMLab
and resulted in the distribution of a variant of GhOst RAT toward specific targets (December
2013).

For Method 4, we have the Havex incidents, which involved the compromise of multiple
industrial control system (ICS) websites and software installers (different dates in 2013 and
2014).

Examples of attacks that used a combination of Methods 2 and 3 are:

2/9

https://www.zdnet.com/article/windows-attack-poisoned-bittorrent-client-set-off-huge-dofoil-outbreak-says-microsoft/
https://blog.talosintelligence.com/2017/07/the-medoc-connection.html
https://www.rsa.com/en-us/blog/2017-02/kingslayer-a-supply-chain-attack
https://www.contextis.com/en/blog/context-threat-intelligence-the-monju-incident
https://www.netresec.com/?page=Blog&month=2014-10&post=Full-Disclosure-of-Havex-Trojans

¢ Operation ShadowHammer, which involved the compromise of a computer vendor’s
update server to target an unknown set of users based on their network adapters’
media access control (MAC) addresses (June 2018). The change employed involved a
malicious update component.

e An attack on the gaming_industry (Winnti.A), which involved the compromise of three
gaming companies and the backdooring of their respective main executables
(publicized in March 2019).

o The CCleaner case, which involved the compromise of Piriform, resulting in the
backdooring of the CCleaner software (August 2017).

o The ShadowPad case, which involved the compromise of NetSarang Computer, Inc.,
resulting in the backdooring of all of the company’s products (July 2017). The change
employed involved malicious code that was injected into the library nssock2.dll, which
was used by all of the company’s products.

Methods 2 and 3 were also used by the Winnti group, which targeted the online video game
industry, compromising multiple companies’ update servers in an attempt to spread malicious
implants or libraries using the AheadLib tool (2011).

Another example is the XcodeGhost incident (September 2015), in which Apple’s Xcode
integrated development environment (IDE) and the compiler’s CoreServices Mach-O object
file were modified to include malware that would infect every iOS app built (via the linker)
with the trojanized Xcode IDE. The trojanized version was hosted on multiple Chinese file
sharing services, resulting in hundreds of trojanized apps’ landing on the iOS App Store
unfettered.

An interesting case that shows a different side to the supply chain attack methods is the
event-stream incident (November 2018). Event-stream is one of the widely used packages
by npm (Node.js package manager), a package manager for the JavaScript programming
language. A package known as flatmap-stream was added as a direct dependency to the
event-stream package. The original author/maintainer of the event-stream package
delegated publishing rights to another person, who then added the malicious flatmap-stream
package. This malicious package targeted specific developers working on the release build
scripts of the bitcoin wallet app Copay, all for the purpose of stealing bitcoins. The malicious
code got written into the app when the build scripts were executed, thereby adding another
layer of covertness.

In most supply chain attack cases that have been happening for almost a decade, the initial
infection vector is unknown or at least not publicly documented. Moreover, the particulars of
how the malicious code gets injected into the benign software codebase are not documented
either, whether from a forensics or a tactics, techniques, and procedures (TTP) standpoint.
However, we will attempt to show how Method 2, which employs sophisticated tampering of
code and is harder to detect, is used by attackers in a supply chain attack, using the
ShadowPad case as our sample for analysis.

3/9

https://securelist.com/operation-shadowhammer/89992/
https://www.welivesecurity.com/2019/03/11/gaming-industry-scope-attackers-asia/
https://www.theverge.com/2017/9/18/16325202/ccleaner-hack-malware-security
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/shadowpad-backdoor-found-in-server-management-software
https://securelist.com/winnti-more-than-just-a-game/37029/
https://unit42.paloaltonetworks.com/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident

An In-Depth Analysis of Method 2 — Case Study: ShadowPad

There are subtle differences and observations between tampering with the original source
code, as in Method 1, and tampering with the C/C++ runtime libraries, as in Method 2.
Depending on the nature and location of the changes, the former might be easier to spot,
whereas the latter would be much harder to detect if no file monitoring and integrity checks
had been in place.

All of the reported cases where the C/C++ runtime time libraries are poisoned or modified
are for Windows binaries. Each case has been statically compiled with the Microsoft Visual
C/C++ compiler with varying linker versions. Additionally, all of the poisoned functions are not
part of the actual C/C++ standard libraries, but are specific to Microsoft Visual C/C++
compiler runtime initialization routines. Table 1 shows the list of all known malware families
with their tampered runtime functions.

Malware Family Poisoned Microsoft Visual C/C++ Runtime
Functions
ShadowHammer __crtExitProcess(UINT uExitCode) // exits the process.

Checks if it's part of a managed app // itis a CRT
wrapper for ExitProcess

Gaming industry __scrt_common_main_seh(void) // entrypoint of the ¢

(HackedApp.Winnti.A) runtime library (_ ma/nCRTStartup) with support for
structured exception handling which calls the
program’s main() function

CCleaner Stage 1: __scrt_common_main_seh(void)
Stage 2 -> dropped(32- bit) _security_init_cookie()

Stage 2 -> dropped (64- bit) _security_init_cookie()

void

__security_init_cookie(void); /
Initializes the global security
cookie // used for buffer overflow
protection

ShadowPad _initterm(_PVFV * pfbegin, _PVFV * pfend); // call
entries in function pointer table // The entry
(Ox1000E600) is the malicious one

Table 1. List of poisoned/modified Microsoft Visual CRT functions in supply chain attacks

It's the linker’s responsibility to include the necessary CRT library for providing the startup
code. However, a different CRT library could be specified via an explicit linker flag.
Otherwise, the default statically linked CRT library libcmt.lib, or another, is used. The startup

4/9

code performs various environment setup operations prior to executing the program’s main()
function. Such operations include exception handling, thread data initialization, program
termination, and cookie initialization. It's important to note that the CRT implementation is
compiler-, compiler option-, compiler version-, and platform-specific.

Microsoft used to ship the Visual C runtime library headers and compilation files that
developers could build themselves. For example, for Visual Studio 2010, such headers
would exist under “Microsoft Visual Studio 10.0\VC\crt”, and the actual implementation of the
ShadowPad poisoned function _initterm() would reside inside the file crtOdat.c as follows (all
comments were omitted for readability purposes):

void _ cdecl initterm (FVEV ¢ pfbegin, PVEFV * pfend)

while { pfbegin < pfend)
{
if { *pfbegin '= NULL }
(**pfkegin} ();
++pfbegin;

This internal function is responsible for walking a table of function pointers (skipping null
entries) and initializing them. It's called only during the initialization of a C++ program. The
poisoned DLL nssock2.dll is written in the C++ language.

The argument pfbegin points to the first valid entry on the table, while pfend points to the last
valid entry. The definition of the function type _PVFV is inside the CRT file internal.h:

typedef void (_ cdecl EVEV) (void) ;
The above function is defined in the crtOdat.c file. The object file crtOdat.obj resides inside

the library file libcmt.lib.

Figure 1 shows ShadowPad'’s implementation of _initterm().

5/9

https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/initterm-initterm-e?view=vs-2019
https://www.trendmicro.com/content/dam/trendmicro/global/en/migrated/security-intelligence-migration-spreadsheet/trendlabs-security-intelligence/2019/04/c-runtime-library-code-tampering-software-supply-code-1.jpg
https://www.trendmicro.com/content/dam/trendmicro/global/en/migrated/security-intelligence-migration-spreadsheet/trendlabs-security-intelligence/2019/04/c-runtime-library-code-tampering-software-supply-code-2.jpg

= FE
__stdcall CRT_IMIT(x, %,)} proc near
=

e,

Y

push offset _pufu_ptyr_pfend
push offset pufu_ptr_ pfbegin

s o=

call _initterm
pop ECX
mou dword 18828A88, edi

}E & [F]

__stdcall CRT_IMIT{x, =, X} endp

Figure 1. ShadowPad poisoned _initterm() runtime function

Figure 2 shows the function pointer table for ShadowPad’s _initterm() function as pointed to
by pfbegin and pfend. This table is used for constructing objects at the beginning of the
program particularly for calling C++ constructors, which is what’'s happening in the
screenshot below.

-rdata:10880F698 pufu_ptr_pfbegin db (] ; DATA XREF: CRT _IHIT(x,x,x}+1Ab610
rdata:18080F699 dh a

rdata:18080Fr69A dh a

rdata:10800F698 dhb a

.rdata:1880F69C dd offset “dynamic initializer For ‘'afxHoduleState'*(void)
[rdata:1006F6A0 dd offset malicious_code|

rdata:1888FonL dd offset sub_108BES18

rdata:1800F6A8 dd offset sub_108BES38

-rdata:18808F6AC dd offset sub 188BESSA

-.rdata:1808FGBA dd offset sub_ 188BES7@

-rdata:1808F6BYL dd offset sub 188BES9@

-rdata:18080F6B8 dd offset sub_1888ESBA

-rdata:1880F6BC dd offset sub_1888E5CA

-rdata:1888F6CH dd offset sub_1888BE5DA

-rdata:18808F6Ch dd offset sub_1888ESES

-rdata:1800F6CE dd offset sub_1888ESF@

.rdata:18068F6CC _pufu_ptr_pfend db a8 ; DATA XREF: CRT_IHIT(x,x,z2}+1A110
-rdata:1880Fa6CD dh 8

rdata:180806F6CE dh a

rdata:18080F6CF dhb a

Figure 2. Function pointer table for ShadowPad poisoned _initterm() runtime function

As shown in Figure 2, the function pointer entry labeled malicious code at the virtual address
0x1000F6A0 has been poisoned to point to a malicious code (0x1000E600). It's more
accurate to say that it is the function pointer table that was poisoned rather than the function
_initterm().

Figure 3 shows the cross-reference graph of the _initterm() CRT function as referenced by
the compiled ShadowPad code. The graph shows all call paths (reachability) that lead to it,
and all other calls it makes itself. The actual call path that leads to executing the ShadowPad

6/9

https://www.trendmicro.com/content/dam/trendmicro/global/en/migrated/security-intelligence-migration-spreadsheet/trendlabs-security-intelligence/2019/04/Figure_1_RunCC.jpg
https://www.trendmicro.com/content/dam/trendmicro/global/en/migrated/security-intelligence-migration-spreadsheet/trendlabs-security-intelligence/2019/04/Figure_2_RunCC.jpg

code is:

DIIEntryPoint() -> __ DIimainCRTStartup() -> CRT _INIT() -> _initterm() -> __imp_initterm() -
> malicious_code() via function pointer table.

I 1= I
D11EntryPoint
-

(5 }E@**

___D11HainCRTStartup
L]

v
% _ @@ é
__CRT_INIT@12 stru_18828FDB

_CRT_INIT(X,%,X)
L

e

_initterm

Ll s 55 l |

Figure 3. Call cross-reference graph for ShadowPad poisoned _initterm() runtime function

Note that the internal function _initterm() is called from within the CRT initialization function
___CRT_INIT(), which is responsible for C++ DLL initialization and has the following
prototype:

BOOL WINAFI _CRT INIT(hD1l1Handle, dwReascon, lpreserved)

One of its responsibilities is invoking the C++ constructors for the C++ code in the DLL
nssock2.dll, as demonstrated earlier. The said function is implemented inside the CRT file
crtdll.c -> object file crtdll.obj -> library file msvcrt.lib.

The following code snippet shows the actual implementation of the function _CRT_INIT().

7/9

https://www.trendmicro.com/content/dam/trendmicro/global/en/migrated/security-intelligence-migration-spreadsheet/trendlabs-security-intelligence/2019/04/Figure_3_RunCC.jpg
https://www.trendmicro.com/content/dam/trendmicro/global/en/migrated/security-intelligence-migration-spreadsheet/trendlabs-security-intelligence/2019/04/c-runtime-library-code-tampering-software-supply-code-3.jpg

ECQOL WINAFI _CRT INIT(7ANDLE hDl1lBandle, CWCURD dwReason, LFVOID lpreserved) |

/* truncated for readability... */f

if (__natiwve startup state != uninitialized)
_amsg_exit | RT_CRT_INIT CONFLICT);

} else |

/* S5et the native startup state to initializing */
__native_startup state = _ initializing;
f* Invoke C initializers %/

fifndef SYSCRT

if (_initterm e(_ =i _a, _ xi_z) != 0)
return FALSE;
felze f* SYSCRT */f
_initterm((_PVEFV * j(woid *) _ xi a, (_FVEV *)J(woid *) _ xi z);

fendif #* SYSCRT */f

/* Invoke C++ constructors */
_initterm(_xc a, _ xc E):

/* Set the native initialization state to initialized */f

__natiwve_startup state = _ initialized;
}
/* truncated for readability... */f
return TRUE;

So, how could an attacker poison any of those CRT functions? It's possible to overwrite the
original benign libcmt.lib/msvcrt.lib library with a malicious one, or modify the linker flag such
that it points to a malicious library file. Another possibility is by hijacking the linking process
such that as the linker is resolving all references to various functions, the attacker’s tool
monitors this process, intercepts it, and feeds it a poisoned function definition instead. The
backdooring of the compiler’s key executables, such as the linker binary itself, can be
another stealthy poisoning vector.

Conclusion

Although the attacks for Method 2 are very low in number, difficult to predict, and possibly
targeted, when one takes place, it can be likened to a black swan event: It will catch victims
off guard and its impact will be widespread and catastrophic.

Tampering with CRT library functions in supply chain attacks is a real threat that requires
further attention from the security community, especially when it comes to the verification and
validation of the integrity of development and build environments.

8/9

https://www.trendmicro.com/content/dam/trendmicro/global/en/migrated/security-intelligence-migration-spreadsheet/trendlabs-security-intelligence/2019/04/c-runtime-library-code-tampering-software-supply-code-4.jpg

Steps could be taken to ensure clean software development and build environments.
Maintaining and cross-validating the integrity of the source code and all compiler libraries
and binaries are good starting points. The use of third-party libraries and code must be
vetted and scanned for any malicious indicators prior to integration and deployment. Proper
network segmentation is also essential for separating critical assets in the build and
distribution (update servers) environments from the rest of the network. Important as well is
the enforcement of very strict access with multifactor authentication to the release build
servers and endpoints. Of course, these steps do not exclude or relinquish the developers
themselves from the responsibility of continuously monitoring the security of their systems.

9/9

