Analyzing Emotet with Ghidra — Part 1

m medium.com/@0xd0cf11e/analyzing-emotet-with-ghidra-part-1-4da71a5c8d69

Cafe Babe April 22, 2019

Cafe Babe

Apr 19, 2019

6 min read

This post I'll show how | used Ghidra in analyzing a recent sample of Emotet.
If you have read this, here is Part 2.

SHA256:

The analysis is done on the unpacked binary file. In this post I'm skipping how | unpacked
the file, since what | primarily want to show is how | used Ghidra’s python scripting manager
to decrypt strings and API calls.

Some short descriptions:
What is Ghidra?

It is an open source reverse engineering tool suite. You can find out more here —
Why Emotet?

Emotet is a prevalent malware. Started out as a banking trojan. It is persistent and
keeps evolving its infection mechanisms. There are other existing analyses done. A
search can lead you there —

Why Ghidra and Emotet?

o For starters, | am looking for a new gig (a.k.a unemployed) and hence cannot afford an
. Plus | want to continue being a Malware Analyst.

o Using the free version is still amazing, but | miss not being able to use IDA Python. |
did use IDA’'s own scripting language IDC but...I like python. Implemented just one of
the functions of Emotet .

1/8

https://medium.com/@0xd0cf11e/analyzing-emotet-with-ghidra-part-1-4da71a5c8d69
https://medium.com/@0xd0cf11e?source=post_page-----4da71a5c8d69--------------------------------
https://medium.com/@0xd0cf11e?source=post_page-----4da71a5c8d69--------------------------------
https://medium.com/@0xd0cf11e/analyzing-emotet-with-ghidra-part-2-9efbea374b14

Opening up Emotet with Ghidra

Ghidra is about creating projects. Following the on-screen instructions, | created a project
named “Emotet”. To add files to analyze into the project, simple type or go to .

(o) Ghidra: emotet - +
File Edit Project Tools Help

LR E R LIRS

Tool Chest

e K4

Active Project: emotet

[E}‘ emotet

£ oo0310000.bin

Filter: |

| ££)
I Tree View I Table View

Running Tools

Workspace | - |

IOpened project: emotet

=
1. Imported Emotet binary

Ghidra displays properties regarding the file that gets imported. Double click on the file name
and it opens it up in CodeBrowser which is a tool that disassembles the file.

2/8

&

CodeBrowser: emotet:/00310000.bin

File Edit Analysis Navigation Search Select Tools Wiindow Help

B+ = BRER JIDULFEYE - | @@ ca /ESBGH-O0BS o

[Program trees [(5 B x

+ [00310000.bin

Headers

&

3@ text
Bl .rdata
B .data
FE .reloc

_Program Tree =
_ETM o ™[%

& [Sa Imparts
B Exports
& LA Functons
o B Labels

o= I3 Classes

& B{) Namespaces

== - [N
A3 Data Types
o i BultnTypes
+ [E®00310000.bin
o B windows_us12_32

Filter: &5

[isting: 00310000.6in L ST TERE S N E@~ x|
I 1| [N Function
—- " =
1/ Headers B
/J ram: 06400000-0040037T
"
FHRERE AR R R R R KRB R b b
* AddCommentToProgramScript - This is an added comment *
EEAEAR AR KR KRBT EEA RN R EEE R RE R R 408
assume DF = 8x0 (Default)
IMAGE_DOS_HEADER 00480068 XREF[1] 804800ec(*)
&l 084006000 4d Sa 98 THAGE DO... =
00 83 00
00 00 04 ...
& 09400000 4d 5a char[2] MZ* e_magic HREF
@p400000 [0] L ‘
09400002 90 00 W a9oh e_chlp Bytes of last page
09400004 D3 00 o Ih e_cp Pages in file
09400006 00 00 dw ah e_crle Relocations
09400008 04 00 -4 ah &_cparhdr Size of header in .. -
39400802 00 90 dw ah e_minalloc Minimum extra para.
go4eee0c 1f ff W FFFFh e_maxalloc Maximum extra pard..
0940080e B0 60 i ah ©_55 Initial (relative..
09400010 bs 90 ' Beh e_sp Initial 5P value
09400012 00 00 ' 8h e_csum Checksun
09400014 00 80 che 8h e_1p Initzal IP value
09400016 00 00 ' 8h e_cs Initial {relative)..
08400018 40 00 dw 4eh e lfarle File address of re..
09400013 00 00 dw ah 2_ovno Overlay number
@ 0640001c 00 00 00 00 00 dwld] e_res[a] Reserved words
00 00 00
00400024 0O 00 ' ah _oemid OEM identifier (fo..
09400026 00 00 dw ah e_oeminfo 0EM information: e.. =
& 00400028 DO 00 0D 00 00 dwl10] &_res2[10] Reserved words =]
4 il [»| 4] 1l [b
@ &lx|

2

2. Emotet view in CodeBrowser
Under the Symbol Tree (usually on the left or you can go to), | filtered for “entry” to get to the
binary’s entry point.

00400000

=

00310000 bin) ALY B
2 [/* WARNING: Globals starting with '_* overlap smaller symbols at the same[~]
3 =
B e e e e P e P e e = 4 |void entry(void)}
undefined _ stdeall entrylveld) 3
undefLned AL:1 <RETURN= 6|l
undefinedl Stack[-0x210... local_210 XREF[1]: 7| uint uva
entry XREF[2]: Entry A 8| short sva
0040c9a0 55 PUSH EBP 9| ushort *puvar3;
0040c9al 8b ec MOV EBP, ESP 10 | undefinedd uvard;
0040c9a3 83 e4 f8 AND ESP,OxfFFFEfe 11| uint uVars;
0040c9a6 81 ec 74 su8 ESP,0x674 12 | int iV
06 00 00 13 int 1
0048c%c 53 PUSH EBX 14 uint o
0048c%d 56 PUSH ESI 15 short *psvargd;
a048c9%e 57 PUSH EDI = (H16 undefinedd extraout ECX;
B040c9af e8 fc eb CALL resolventdll 17 | undefinedd extraout ECX _00;
f ff 18 ushort *puVarlo;
0040c9bd e8 e7 f2 CALL resolvekernel3z 19 | ushort *pust H
ff ff 20 | undefinedd uSta 6
0040c9b9 68 04 01 PUSH 0x104 21| undefined *puStackleso
09 00 22 undefinedd u 67
0040c9be 8d 84 24 LEA EAx=>local_210, [0x47c + ESP] 23 | short asst
Tc 04 00 00 24 undefined auStacklBoo [520];
0040c9c5 50 PUSH EAX 25 | undefined auStack1pgo [4];
0048c9c6 6a 00 PUSH ox0 e (/26 undefined auStacklo7e [16):
0040c9c8 ff 15 68 CALL dword ptr [GetModuleFileNzmeW] 27 | undefined auStacklose [500];
08 41 00 28 | undefined auStackseo [20];
0040c9ce 66 8b 84 MOV AX,word ptr [6x478 + ESF] = 29 | ushort austacks40 [6];
24 78 04 3o | undefined Toczl 210 [S24]:
09 0o B1
0040c9d6 8d Bc 24 LEA ECX, [0x478 + ESF] 32 uStackl676 = Ox40c9b4;
78 04 00 00 23 resolveNtdll{);
0040c9dd 33 ff XOR EDI,EDI 34 uStackl676 = Ox40c9b9;
0040c9df 66 85 cO TEST A 35 resolveKernel32():
=+ 0040c%e2 74 22 JZ LAB_0040cabb 36 ustackle?s = Ox164:
0040c9ed of b7 co MOVZX EAX, A a7 pustackles local_21@
- 0040c9%7 eb 07 JMP LAB_80848c9f0 38 | ustacklosd = 6;
8B40c%e9 8d ad 24 LEA ESP, [ESP] 39 k1688 = (ushort *)ox40c9ce;
08 06 80 6O 4o ModuleFileNamew)():
M1 | puvard = auStacksdo:
Ly LAB_0040¢9f0 XREF[2]: o040egg |7 (142 | puvarl0 = (ushort *)ox0;
0040c9fo 69 ff 3f TMUL EDI,EDT,0x1003F = u3 While (austacks40[o] 1= 0} {
4 Il v [l I v

3. Entry Point of Emotet
Under Listing we see the compiled code and on the right is its decompiled code. Since I've
already analyzed these binaries, some of the sub routine calls and offsets in these images
will have been renamed by me. To rename an offset, right-click an offset value and select (or

type).

3/8

Emotet’s Function Calls

Emotet encrypts its strings and stores its API call names as hashes. So statically viewing this
file, is a pain to read.

Without going into much detail about Emotet’s payload (that would require another blog
entry), | will show how to make this binary a bit more easy to follow. It does require to initially
go through each function and figure out the math (possibly using , or whichever debugger so
to make it a little less painful).

In this case | wanted to figure 2 methods used by Emotet. The first function is a simple xor
routine that it uses to decrypt strings. It looked deceiving complex (because of the use of
shift operators in the function), only till after running one iteration in that | realized what was
happening... . The second function finds which APl name matches which hash (I will cover
this in Part 2). This | felt was a bit more clever, but still easy to understand after running in .

Then using Ghidra’s Script Manager, I'll show how | implemented the python scripts to
decrypt the strings and resolve the API calls used in the binary.

How are the Strings encrypted?

In the binary, I've noticed a lot of references to the function call at . This call decrypts for the
strings. | renamed it to . To find references made to the function, right click the function and
select .

4/8

https://medium.com/@0xd0cf11e/analyzing-emotet-with-ghidra-part-2-9efbea374b14

8 References to decode_strin...ser: emotet:/00310000.bin] — + X

Help

References to decode _strings - 26 locations =% =R E| >
Reference(s)

Location E.| Label Code Unit |Context

00401518 CALL decode strings UNCONDITION... [*]
00401cfc CALL decode strings UNCONDITION...
00406723 CALL decode strings UNCONDITION...
00406754 CALL decode strings UNCONDITION...
00406932 CALL decode strings UNCONDITION...
004070d4 CALL decode strings UNCONDITION...
00407968 CALL decode strings UNCONDITION...
00407 afa CALL decode strings UNCONDITION... |_
00408a18 CALL decode strings UNCONDITION...
004097e4 CALL decode strings UNCONDITION...
00409c22 CALL decode strings UNCONDITION...
0040ada0 CALL decode strings UNCONDITION...
0040adf4 CALL decode strings UNCONDITION...
0040ae67 CALL decode strings UNCONDITION...
0040aecd CALL decode strings UNCONDITION... | |
0040call CALL decode strings UNCONDITION...
0040cc53 CALL decode strings UNCONDITION...
0040ccad CALL decode strings UNCONDITION...
0040ccf4 CALL decode strings UNCONDITION...
0040cd22 CALL decode strings UNCONDITION... ||
Filter: | {2 = -

4. References to decode_strings

LAB_0B848cab6 XREF[1]: B040c9e2(j)

0040cabt ba 3e 5a MOov EDX,0x77265a33e

26 77
0p40caob b9 ed fc Mow ECX,DAT_po40fced --%K

40 00
0e40calld e8 5b 51 CALL decode_strings

ff ff
0040cals 8b o Mov ESI.EAX

5. Call being made to decode_strings

The function takes in 2 arguments that are stored in and (Image 5). is the offset of the
encrypted string. is the xor key. The decrypted string gets stored in memory allocated in the
heap and the address gets passed to .

(Side Track: | have added the string “ecx = offset \n edx = key” as a repeatable comment to
the function. Right click the address and select or type)

The first dword at the offset xor’ed with the key returned the length of the string. The next
subsequent set of dwords were xor’ed up until the string’s length.

Now for the more exiting part, automating this with a python script in Ghidra.

5/8

Using Python to Automate Decryption

L)

6._Script Manager Icon

In the top toolbar section of Ghidra, we see this icon in image 6. It takes us to the Script
Manager. Else you can select .

@ Script Manager [CodeBrowser: emotet:/00310000.bin] - + X
00 moeLAxmiG & x|
cripts | In T... |Sta... | Name Description Ke: Categol Modifi
O script E.| p Y | egory | odified
I % BNE?N" H | AddCommentToProgramScript.java Examples 04/03/2019 | |
; ommentToPregramsScriptPy. s acom... xamples->... =
D A;;ysm 1 O AddcC ToProgramScriptPy.py Add Exampl 04/03/2019
) Assembly 1 O AddReferencesinSwitchTable.java With cursor ... ARM 04/03/2019 |
5 sinary | O AddsingleReferenc With a user-i... ARM 04/03/2019
© cleanup | AppleSingleDoubleScript.java Given a raw ... Binary 04/03/2019
© codeanalysis 1 O ArmThumbFunctionTableScript.java Makes functi... ARM 04/03/2019
Conversion 1 O AsciiToBinaryScript.java Converts an ... Conversion 04/03/2019
s % g::i;omerSubml 1 | AskScript.java An example ... Examples 04/03/2019
i | AskScriptPy.py An example ... Examples->... 04/03/2019
s % E:;;gs:s O AssembleBlockScript.java Assemble ha... Assembly 04/03/2019
© FunctionlD 1 O AssembleCheckDevScript.java Test assembl... Assembly 04/03/2019
5 Functions 1 O AssembleScript.java Assemble as... Assembly 04/03/2019
[FunctionStartPa O AssemblyThrasherDevScript.java Thoroughly t... Assembly 04/03/2019
[HELP 1 O AutoRenamelabelsScript.java Renames def... Symbol 04/03/2019
5 images 1 O AutoRenameSimpleLabels.java A ghidra scri... Symbol 04/03/2019
% Import -] AutoVersionTrackingScript.java An example ... Examples->... 04/03/2019
5 !S;tmt"’“s O BadinstructionCl This script cl... ios 04/03/2019
= :teration [BatchRename.java Recursively f... Project 04/03/2019
q m D | BatchSegregate64bit.java Separates co... Project 04/03/2019 =
Filter: | &) [Fircer: [

7. Script manager
The Script Manager displays a list of scripts written in either Java or Python. They come with
the installation. The script manager also has some python script examples. So, | filtered for
.py scripts to help me understand how to proceed in writing a python script. The Python
Interpreter interacts with Ghidra’s Java API through Jython. The documentation on the Java
APIs provided can be found in a zipped file in the docs directory of your Ghidra installation.

B

8. Create new script icon
To create a new python script, select this icon — image 8. Select Python and enter a name
you’d like to give to your script.

6/8

https://www.jython.org/archive/21/docs/whatis.html

@ Script Manager, Test.py [CodeBrowser: emotet:/00310000.bin] - + X
Help

Manager - 242 scripts 0% | e R= 1% =dx S BE || Q| &lx
O Scripts =EE) T...|Sta... |Name E.| | | | TODO write a description for this script
) NEW = SEATCIDaYe, e .|| g@author
o[Analysis | SearchGuiM... —| F@category _NEW_
5 ARM 1 O SearchGuiSi... ”@ﬁzglg:;”g
D Assembly | SearchMemo... emenup
D si watoolbar
Binary = O SearchMnem...
% Cleanup) [SearchMnem...
=) Eodennglysm O SearchMnem... #TODO Add User Code Here
onversion
& [CustomerSubmi| | | SelectFuncti...
) Data Ll O SetEquateSc...
(D Data Types | SetHeadless...
o [Examples O ShowcCcallsS...
D FunctionlD | ShowConsta...
D Functions O ShowEquate...
% ;Lérll_;t'ons’tartpa [l SplitExtensi...
Images O splitMultiple...
= Imp?)rt | SplitUnivers...
[Instructions O StringParam... lL... -
D ios 4 O SubsToFuncs... =
3 Iteration = [SwitchOverri...
[i [»] | 4L Test.py e e e ~|
Filter: | 2] | Filver: | | &)
No Description
Author:
Category:
Key Binding:
Menu Path:

8. A sample test.py script created
Additionally, going through the help docs (under)and reading under , there is a description of
the metadata tags that gets generated when creating a new script.

I've uploaded the script into my github repo and you can follow it here —
https://github.com/0xd0cf11e/ghidra/blob/master/ghidra_emotet_decode_strings.py

Mov ECK,DAT_DO410130 B2 AR

CALL decode_strings

9. Decrypted string displayed as comment
The idea behind the script is to display the strings that get decrypted as comments next to
the instruction where its offset is moved to (Image 9).

DAT BbO410130
00410130 24 7 24h £
00410131 11 7 11h
be410132 23 7 23h #
06416133 1d 7 10h
00410134 25 73 5c ds "E NS
25 73

10. Bytes patched in the binary.
And as well to patch the bytes in the binary (Image 10).

7/8

https://github.com/0xd0cf11e/ghidra/blob/master/ghidra_emotet_decode_strings.py

get all code references made to the function
refs = getReferencesTo(toAddr(loc))

First step, | wanted to find all the code references made to the function.

The parameters passed to the decode function
are in registers ecx and edx
iterate through max 1080 instructions
to search for the wvalues moved to the register
i =0 # counter
ecx = B # offset with data
edx = B # xor key
comm = B # offset to comment on
while((1 < 180) and ((ecx == 0) or (edx == B))):
inst = getInstructionBefore(inst)
if "MOV ECX"™ in inst.toString():
comm = inst.getAddress()
ecx = iInst.getAddress(1)
print({"ECX = %5" % ecx)
if "MOV EDX" in inst.toString():
edx = getInt(inst.getAddress().add{1))
print("EDX = %s" % edx)
i+=1

Iterating through each reference, the next step was locating for the opcode instructions and .
The instructions weren’t always immediately before the call to the function. So | iterated
through a max of 100 instructions to search for the opcodes.

After that | was all set to carry out the xor routine and patch the bytes and comment at the
instruction offset where was carried out.

8/8

