Say hello to Baldr, a new stealer on the market

blog.malwarebytes.com/threat-analysis/2019/04/say-hello-baldr-new-stealer-market/

Malwarebytes Labs April 9, 2019

By William Tsing, Vasilios Hioureas, and Jérébme Segqura

Over the past few months, we have noticed increased activity and development of new
stealers. Unlike many banking Trojans that wait for the victim to log into their bank’s website,
stealers typically operate in grab-and-go mode. This means that upon infection, the malware
will collect all the data it needs and exfiltrate it right away. Because such stealers are often
non-resident (meaning they have no persistence mechanism) unless they are detected at the
time of the attack, victims will be none-the-wiser that they have been compromised.

This type of malware is popular among criminals and covers a greater surface than more
specialized bankers. On top of capturing browser history, stored passwords, and cookies,
stealers will also look for files that may contain valuable data.

In this blog post, we will review the Baldr stealer which first appeared in underground forums
in January 2019, and was later seen in the wild by Microsoft in February.

Baldr on the market

Baldr is likely the work of three threat actors: Agressor for distribution, Overdot for sales and
promotion, and LordOdin for development. Appearing first in January, Baldr quickly
generated many positive reviews on most of the popular clearnet Russian hacking forums.

1/21

https://blog.malwarebytes.com/threat-analysis/2019/04/say-hello-baldr-new-stealer-market/
https://blog.malwarebytes.com/author/wtsing
https://blog.malwarebytes.com/author/vhioureas
https://blog.malwarebytes.com/author/jeromesegura
https://twitter.com/WDSecurity/status/1099061949625597952

BALDR - non-resident Stealer, which has a built-in LOADER.
Written in C #, using CLR Hosting in C ++ with encryption of incoming bytes, it turns out that the final build is native.

Lightweight assembly ~ 350 KB. UPX ~ 150 KB.

Windows versions ranging from Windows 7 to Windows Server 2019 x32 x64 are supported.
Supports UTF8 characters in cookies and passwords, auto-fillings, cards, etc.
Functionality BALDR Stealer & Loader:

Recursive collection of browser profiles (Chromium, Gecko (mozilla) and not only browsers (Programs that use browser engines for their work)) by% appdata% and% localappdata%

) overdot
Ultimately, from browsers (all found browsers on the PC, examples are Google Chrome, Opera, Mozilla Firefox, Cyberfox, Pale Moon) are collected - all profiles (Chromium is Profile
_ 1, Profile 2, ...), profiles are collected Cookies, passwords, cards, auto-fill history, browser history are added to the process memory and are waiting for the package in .zip [Final
LOG]
ICheck in: T
The format of cookies is initially NETSCAPE, there is a converter in JSON format in the admin panel
I Posts:
. Collects cryptocats: recursion collects wallet.dat from folders in Roaming and Local (Bitcoin, Zcash, Litecoin, etc), in addition collects namecoin, monero, bytecoin, electrum,
ISympathles. ethereum, Jaxx Liberty, Exodus, ElectronCash, MultiDoge

I Reputation:
Collects browser history (Chrmoium, Gecko) in [Time] format

Assembles Jabber: Psi +, Psi, Pidgin

Collects files from VPN: NordVPN, ProtonVPN

Collects records from FTP: FileZilla (recentservers.xml, sitemanager.xml), TotalCommander

Collects Telegram session from standard installation, as well as from all running processes.

Collecting files from the desktop, documents and downloads (goes to 2 levels) with the selected setting for file extensions
Makes a screenshot in .jpeg format - the weight of the screenshot will be about 70-150 kb

Previously associated with the Arkei stealer (seen below), Overdot posts a majority of
advertisements across multiple message boards, provides customer service via Jabber, and
addresses buyer complaints in the reputational system used by several boards.

OVERDOT | ®opym coumnansHon uHxenepun LOLZTEAM.NET
https.//lolzteam.net/members/414334/ = Translate this page

OVERDOT - Supreme ++ | Arkei Stealer Ha caiTe @opym coumansHon mixerepun LOLZTEAM.NET.

Telegram: Contact @overdot

https.//t. me/overdot -

Jabber: overdot@exploit.im [WORK] Projects: BALDR Stealer | Supreme++, Send Message. If you
have Telegram, you can contact. OVERDOT .E! [AFK] right ...

Of interest is a forums post referencing Overdot’s previous work with Arkei, where he claims
that the developers of both Baldr and Arkei are in contact and collaborate on occasion.

Unlike most products posted on clearnet boards, Baldr has a reputation for reliability, and it
also offers relatively good communication with the team behind it.

krot189 said:)
1 did not ask for feedback from shkolobordov)) on the ekspe there? or here users are not novoregi who yuzal, styler is made on the basis of the arch? or what is your decision? admin very
familiar just)
Click to reveal ...

On the exploit - no, in time we will reach the overwhelming number of boards, we want to have a reputation for quality and not advertising and mass character.

Stiller is not made on the basis of Arkay, everything is from scratch, the coder is different, but the coders communicate and communicate with each other, they helped each other more than once, so the

similarities are not new here.
In addition to the admin, you will not see anything similar in the product, but if you see only the best sides of both products!

LordOdin, also known as BaldrOdin, has a significantly lower profile in conjunction with Baldr,
but will monitor and like posts surrounding it.

2/21

+ About myself
Telegram: Contact @BaldrOdin
https://t.me/BaldrOdin ~
Don't have Telegram yet? Try it now! ODIN. @BaldrOdin. BALDR STEALER | SUPREME++. Send

Message. If you have Telegram, you can contact. ODIN right ... Birthday:
May 21, 1993 (Age: 25)

Floor:

Male

He primarily posts to differentiate Baldr from competitor products like Azorult, and vouches
that Baldr is not simply a reskin of Arkei:

Rekastop said: 1

Is your admin panel taken from an arley stilaka? What does your team have to do with the arch? Maybe because of this, you do not go to the exp, although release 2.1 has long been
released.
Click to reveal ...

https://forum exploit.in/topic/154327

OVERDOT - seller Arkei. We have relations to the archway only by the admin panel (and even by the appearance), because it was convenient for revisions, low weight. Take a paid admin template no
sense

You would first find the topic on the expo, and then showed

Agressor/Agri_MAN is the final player appearing in Baldr’s distribution:

Agri_MAN

Birthday Aug 8, 1990 (Age: 28)
Geander Male

I do not advise working with this person.

On it more than 10 black exploit + besides pours shit loading with a minimum payment of $ 100 @

Naturally, a person sits with a fake toad and throws his clients himself, then renounces that he does not have a relationship and the like.
This is a famous rat agressor!

And pay attention to this character from the topic.

sakerdon
New member
Check in:
11.28.2013
Messages: 10
Approvals: 1

3 reviews in this topic (well, here the kids and the fool everything is clear)
Himself with fake accounts reviews writes.

agri_man and sakerdon and agressor (This is the same character that has many blacks)

Agri_MAN has a history of selling traffic on Russian hacking forums dating back roughly to
2011. In contrast to LordOdin and Overdot, he has a more checkered reputation, showing up
on a blacklist for chargebacks, as well as getting called out for using sock puppet accounts to
generate good reviews.

Using the alternate account Agressor, he currently maintains an automated shop to generate
Baldr builds at service-shop/[.Jml. Interestingly, Overdot makes reference to an automated
installation bot that is not connected to them, and is generating complaints from customers:

3/21

At the moment, all crypto wallets are stolen perfectly. In other forums, they even gave video confirmation. Something you don't like - create arbitration here, because you have
already lost on neighboring boards)

The bot for the installs that is supposedly ours is not so, this service is also available on the @InstallsBot link , you can also complain about it.

In the conference there are free rules of communication, no one ever prohibits anything to you. If we don’t like something, we immediately let you know. Skip this review and do not
waste your time reading

This vyser, there are in fact real reviews from real buyers who have been working with software for a long time!

overdot , Cpena B 19:42 #128

This may indicate Agressor is an affiliate and not directly associated with Baldr development.
At presstime, Overdot and LordOdin appear to be the primary threat actors managing Baldr.

Distribution

In our analysis of Baldr, we collected a few different versions, indicating that the malware has
short development cycles. The latest version analyzed for this post is version 2.2, announced
March 20:

We present you the update BALDR Stealer & Loader 2.2

[+] Fix all known panel bugs
[+] File grabber enabled
[+] Added data encryption between admin panel and styler
[+] Minor improvements by admin panel
‘. [+] Added normal operation with FastFlux servers
[+] Runtime and scantime have been cleaned

OVERDOT [+] Builds are now more unique, scantime will not be so dirty
m [+] Preparation of the build and admin panel for major update 3.0

OVERDOT SCANTIME
detections: To view a link, or

RUNTIME: To view the link, or

Thank you for being with us, offer your ideas, thank you all for waiting for the update, and pay more from the logs

05.05.2018

157 You can purchase the product from @overdot | @SupremePayBot |

We captured Baldr via different distribution chains. One of the primary vectors is the use of
Trojanized applications disguised as cracks or hack tools. For example, we saw a video
posted to YouTube offering a program to generate free Bitcoins, but it was in fact the Baldr
stealer in disguise.

4/21

DATE: BEOS2008

THksE GAME BET BOLL STAKE MULT PROFIT JFOT VIR

Freebitcoin hack 3 BTC script new' 2019

sprint31

B Subscribe ERTS T
- 9,987 views

+ Addto 4 Share ees More i 55 & 30

Published on Feb 28, 2019
Freebitcoin download script: https://goo.gl/sPQjJ6
PASSWORD : 5565

We also caught Baldr via a drive-by campaign involving the Fallout exploit Kit:

Host URL Body Comments
notryshopdyou.world fleHHfg/oxyhalide_Stomate_Rasenna/bDEK?C... 5,406 Falout EK
notrmyshopdyou.world /Rxkifnighties_finagles/7 270/ crmaAd.shitrm 12,144 Fallout EK

raw.githubusercontent.com /ajblne/CVE-2018-8174/master/index.html 11,757 CVE-2018-8174
notryshopdyou.world f9765/3637/17430-prunably?etesQ=pulpiy8a... 4,677 Falout EK
notryshopdyou.world /7840-Movings/ TsYy/ Catspaw_8361.jsp?zgtv=... 568,324 Fallout EK
I -0 ozte.php?hwid =] - 0 Baldr C2

Technical analysis (Baldr 2.2)

Baldr’s high level functionality is relatively straight forward, providing a small set of malicious
abilities in the version of this analysis. There is nothing ground breaking as far as what it's
trying to do on the user’s computer, however, where this threat differentiates itself is in its
extremely complicated implementation of that logic.

Typically, it is quite apparent when a malware is thrown together for a quick buck vs. when it
is skillfully crafted for a long-running campaign. Baldr sits firmly in the latter category—it is
not the work of a script kiddie. Whether we are talking about its packer usage, payload code
structure, or even its backend C2 and distribution, it’s clear Baldr’s authors spent a lot of time
developing this particular threat.

Functionality overview

Baldr’s main functionality can be broken down into five steps, which are completed in
chronological order.

Step 1: User profiling

5/21

Baldr starts off by gathering a list of user profiling data. Everything from the user account
name to disk space and OS type is enumerated for exfiltration.

Step 2: Sensitive data exfiltration

Next, Baldr begins cycling through all files and folders within key locations of the victim
computer. Specifically, it looks in the user AppData and temp folders for information related
to sensitive data. Below is a list of key locations and application data it searches:

AppData\Local\Google\Chrome\User Data\Default
AppData\Local\Google\Chrome\User Data\Default\Login Data
AppData\Local\Google\Chrome\User Data\Default\Cookies
AppData\Local\Google\Chrome\User Data\Default\Web Data
AppData\Local\Google\Chrome\User Data\Default\History
AppData\Roaming\Exodus\exodus.wallet
AppData\Roaming\Ethereum\keystore
AppData\Local\ProtonVPN

Wallets\Jaxx

Liberty\

NordVPN\

Telegram

Jabber

TotalCommander

Ghisler

Many of these data files range from simple sqlite databases to other types of custom
formats. The authors have a detailed knowledge of these target formats, as only the key data
from these files is extracted and loaded into a series of arrays. After all the targeted data has
been parsed and prepared, the malware continues onto its next functionality set.

Step 3: ShotGun file grabbing

DOC, DOCX, LOG, and TXT files are the targets in this stage. Baldr begins in the
Documents and Desktop directories and recursively iterates all subdirectories. When it
comes across a file with any of the above extensions, it simply grabs the entire file’s
contents.

Step 4: ScreenCap

In this last data-gathering step, Baldr gives the controller the option of grabbing a screenshot
of the user’s computer.

Step 5: Network exfiltration

After all of this data has been loaded into organized and categorized arrays/lists, Baldr
flattens the arrays and prepares them for sending through the network.

6/21

One interesting note is that there is no attempt to make the data transfer more
inconspicuous. In our analysis machine, we purposely provided an extreme number of files
for Baldr to grab, wondering if the malware would slowly exfiltrate this large amount of data,
or if it would just blast it back to the C2.

A

Browsers

FTP
|J cookieDlomains....
|J infarmation.log
|J passwords.log

|E] SCrEen.jpeg

The result was one large and obvious network transfer. The malware does not have built-in
functionality to remain resident on the victim’s machine. It has already harvested the data it
desires and does not care to re-infect the same machine. In addition, there is no spreading
mechanism in the code, so in a corporate environment, each employee would need to be
manually targeted with a unique attempt.

Packer code level analysis

We will begin with the payload obfuscation and packer usage. This version of Baldr starts off
as an Autolt script built into an exe. Using a freely available AIT decompiler, we got to the
first stage of the packer below.

FUNC AHLBFECCCYDEOXM (SSTRING , £
LOCAL 55 = STRINGTOASCIIARRAY (SSTRI)

LOCAL STFR = 55

LOCAL §I = STRINGSPLIT ($SHIFTS STRING , CHR (44))
FOR SP = 0 TO UBOUND (55) + -1

SE [SI[SP+111=S5TER [5P]
NEXT
RETURN STRINGFROMASCIIARRRY (55)
ENDFUNC
FUNC EXARWRPXFYPPXPE (SSSTRING SHIFT)
RETURN STRINGMID (SSSTRING , STRINGLEN (SSSTRING) - SSSHIFT + 1) & STRINGMID ($SSTRING , 1 , STRINGLEN (SSSTRING) - SSSHIFT)
ENDFUNC
XRSGV AXAAWRPXFYPPXPE (AHLBFEOCCYDEOXM ("ctxu

B (AXARWRPXFYPPXPE (AHLBFEOCCYDEOXM ("igo
FESUARIIKODNRINLARPXDCWLNQXLRAVGYCO = EXEC
EXECUTE (AXARWRPXFYPPXPE (AHLBFECCCYDECXM ("tSmsxr
EYQX = EXECUTE (AXAAWRPXFYPPXPE (RHLBFECCCYDECXM (
EXECUTE (RAXARAWRPXFYPPXPE (AHLBFEOCCYDECXM ("tx

YZEYWKGFOFHI = EXECUTE (AXARWRPXFYPPXPE (ARHLBFEOC
FD = EXECUTE (AXAAWRPXFYPPXPE (AHLBFECCCYDEOXM ("
EXECUTE (AXAAWRPXFYPPXPE (AHLBFECCCYDECXM ("Eremi

U

GCI = EXECUTE (AXRAAWRPXFYPPXPE (AHLEFEOCCYDEOXM (
= EXECUTE (AXAAWRPXFYPPXPE (AHLBFEOCCYDEOXM (o
XECUTE (AXAAWRPXFYPPXPE (RHLBFECCCYDECXM ("rpa
ZBJIRGLFIENFVCHRNOSEP = EXECUTE (AXARWRPXFYFPPXPE
EXECUTE (RXARWRPXFYPPXPE (AHLBFEOCCYDECXM ("Un
D = EXECUTE (RXARWRPXFYPPXPE (AHLBFEOCCYDEOXM (
XECUTE (AXAAWRPXFYPPXPE (AHLBFECCCYDEOXM ("t
C = EXECUTE (AXRAWRPXFYPPXPE (AHLBFEOCCYDEOXM (
OZGTREOX.IXNICOM = FXFECIITE (AXAAWRPXFYPPXPE (A

oy . 2
" N

As you can see, this code is heavily obfuscated. The first two functions are the main
workhorse of that obfuscation. What is going on here is simply reordering of the provided
string, according to the indexes passed in as the second parameter. This, however, does not
pose much of a problem as we can easily extract the strings generated by simply modifying
this script to ConsoleWrite out the deobfuscated strings before returning:

7/21

FUNC SECOND_FUNC (SSSTRING

ConsoleWrite (STRINGM E + 1) & STRINGMID (SSSTRING , 1 , STRINGLEN (SSSTRING) - SSSHIFT) & @CRLF)
RETURN STRINGMID (555 T + 1) & STRINGMID (SSSTRING , 1 , STRINGLEN (SSSTRING) - SSSHIFT)

ENDFUN(

The resulting strings extracted are below:

8/21

Execute
BinaryToString
@TempDir
@SystemDir
@SW_HIDE
@StartupDir
@ScriptDir
@OoSVersion
@HomeDrive

@CR

@ComSpec
@AutoItPID
@AutoItExe
@AppDatabDir
WinExists
UBound
StringReplace
StringlLen
StringInStr
Sleep
ShellExecute
RegWrite
Random
ProcessExists
ProcessClose
IsAdmin
FileWrite
FileSetAttrib
FileRead
FileOpen
FileExists
FileDelete
FileClose
DriveGetDrive
Dl11StructSetData
D11StructGet
Dl11StructGetData
Dl1lStructCreate
DllCallAddress
DllcCall
DirCreate
BinaryLen
TrayIconHide
:Zone.Identifier
kernel32.d1ll
handle
CreateMutexW
struct*
FindResourcew
kernel32.d1ll
dword
SizeofResource
kernel32.d1ll
LoadResource
kernel32.d1ll

9/21

LockResource
byte[
VirtualAlloc
byte shellcode [

In addition to these obvious function calls, we also have a number of binary blobs which get
deobfuscated. We have included only a limited set of these strings as to not overload this
analysis with long sets of data.

We can see that it is pulling and decrypting a resource DLL from within the main executable,
which will be loaded into memory. This makes sense after analyzing a previous version of
Baldr that did not use AIT as its first stage. The prior versions of Baldr required a secondary
file named Dulciana. So, instead of using AlT, the previous versions used this file containing
the encrypted bytes of the same DLL we see here:

M Dulciana **OVERWRITE MODE**

@40BC38E 63030ABE 9SE1BOE4 FE41A495 G1D3FOOC| |YB & K=-45 @5sAR=/uBBAi°® w»dc 3[[i-=% A§ia”"(
983455BD D2DDADBE EB45D0@F 64843F66 CBOBSOC7 | | &7 UaeB za+au@7IivsE# a 04U0“s=eif- dN?fA P«
DBSFRCBD 67ASEAS7 CA46F39E @AZ7@DIC 6373AZE3 | |20Yi~ "z Z’fizhm \1ela(D@s_a geIw FUG ' csd,,
4693D77A 35FAQOD4 BO1DOOE4 26A210EG 1EC9984B || "04° ™ CAMO% {U I? JA,e#Fioz5 ‘m %&¢ E oK
63CED8CC 13521B48 CD7E76D1 AD338ASA 3BEE@SDS | | €%5°° ° YARCOe<L- Gisbyl cGy¥A R HO~v-23az;0 °
39BOCCEC SECCALOD 6144FCC3 5B9848C7 53CBF413 | | R ,b=NV +i @/Q6fl‘hQ ms 9wALAA® aD,[oH«SAU
D565D2F2 549FGBAD 9298F55A Q2ECDFD2 68D4412F | |, 1"ti?"@bj36»0§, ’’ "PV ’e“ Tik=io1Z Ifl“h A/
F4C32962 CBO8G4A3 ERCO560@ FFGBBACO BSFGCAAS | |30 U iDAGIé~/:é €%he°+1Uy)bASGdIE .V “ke T ¢®
8073797D 2D937118 DF32B702 C1BFESA3 8451CE4F | [L[o:1hd G/qu° . e<”n”y“@ EAsy}-iq fl2Y ok £NQEO
A8GF440F SA1ES4ES 110563EB AEE42E6D 5A71054C | | ;! “iy§ay @YMOW E<°M@5ni®oD Z NA cid%.mZq L
C5905F@9 4EC2C3CE @17F67DA ©243CO8E 177D8BSF | | 0X-m_a D-Kv8 .{_ fiqdE6ow~é_ N-yE g/ C;é }aé
4CBBB173 1AGFE923 @18AFBB2 @8C6FI1E 99A9889B | |6&.,cekd®%d [@770'0°L§ dL%s of# &a°< A® 6©ad

Moving forward to stage two, all things essentially remain equal throughout all versions of the
Baldr packer. We have the DLL loaded into memory, which creates a child process of the
main Baldr executable in a suspended state and proceeds to hollow this process, eventually
replacing it with the main .NET payload. This makes manually unpacking with ollyDbg nice
because after we break on child Baldr.exe load, we can step through the remaining code of
the parent, which writes to process memory and eventually calls ResumeThread().

10/21

PUSH EDX

PUSH ECX

PUSH ECH

PUSH Bx4

PUSH Bx1

PUSH ECX

PUSH ECH

PUSH DWORD PTR SS:=[ESP+Ax124]

PUSH ECX

|kernel32.CreateProcessh

s |

Ll AR TTRAE LTI TR T . T DIk
A72 C(kernelld2.CreateProcessA)

CII "“C:\Users'wirusLab\Desktop:\Baldr.exe""

CII "CreateProcessA"

CII "MtlUnmapliewOfSection"
CII "WirtualfllocEx"

CII "WirtualAlloc"

CII "WriteProcessMemory"
CII "GetThreadContext"
CII "SetThreadContext"
CII ""RezumeThread"

CII “"GetFileSize"

CII "ReadProcessMemory"
CII "mtdll.d11"™

GII “"LocalAlloc'

CII "Sleep"

CII "GetModuleFileMameA"'
CII "GetCursorPos"

CII "NtResumeThread"

CII "usewrld2"

CII "lstw»rcatA"

CII "ExitProcess"

As you can see, once the child process is loaded, the functions that it has set up to call
contain VirtualAlloc, WriteProcessMemory, and Resume Thread, which gives us an idea what
to look out for. If we dump this written memory right before resume thread is called, we can
then easily extract the main payload.

Our colleague @hasherezade has made this step-by-step video of unpacking Baldr:

11/21

https://twitter.com/hasherezade

LAE e Watch Video At:

(- NS B

https://youtu.be/E2VAKB_gtcQ

Payload code analysis

Now that we have unpacked the payload, we can see the actual malicious functionality.
However, this is where our troubles began. For the most part, malware written in any
interpreted language is a relief for a reverse engineer as far as ease of analysis goes. Baldr,
on the other hand, managed to make the debugging and analysis of its source code a
difficult task, despite being written in C#.

12/21

https://youtu.be/E2V4kB_gtcQ

da471cba arg_2C1_@ = <Module>.x,=0;

int num = -487978463 + {int}Hath.FlDﬂr(E.238846926?39533??);

int num2 = ((int)Math.Sqrt(0.85618871257462947) == -487978463) ? ((i
int num3 = 1243834968 + (int)”ath.FlDﬂr(B.32?13996?59948316};

int num4 = ((int)Math.Tanh(@.85618871257462947) == 1243834968) 2 ((i
int num5 = -896862818 - (int]Hath.Flnﬂr{ﬁ.3??426??&54492591];

int numé = ((int)Math.Cos(@.85618871257462947) == -B98862818) ? ((in
int num7 = 692661293 - (int)Math.Floor(@.1433449093454261);

int num8 = ((int)Math.Log10(0.85618871257462947) == 692661293) ? ((i
int num9 = 1438155919 - (int)Math.Floor(©.13792638314791322);

int numleé = ((int]Hath.Floor(B.856138?125?46294?3 == 143@155919) ? (
int numll = 127191641 + (int)Math.Floor(0.17903493987257681);

int numl2 = ((int)Math.Truncate(@.85618871257462947) == 127191841) ?
int numl3 = -1192098763 + (int)Math.Floor(©.35518656031004459);

int numl4 = {(int)Hath.ﬁtan(ﬂi856133?125?45294? == —1192993?63) 2 (
int numl5 = -491114841 - (int)Math.Floor(@.36429729287712709);

int numlé = ((int)Math.Exp(@.85618871257462947) == -491114841) ? ((i
if (arg _2C1_0(@de672fa.f301b9ff, <Module>.85a8babd<string> (380385245

{

string[] array = 66576fa6.ale702d4(@de672fa.f301baff, new char[]

r
The code base of this malware is not straight forward. All functionality is heavily abstracted,
encapsulated in wrapper functions, and utilizes a ton of utility classes. Going through this
code base of around 80 separate classes and modules, it is not easy to see where the key
functionality lies. Multiple static passes over the code base are necessary to begin making
sense of it all. Add in the fact that the function names have been mangled and junk
instructions are inserted throughout the code, and the next step would be to start debugging
the exe with DnSpy.

Now we get to our next problem: threads. Every minute action that this malware performs is
executed through a separate thread. This was obviously done to complicate the life of the
analyst. It would be accurate to say that there are over 100 unique functions being called
inside of threads throughout the code base. This does not include the threads being called
recursively, which could become thousands.

13/21

case 3:
191edleS5.74b808c40 . 5ae7fcbc = 191edle5.74b88c48.ef9ead88;
arg C8 @ = (numS * 691511557 ~ 1968371167);
continue;

case 4:

{
Thread expr_187 = <Module>.oc90(new ThreadStart(19ledleS.82c9b121));
£11148ae.al8abd2a(expr_ 187, true);
Thread threadé = expr_187; ~
Thread expr_lA6 = <Module>.oc0(new ThreadStart(19ledle5.868454af));
61114Pae.alBab42a(expr_1A6, true);
Thread thread? = expr_1A6;
Thread expr 1C5 = <Module>.oc90(new ThreadStart(19ledle5.8151b121));
611148ae.al8ab42a(expr 1C5, true);
Thread threads;
<Modules.j¥?E(threads);
Thread thread9;
<Module>.jX?E(thread9);
Thread threadl®;
<Module> . jX?E(thread1e)
Thread thread4;
<Module>.jX?E(threadd);
Thread threads;
<Modules.jX?E(threads);
Thread thread2:
<Module>.jX?E(thread2);
Thread thread;
<Module>.jX?E(thread);
Thread thread3;
<Modules>.j¥?E(thread3);
<Modules.j¥?E(threads);
<Modules>.jX?E(thread?);
8c646f75 . d6d8odde (expr_1C5);
<Module>.;¥\pe(threads);
<Module>.;*\pe(threads);
<Module>. ; *\pe(threadld);
<Module>. ;¥\pe(thread4);
<Modules. ;3\pe(threads);
<Modules. ;3\pe(thread2);
<Module:.;¥\pe(thread);

Lo

Luckily, we can view local data as it is being written, and eventually we are able to locate the
key sections of code:

14/21

briuate static volid ebb82042()

{

string ef9%a = <Module>r.blefd5b2<string>(arg_8AA 8, num52 + num51);

string string_ = <Module:.smethod_23<string>(3737341871u, numS@ * numdd);

string text = <Module>.smethod_23<string»(3737841871u, num4d * num47);

try

{
ManagementObject expr_B8E9 = <Moduler.ede70648 0(<Module>.blefdSb2<string>(28713562%u, numdd + numd3));
efdea = b28@aféa.feedabd4(Delegated?. f509de3b(expr 3E9, <Moduler.smethod 24<string:>(246472369u, numd2 + numdl)});
string_ = b2evafea.feePa694(Delegated?. fo09de3b(expr _8E9, <Module>.blefdSb2<string»(11@7@98938u, numds + num4s)));
text = b28@afea.feedab94(Delegated?. f509de3b(expr BE9, <Moduler.blefdSb2<string>(1635233314u, numd@ + num39))});
if (<Module>.dad7icba_@(string_, <Module:.blefdSb2<string>(73527@813u, num33 * num37}))

{

goto IL_9C5;

goto IL_C94;
int arg_C2B_@;
while (true)

{

The function pictured above gathers the user’s profile, as mentioned previously. This
includes the CPU type, computer name, user accounts, and OS.

b @ Raw View
b @ managementObjectEnumerator
b @ managementObject
b @ managementObjectEnumerator2
b @ managementBaseObject
b @ managementObject?
b @ managementObjectEnumerator3
b @ managementBaseObject?

b @ managementObject3

After the entire process is complete, it flattens the arrays storing this data, resulting in a
string like this:

15/21

e0ce %] Windows 7 x64

The next section of code shows one of the many enumerator classes used to cycle
directories, looking for application data, such as stored user accounts, which we purposely
saved for testing.

16/21

public static woid 3881f4dc()

-
using (List<B448a8d@>.Enumerator enumerator = arg FF5 8.GetEnumerator())
{
IL_29EB:
while (enumerator.MoveNext())
{
8448a8d@ current;
while (true)

{
IL 1827:
current = enumerator.Current;
int arg 108A @ = 977494244;
while (true)
1
int num37;
switch ((num97 = (arg_lesA B ~ B4B596864)) ¥ 4)
1
case @:
if (current.e2324d@éb == b@eb3715.Chromium)
d
arg _18@A @ = (numd7 * -354014643 ~ 964306117);
continue;
h
goto IL_29EB;
case 2:
arg 1604 @ = 586619563;
continue;
case 3:
goto IL_1627;
h
goto Block 51;
h
I

IL_1@51:

The data retrieved was saved into lists in the format below:

list

@
@
@
@
@
@
=
=
w
9 [
=

In the final stage of data collection, we have the threads below, which cycle the key
directories looking for txt and doc files. It will save the filename of each txt or doc it finds, and
store the file’s contents in various arrays.

17/21

foreach (DirectoryInfo current in new Liéf{DirectoryInfo>

{

<Module>., x[&(<Modulex. WE &(<Module>.y3-td(<Module>.85a8babd<string>(31828685353u, numl4 - numl3}), -
<Moduler., x[&(<Modules.WCd|§(Environment.SpecialFolder.CommonDocuments)),
<Modules. , x[B(<Modules.WCd|§(Environment.SpecialFolder.DesktopDirectory))
1
Case o

FileInfo fileInfo;
list.Add(new 48f78454
1
fe6Rd4438 = <Modulex.21
/(<Module>.&Fqi(fileInfo)),
3764ac2a = 7399%ef3e.9%e61f6d3(new string[]
{
<Module>.e5131cbb<string>(692661293u, num8 + num?),
<Modules:. #:0<(current),
<Module>.281fblbc<string>({1243834968u, numd + num3),
<Modules:. d:0<(directoryInfo),
<Module>.blefd5b2<string>(3886988833u, num2 + num),
<Modules:. #:0<(fileInfo)

1)

1);
arg 5FC_8 = (numl7 * -1885783678 ~ 338587268);

continue:
4 @ array [0:00000005]
W [0] " doc"
@ [1] =
w [?]
w [3]

= |

4 @ |ist
e [0]

e [1]
4@ 2]
‘p

> f

Finally, before we proceed to the network segment of the malware, we have the code section
performing the screen captures:

18/21

num
numa2
num3

numd

nums

nums

Class 2d10104b function 1b0b685() is one of the main modules that branches out to do the
majority of the functionality, such as looping through directories. Once all data has been
gathered, the threads converge and the remaining lines of code continue single threaded. It
is then that the network calls begin and all the data is sent back to the C2.

The zipped data is encrypted via XOR with a 4 byte key and version number obtained from
contacting the C2 via a first network request. The second request sends the cyphered data
back to the C2.

Panel

Like other stealers, Baldr comes with a panel that allows the customers (criminals that buy
the product) to see high-level stats, as well as retrieve the stolen information. Below is a
panel login page:

19/21

Administrator log in | Baldr X | +

O] <—+ C o4 - .0hp %l s BB =

& Administrator log in

And here, in a screenshot posted by the threat actor on a forum, we see the inside of the

panel:

Top 3 Operating Systems

Top 3 Countries
4 of logs # of logs
45

imertclecon | powniood | peter: |
Type Stats HWID/System Network Date Version Screen mment Action
PUS1@4216E6105MON0
[| =

SR con | ! e |
@orozon @chy @onple @<t zam Forig
P126=0@N70E7ARBOED — —

e =3 — o - a

@ormazon Peteor @

Final analysis

Baldr is a solid stealer that is being distributed in the wild. Its author and distributor are active
in various forums to promote and defend their product against critics. During a short time
span of only a few months, Baldr has gone through many versions, suggesting that its author

20/21

is fixing bugs and interested in developing new features.

Baldr will have to compete against other stealers and differentiate itself. However, the
demand for such products is high, so we can expect to see many distributors use it as part of
several campaigns.

Malwarebytes users are protected against this threat, detected as Spyware.Baldr.

Thanks to SIRi for additional contributions.

Indicators of compromise

Baldr samples
5464be2fd1862f850bdb9fc5536eceafb60c49835dd112e0cd91dabefOffcecs5 -> version 1.2
1cd5f152cde33906c0be3b02a88b1d5133af3c7791bcde8f33eefed3199083a6 -> version 2.0

7b88d4ce3610e264648741c76101chb80fele5e0377ealee62d8eb3d0c2dech92 > version 2.2
8756ad881ad157b34bce@l11cc5d281f85d5195daled3443fa0a802b57de9962f (2.2 unpacked)

Network traces

hwid=
{redacted}&os=Windows%207%20x64&file=0&cookie=0&pswd=0&credit=0&autofill=0&wallets=0&1

hwid=
{redacted}&os=Windows%207%20x64&file=0&cookie=0&pswd=0&credit=0&autofill=0&wallets=0&1

21/21

https://twitter.com/siri_urz

