IcedID Banking Trojan Spruces Up Injection Tactics to
Add Stealth

@ securityintelligence.com/icedid-banking-trojan-spruces-up-injection-tactics-to-add-stealth/

April 4, 2019

Homed / Malware
IcedID Banking Trojan Spruces Up Injection Tactics to Add Stealth

Malware April 4, 2019

1/16

https://securityintelligence.com/icedid-banking-trojan-spruces-up-injection-tactics-to-add-stealth/
https://securityintelligence.com/
https://securityintelligence.com/category/x-force/malware-threat/
https://securityintelligence.com/category/x-force/malware-threat/

By Nir Somech co-authored by Limor Kessem 10 min read

IBM X-Force Research proactively researches financial cybercrime threats on an ongoing
basis. In recent activity, X-Force studied some changes made to the IcedID banking Trojan
that help the malware act more stealthily on infected devices.

Banking Trojans and the organized crime gangs that operate them have risen in the past

decade to become one of the most prominent online threats affecting the financial sector and

online service providers at large. These highly evolving malicious programs are often
modular and sophisticated and, in most cases, supported by an in-house developer that
keeps updating code to evade security controls.

I's not always easy to keep up with threat evolution in-house. These details about the
updated injection method can help security professionals manage risk to their organization
and detect updated versions of IcedID that use this injection tactic.

No New Threads to See Here

Before we delve into the reversing of IcedID’s modified injection, let's summarize it in a few
words.

Prior to the Change

Prior to the recent modifications, IcedID would write its shellcode to targeted operating
system (OS) processes via ZwWriteVirtualMemory. IcedID used this tactic in cases where it
would inject code into either OS processes or when hooking browser processes.

After the Change

IcedID separated the tactics for OS process injection and browser processes. When the
malware injects into an OS process, it creates a process in suspend state. It then hooks the
RtIExitUserProcess, which is very often called to terminate userland processes. IcedID’s
developer counts on legitimate processes to call on this now-infected process, which will
make it jump to the shellcode and run it via a seemingly legitimate flow of events that would
not get flagged by most controls.

When IcedID injects to a browser process, it hooks the NtWaitForSingleObject function,
again by using ZwWriteVirtualMemory.

A Closer Look Under the Hood

To demonstrate how the threat works, let’s begin when the IcedID payload launches its
execution routine on a target device. The malware starts by creating a svchost.exe process
instance in suspend state and injects its shellcode into that process. After the injection,
svchost.exe resumes and the payload terminates itself.

2/16

https://securityintelligence.com/author/nir-somech/
https://securityintelligence.com/author/limor-kessem/
https://www.ibm.com/security/xforce

The newly malicious svchost.exe process writes the payload to the %ProgramData% folder
with a globally unique identifier (GUID)-like folder naming convention (the GUID is a 128-bit
integer number used to identify resources; the term GUID is generally used by developers
working with Microsoft technologies). It uses [a-z] [A-Z]{0-9} and the payload, and a name
convention of [a-z] {8-9}.exe. The value and file name are generated differently on each
operating system running IcedID. However, the name will be the same upon subsequent
executions on the same host.

This process also creates a scheduled task so that it will run every time the system reboots
to allow IcedID to maintain persistence on the infected device.

The malicious svchost.exe creates three additional svchost.exe subprocesses and injects its
shellcode into each one of them. We’ll explain the injection process in further detail in the
following section.

= 1792 10 11 20K il Fﬁ F_Process b onitoe Suzj

[m77 swchost.exe
=7 swehast.exe
[m7 svehast. exe
[m71 svchast. exe

5268
1304
376
aE04

= n

2M2K
1,066 K
4628 K

834 K

4 932 K Host Process for Windows 5.
3,320 K. Host Process for Windows 5.
8,388 K Host Process for Windows 5.
2672 K. Host Process for Windows 5.

Microsoft Corporation
Microzoft Corporation
Microzoft Carporation
Microzoft Carporation

Figure 1: Three svchost.exe instances injected with IcedID shellcode.

At this point, with four svchost.exe processes in total, these instances will remain active until
the device is shut down at some point. After a reboot, these processes will be tasked with
monitoring the OS for the launch of a browser application. The malware will then attack the
browser’s process as well and inject it with shellcode.

Two Injection Methods

IcedID injects its shellcode into browser processes with the goal of eventually hooking the
process and allowing the malware to begin intercepting and manipulating the victim’s online
activity.

The malware uses API hooking to inject and execute its shellcode via different legitimate
threads running on the victim’s device. Let’s look at that tactic more closely:

¢ IcedID allocates memory in a target process using the NtAllocateVirtualMemory
function.

e The malware writes the shellcode into the target process without suspending that
process. To do that, IcedID uses the ZwWriteVirtualMemory or NtWriteVirtualMemory
functions.

e Next, it hooks a frequently called API that's commonly used by the target process.

There are two different APl hooking scenarios we observed IcedID using:

1. Injecting into a web-browser via svchost.exe; and

3/16

2. Injecting into svchost.exe via its parent process.

The hooked APl is called by the targeted process and the shellcode is thus executed.

To wipe its traces, the shellcode fixes the patched library’s function that was used to execute

it so that tools that detect hooks and rootkits won’t show any trails of that patch. This
injection technique can evade security mechanisms that would otherwise detect suspicious

API calls, such as the createRemoteThread (CRT), asynchronous procedure calls (APC) and

other common malware tactics.

Remotely setting up a hook in a target process without suspending the target process first
can cause unexpected behavior. This can easily result in a crash since two threads can
execute the code of the API at the same time.

Deeper Into the Browser Process Injection

The first injection tactic is from a svchost.exe process to a web browser. To begin, the
malware needs a detection mechanism to identify that the infected user has launched a
browser application. To do that, IcedID takes a snapshot of all the running processes and
scans them for browser processes.

_ | J
FIZIE
epaelAT2
aeaelAi2
Bee6clAT2 ; Attributes: noreturn
aaaelAai2
BBaG1AT2 detection_and_injection_web_browser proc near
eBae1A72 GBE 63 48 83 a7 88 push 78348h ; key
@pa61AT7 @84 EB 66 63 @8 88 call reg_key_query_key
eseslA7C ead ah 8l push 1
BBBe1ATE @858 BA B8 push 8
epa61AE0 280 68 87 1A @6 B8 [push oftset check target process]
@8eplAB5 ale A3 D8 Fe @6 ee Eax
epacl1ABA 818 EB 38 44 88 a8 call main_func
eBa61ABF 2lé 33 C4 18 add esp, 1éh
esa61A52 @B@ 68 ES 83 @8 08 push leae 3 _DWORD
BBa61A07 @64 FF 15 EE 00 07 00 call ds:kernel32_Sleep
@Ba6s1ASD 284 EB D3 jm| short detection and injection web browser
00051490 deteckion and injection web bronser endp 3 sp-analysis failed
aaaalAsD

Figure 2: IcedID scanning for running browser processes.

The scan creates an infinite loop that calls on IcedID’s function main_func. One of that
function’s parameters is a pointer to another malware function: check_target process.
Viewing the details of check_target_process reveals that it gets the process ID (PID) of the
svchost.exe it runs inside. Next, it calls NtQuerySystemInformation to fetch a list of all
processes currently running on the device.

4/16

200000

180000

160000

140000

120000

100000

80000

60000

40000

20000

0
R I I I I T - T TR SR
& FFFFFF ¢

®m Number of data drops

Figure 3: IcedID fetching process list to scan for open browser applications.

This scheme keeps running in a loop over all the operating system’s processes to allow the
malware to detect browser activity. When it encounters a potential browser process, IcedID
checks it via the check target process.

This last function uses two parameters to check whether a process is of interest or not:

1. The target process’ ID; and
2. The target process’ name.

The function encodes the process’ name and compares it with hardcoded strings the
developer created, representing the names of browsers IcedID can inject into.

5/16

= 25% - China

= 21% - Taiwan
14% - Russia

® 8% - India

= 7% - Brazil

5% - USA

m 4% - Vietham

= 3% -Iran

= 3% - Ukraine

= 3% - South Korea

B 2% - Mexico

m 5% - Others

L

A
| 4

Figure 4: IcedID checking for browser processes to inject its shellcode into.

To compare the process’ name to the preconfigured, hardcoded list, the malware calls the
resolveProcessName function. That function receives the target process’ name as a
parameter, decodes it and creates a hash of the result. That hash is what’s being compared
to a list of precomputed hashes that translate into iexplore.exe, firefox.exe and chrome.exe.

The hash codes for the targeted web browsers are:

o Firefox.exe — 1EACD83D;
 lexplore.exe — OD31A30C7; and
e Chrome.exe — OFA7442ED.

9086616F 808 81 FE 56 10 40 @0 xQr esi, 491856h
0006616F 1c:_5515F: deco 803 81 FE 3D D8 AC 1E Eﬂp esi, 1EACD33Dh ; firefox.exe
@eB6616F @83 @F B6 (@ MOV ZX eax, |2B06618F 803 74 25 BE3 Short 1oc_bblBb
90066172 088 @3 (1 add eax, ecx
20066174 985 03 (6 dd eax, esi
88866176 @88 C1 (8 @3 ror eax, 3
90066179 203 41 inc ecx
@BA6617A @85 3B Fo mov esi, eax
9086617C 088 BA @4 39 mov 1 [cx+ed1]
h
FIEE]
90966191 808 81 FE 19 98 C7 1F cmp esi, 1FC79819h
BBO66197 603 74 19 jz short loc_661B2
1
Y
il s =1
00066199 808 81 FE (7 30 1A D3 Eﬂ esi, @D31A36C7h ; iexplore.exe
0006619F 805 74 @D % MOIT I5C_BBIRE
T 1
[)
Iz il e =] okl s =]
BBA661AE 82866182 BAB661B6
02066 1AE loc_SBJAE z 00066152 10:_661!32 H 09066186 10:_661B5:
BOAG61AE @03 6A 83 push 3 BOO661B2 GO8 6A B4 push 4 BOB661B6 @85 6A 02 push 2
90866180 @8C EB 86 jmp short loc_661B8| |#@@66184 @8C EB 82 jmp short loc_661B8
[XX
[l s 55 [l s 55
BOB661A1 @85 33 Co Xoc, 2 2%
BBB661A3 @88 81 FE ED 42 74 FA Enp esi, @FA7442EDh ; chrome.exel (99066188 loc_661B8:
BOBE61AT 988 OF 94 (o T ar eeC s8 pop eax|
BOBEGIAC 088 EB 0B Jmp short loc_661B9 T

Figure 5: IcedID checking for popular browser processes to inject shellcode into.

If there’s no match, the function returns to its scanning routine, looking for other browser

processes.

6/16

The next step for the malware is to call decode_target_process_event_name. This function
receives the targeted process’ PID as a parameter and generates an event name for the web
browser process that’s about to be injected with IcedID’s shellcode.

This part of the injection mechanism is in place to compute the event name that the
shellcode will create after the injection process so that it indicates to the malware that a
specific web browser’s process has already been injected.

Now, after a match has been found and the validation of the target process is complete, the
actual injection process begins by calling the function inject_target process. Here, again, the
parameter is the target process’ PID.

BBBELAZA loc_B1AZA: ; a2
BBAELA2A 204 FF 78 28 push dword ptr [esit+28h]
8B8eE1A2D @88 FF 76 44 push dword ptr [esit+24h] ; pid
PBO61A30 @BC EB 40 FF FF FF call decode_target process_event_name_
B8Be1lA55 BBC 59 pop ecx
B8v61A36 BB8 59 pop ecx
@Be61A37 a4 BS (o test eax, eax
BBB61A30 @84 75 38 jnz short loc_61A6B
- L J
FMZE
eeBe1A3E @24 Al 98 F@ @6 08 mov eax, ds:6F@93h
BBAGLA48 BG4 B3 BE 5@ 83 00 68 B cmp dword ptr [eax+358h], @
eBBE1AAT BE4 74 22 jz short loc_61AGB
i L J
ol e =
ptr [esi+44h] PBB61A49 @84 FF 76 20 push dword ptr [esit+28h]
ateProcess ; does not support by Icedid| |@@B61AAC BEE FF 76 44 push dword ptr [esit+44h]
aeBolAdF @8l FF 35 BC F@ @6 @8 push dword ptr ds:6F8BCh
loc_61A6B BeBE1ASS Ble EE A6 Bl 08 08 call sub_G1Cee
BBB61ASA 218 FF 74 24 14 push [espt+l@h+processName]
@eB61ASE 814 6A B8 push i)
BeBclAce BLE FF 76 44 h - id
80861A63 @1C EB F9 SA 88 20 inject_target process
@eBclA6E @1C B3 C4 18 add esp, lah

vYve i

Figure 6: IcedID validates and begins injection of shellcode into browser process.

The inject_target_process function receives a handle to the target process using the
OpenProcess API. It then checks whether the process is either 32-bit or 64-bit to prepare the
correct code version for injection.

Next up, the function that’s responsible for the injection starts by allocating memory in the
target process. We can see the memory allocation call and then writing of the shellcode into
the target process using three Windows API functions:

1. NtAllocateVirtualMemory;
2. ZwProtectVirtualMemory; and
3. ZwWiriteVirtualMemory.

7/16

¥

BROETAGF 024 BD 44 24 @3 lea eax, [esp+24h+pHandle]
BBBETATS ©24 58 2
BROOETAT4 023 EG SA 00 00 00 | call write_shellcode_2 target_process
BBBBTATY B28 BB FB MoV esl, eax
BOBETATB 828 59 pop ecx
BPBETATC @24 85 F6 test esi, esi
BRBGTATE @24 74 1B jz short loc_67A%B
- v
il i =]
BRBGTASE 624 F6 44 24 10 84 test byte ptr [esp+24h+var_14], 4
BBBETASS 024 BD 44 24 @8 lea eax, [esp+24h+pHandle]
BBBETABY 824 58 push eax
BBBETABA B28 74 @7 jz short loc_B7A93
- ' = '
il e (5= FEE]
@BBETABC B28 E8 A3 FE FF FF a1 patch WaitForsingleObject 32bit]]|eees7ass
BBB6T7A91 828 EB @5 jmp short 10:_67Aﬁ BRBETADZ loc 67A03:
| POB67AG3 828 EB @C FF FF FF call patch_WaitForSingleObject 64bit
- - |

Figure 7: IcedID injects shellcode into targeted browser process.

After it writes the shellcode into the process, IcedID calls to the next function for patching,
depending on which architecture applies:

e patch_NtWaitForSingleObject_32bit; or
o patch_NtWaitForSingleObject _64bit

To patch the NtWaitForSingleObiject function and make it jump to the shellcode the next time
it is called, IcedID begins by modifying the page protection status of that function using
ZwProtectVirtualMemory. Then, the malware applies the hook using ZwWriteVirtualMemory,
and ends with switching the protection flag back to its normal permission state. From this
point on, subsequent calls to the NtWaitForSingleObject function will jump to the malware’s
injected shellcode and execute it.

The right-hand part of the image below shows the malware hooking the
NtWaitForSingleObject function on the target process, in this case firefox.exe. The left part of
the image shows the targeted process with the newly hooked function.

8/16

Command

H
ModLoad :
ModLoad
ModLoad -
HodLoad |
HodLoad
HodLoad :
ModLoad -
HodLoad
HodLoad |
HodLoad
ModLoad -
HodLoad -
HodLoad
HodLoad :
ModLoad
ModLoad -
HodLoad ;
(220.a50)

cs=001b

960000 falcOnOn
6c940000 62993000
£9cE0000 69f5b000
73d00000 73414000
72820000 72854000
6d300000 64318000
69bd0000 £9c42000
74320000 7435000
692d0000 £9%bc1000
73d50000 73452000
£98c0000 £9%ace00n
70bb0000 70hke3000
75330000 75347000
73970000 73973000
73220000 73b4£000
755c0000 75548000
74040000 740ab000
736£0000 736£4000

C:
o4
c:
C:
c
CE
&
c
[
c
c:
[C5
c
C:
T
c:
[oH

rogran =“Hozilla Firefom mozavoodes.dll
“Windows\systeniZimiplat.dll
“Windowsheystend2snf dll
“Windows\systen32\ATL DIL
“Windows\systen32 ksuser.dll
\Windowshsysten3 2 duwas .d11
“Windows\systeniZievr.dll
“Windowssvsten3 2 FOVRPROF .dl1
“Windows\Systend2 nenpeg2ades d1l
“Windows\Systen32ssle.dll
\Windows“Systend 2 nsnpegivdes d1l
“Windows\Systen32 squapi dll
“Windows“Systen32 borypt . dll
“Windows\systen32NLINKINFO d11
“Windows\systemIZ ntshrui.dll
“Windowsheystend2hsrveli dll
“Windows\systen32cscapi dll
“Windows“svsten32 dhcposves . DLL

Ereak instruction swception - code 50000003 (first chance)

=2:2=7££23000 sbx=776ed23d =cx=00000000 edx=776=d23d esi=00000000 =di=776=d23d
=ip=77683540 esp=2011£99c ebp=2011f3cE iopl=0 nv up ei pl zr na pe nc

=5=0023 d==0023 es=0023 {==003b gs=0000 =f1=00000246

x%%x ERROR: Symbol file could not be found. Defaulted to export symbols for C:~Windows
ntdll!DbgBreakPoint

77683540 co int 3
0:0505 u ntdllINtVaitForSingleObiect

ntdll!ZylaitForSingleObiect

77695260 =9£159Ec0d Jnp 01661856

77635265 babO03fart nov eds, of fest SharedUserData!SystenCallStub (720300}
77695262 ££12 call dvord ptr [edz]

7769526 c20c00 Tet Ch

7763526 50 nop

ntdllINtUaitForliorkVialorkerFactary

77695270 bEBRE010000 moy eax, 1880

77695575 bab003fe?f nov

Command EMES
024f105b ££742428 push dword ptr [esp+28h]]
0:008> g

Ercakpoint 1 hit
=ax=00080000 sb==00090004 ecx=01c4f074 edx=776964f4 esi=00000000 =di=0000035

eip=77695eel esp=01lcdffic ebp=01c4fB878 iopl=0 OV up ©1 ng nz na pe cy
cs=001b =s=0023 ds=0023 es=0023 {s=003b gs=0000 ef1=00000a87
ntdll!lZwlriteVirtuallienory

77695e=0 bB3f010000 mov eax, 18Fh

0:008> dps esp L7

Olcdf@dc 00D6634d

01c4£850 DDODO2=B

01c4£854 01680000

01lcdfR5E 002c7928

01ic4faSc 0DODO3Sc

01c4£860 01c4£874

0icdfaéd 00ODOODD

00085 g

Breakpoint 1 hit

=ax=00080000 sbx=77695260 ecx=01c4f064 edu=776964f4 e=i=00000000 =di=00000005

cip-77695ee0 esp-0lcif8ic cbp-01c4f868 iopl-0 ov wp ci ng mz na pe oy

cs=001h _===00123 _d==0073 == A f==003h__a=s=0000 ef1=00000a87
W1 EEY T bus L Henory

E ey L T s e = cax, 18Fh
0:008> dps esp L7
01c4£83c 0006634
0icdizdn DDOD02=3
0icdfadd 77695260 ntdll‘ZaniLFﬂr51ngleOhjea
0lc4fg4s 01cd£890
Oicdfads 0DODODDS
01c4£850 D1c4£864
01cdfg54 OlcdfBac
0008 lhandle 00000288 £
Handle 2e8

Type Process

Attributes

GrantedAiccess O=1438

Hone
VHOp, VHRead , VHWrite, Querylnfo

776dte6l & HandleCount £
77635865 —5rtset ShavedUserData!SystemCallStub (7fs0300) PointerCount 184

77635262 ££12 call dword ptr [edx] Hane <nome>

77635e6c o200 ret 0Ch Object Specific Informati

77695=6f 90 nop Process Id 2592 -<f":,=

0:0505 u 01661856 Farent Process 2312

01661856 al16306601 nov cox.dword ptr ds:[01663018h] Bas= Priority 8

0166185b 838030010000 | mav dword ptr [eax+130h] eax 0:008> g

01661861 eBdi010000 call 0166124E Hreakpoint U BIE

01661866 85c0 test eax eax =2x=00000001 ebx=7741f24c ecx=00000001 edx=002cd998 ==i=025872d0 =di=00000000

01661868 7510 Jne 01g6187a eip=75a5916d esp=01lcdflcc ebp=01c4fBeB8 iopl=0 nv up ei pl zr na pe nc

01661862 2116306601 nov cox.dvord ptr ds:[01663018h] c==001b =s=0023 d==0023 es=0023 fs=003b gs=0000 =f1=00000246

01661865 6200 msh 0 KERNELBASE | OpenProcess

01661871 8bB030010000 Moy eax dvord ptr [eax+130h] 75aG916d 8bff mow edi, edi

[I B | Ll | Llj
[6505 | 00085 [

Figure 8: Before and after IcedID’s browser process hooking.

The hooking process does not stop here; it is a perpetual loop that continues for as long as
the device is infected with IcedID. If the user opts to launch a different browser, the malware
will hook it as well and enable itself to intercept and interfere with the victim’s online banking
activities on any of the three browsers it can hook.

A Closer Look at IcedID’s Shellcode

Let’s take a closer look at the shellcode that IcedID injects into browser processes. At the
starting point, the newly hooked browser process calls on the NtWaitForSingleObject
function. The injected shellcode runs and fixes the hook to make sure the shellcode leading
to the main function will only be called once and not loop back repeatedly, especially since
NtWaitForSingleObject is a common API and will be called many times. This also wipes the
traces of the hook, which can make it harder for researchers to find.

The image below shows the starting address of the shellcode that is executed when the call
for NtWaitForSingleObject is launched by a legitimate thread from the hooked process.

9/16

Al 18 36 66 @1 mov eax, ds:dword_ 1663818 ; function table

89 28 30 81 60 o8 y [egxtlanh], egx

ES DF @1 @0 @0 [call fix WaitForSingleObject patch |

85 Ce test eax, eax N =

75 18 jnz short loc_16B187A

Al 18 30 66 @1 mov eax, ds:dword_ 1663818

6A B8 push 8

8B B0 20 91 08 B8 mov eax, [eax+138&h]

FF 58 38 call dword ptr [eax+38h] ; RtlExitUserProcess
loc_166187A: ; CODE XREF: segb@@:816618681]

ES 17 @9 88 @8 [=11 build IAT]

85 (8 test eax, eax

74 85 jz short loc 1661888

ES F@ 82 &8 &8 [call main_func]
loc_1661888: ; CODE XREF: seg@@@:816618811]

Al 18 30 66 81 mov eax, ds:dword_ 1663818

86 88 36 91 b8 a8 L sax . [aasil 2o
FF 68 28 | jmp dword ptr [eax+28h] ; ZtﬂdaitFlJrSinglEDbjecg

Figure 9: Starting address of the shellcode executed when the call for NtWaitForSingleObject
is launched.

The function fix_NtWaitForSingleObject will uninstall the hook from NtWaitForSingleObject in
the browser process, reinstating the original code that was there before the malware hooked
it. Next, the shellcode will install the hooks inside the web browser’s process and then call
NtWaitForSingleObject to continue executing the browser’s process.

HodLoad: 73940000 73a82000 C:~Windowssystend2~DUI70 . d11 ‘:J
HodLoad: 72400000 72d4=000 C:~Windows systemi2-actzpray . dll
HodLoad: fec30000 GeckS5000 C . “Progran Files“Hozilla Firefox-mozavutil dll
HodLoad: 69f60000 6alc0OOD C:~Program Files“Hozilla Firefox~mozavcodec.dll
HodLoad: £c940000 6=999000 C »Windows systeni2-nfplat . dl1l
HodLoad: £9c50000 69£5b000 C “Windows system32snf .dll
HodLoad: 73400000 73414000 C:~Windows~svystem32~ATL . DLL
HodLoad: 72820000 728ad4000 C:~Windows syzteni2-lksuser . dll
HodLoad: 64300000 64318000 C: “Windows“system32 d=zva? d11
HodLoad: 69bd0000 &69c4a000 C:~Windows~systen3d2 evr.dll
HodLoad: 74320000 743c&5000 C:~Windows system32~POVEPROF . d11
HodLoad: ©69ad0000 69bcl000 C:“Windows“Systend2-nsnpegladec . dll
HodLoad: 73450000 73d5a000 C »Windows~Systeni2~=slc.dll
HodLoad: £98c0000 69ace00l C “Windows System32 nsnpeg?vdec dll
HodLoad: 70bb0000 70be3000 C:“Windows"Systend2-sgnapi . dll
MHodLoad: 75330000 75347000 C »Windows~Systend2~borypt . dll
HodLoad: 73370000 73379000 C “Windows sy=tem32SLINKINFO d11
HodLoad: 73a=0000 73b4f000 C:~Windows~systend2 ntshrui . dll
HodLoad: 755c0000 75549000 C:~Windows syztend2 srwvcli . dll
HodLoad: 740a0000 740ab000 C “Windows“system32 cscapi . dll
HodLoad: 736£0000 736£4000 C:~Windows~systemni2~dhcposvoe . DLL
(220.530): Breal instruction exception - code 80000003 (first chance)
cax=7{f 96000 ebx=7762d23d ecx=00000000 edx=776ed23d =si=00000000 edi=7?76ed23d
=ip=77683540 esp=1ac8fb3c sbp=lac8fbkf iopl=0 nv up =i pl zZr na ps nc
cs=001b ===0023 ds=0023 es=0023 {==003b g==0000 ef1=0000024%
*x% ERRCORE: Symbol file could not be found Defaulted to export symbols for C:\Windows“SYSTEM3IZ2-ntdll dll —
ntdll!DbgBreskPoint
77683540 co int 3
0BT ot dLLINEN =it ForSingleOhiect, "
tdll | ZyWaitForSingledbject b !
77695=60 bEA7010000 mow eax. 187h
77695265 ball03fe7f mwov edx, of fset SharedUssrDatalSystenCallStub (7££=0300)
77695=6a ££12 call Hword ptr [edz]
77695ebc c20c00 ret 0Ch
77E95eRE 90 nop i
B = 0 = T =N == L vy 5
77695270 b8AS0O10000 mov =ax. 188h
77695275 bal003fe7f o edxz, of fzet SharedUserDatal!SystemCallStub (7ffe0300)
77695=7a ££12 call dword ptr [ed=]
| | 3
m:051>|

Figure 10: IcedID restores the NtWaitForSingleObject function code to its original content.

Examining the shellcode in WinDbg, a commonly used Windows debugger, we can see that
NtWaitForSingleObject has indeed been restored to its original code.

10/16

One of the browser functions hooked by IcedID is Ws2_32:connect. This function redirects
the victim’s browsing traffic to the now-malicious svchost.exe process, allowing the malware
to identify data the attacker wishes to receive, such as credentials, payment card details, etc.
The data is exfiltrated to the attacker’'s command-and-control (C&C) sever.

We can see that the malware function hook_connect gets the same three parameters as the
connect function. First, it checks for the address family, browser type and port number and
uses the information to determine whether to call the original connect function and exit or
continue with the hook.

In the next step, the malware calls the original connect function with a new sockaddr object
and new parameters: 127.0.0.1 as the IP address, AF_INET as the family address and a
new calculated port number. The traffic is ultimately redirected to the malicious svchost.exe
process.

int _ stdeall hook_connect(int socket, SOCKADDR_IN *sockaddr, int sockaddr_len)
i
SOCKADDR_IN *original_sockaddr_1; // esi
int v4; J// edi
signed int v6; // [esp-1Ch] [
SOCKADDR_IN sockaddr 13 ff :
sendData vB; // [esp+lBh] [e

caddr_1 = sockaddr; // BrowserType
--»sin famlly != AF_INET || !sub_16617FA(* (&ptrTable + @x18), sockaddr-»sin_port))
1 eturn

return original_connect(socket, original_sockaddr_1, sockaddr_len);// call to original connect func and r

Ws2_32 10ctlsocket(;, cet, OxBOBABETE, &sockaddr);
ddr_1.sin fam1ly = 8;

1.sin_zero = @;

l.sin zerof4l = @

: ~_1.sin_family = AF_INET;
SO _;,sin_addr.S_un.S_addr = Bx1eeeevr; // 127.8.8.1
sockaddr_l.sin_port = ptrTable->port_2_mask | (*&ptrTable->port_1_mask << 8);

yi = orlglnal connect(socket, &sockaddr_1, 16);
if (vd == -1)
i
5 = @x274D;
}
else
r
vi.tableVal = *&ptrTable ;fleld 358;
&.originalAddress = criginal_ sockaddr 1-»sin_addr.S_un.5_addr;
vi.orignalPort = _ ROL2 (u'_c_1o sockaddr_1-»sin_port, B);
va.browserType = *(&ptrTable + 24%;
NS2_32_5end(s:c<e:, &8, 12, 8);
ToCRagaT = I3
N52_32_10ctlsocket socket, BxBOBA667E, &sockaddr);
4 = -13
}

00001634 hook connect:9 (1661634)

Figure 11: Reversing the hook installed on the connect function in the web browser.

This shellcode is what enables IcedID to gain some control and insight into what the victim is
doing online and allows the attacker to interfere with that activity.

Deeper Into the OS Process Injection

The second injection method IcedID uses is designed for injecting into processes of the
operating system, not the browser.

11/16

This second tactic relies on the familiar method of creating a new process with the
CREATE_SUSPEND flag and then hooking the RtIExitUserProcess API. Once the new
process starts executing, it will fix the function back to its original state.

This injection method is an interaction between the different svchost.exe processes and the

malware’s payload.

Command

Microsoft (R) Windows Debugger Version 6.12.0002.633 X86
Copyright (c) Microsoft Corporation. ALl rights resexved

xxx wait with pending attach
Symbol search path is: w=x Invalid ==

% Symbol loading msy be unrelisble without a symbol search path. *
% Use .synfix to have the debugger choose a symbol path *
x After setting your symbol path use reload to refresh symbol locations. *

Executable search path is
ModLosd: 0010000 00c18000 svchost sxe
ModLood . 77650000 7778c000 ntdll.dll
xxx ERROR: Symbol fils could not be found
[£84.8d4)
First chance emceptions are reported before any emception handling

This exception may be expscted and handled

ax-00000014 ebx-7772714c cox-00000001 =dx-7772714c e=i-00000000 edi-7ffde000
=ip=7765324c esp=001df554 ebp=001d85c iopl=0 nv up =i pl zr na ps nc
cs-001b ss-0023 ds-0023 es-0023 £s-003b gs-0000 =£1-00010246
ntdll!RtlEncodePointer

77603245 8bff nov
00015 u ntdllIRtlExitUserFrocess
ntdll|Rt1ExitlUssrProcess

Defaulted to export symbols for ntdll . dll -
Access wiolation — code 0000005 (first chance)

edi.edi

776b3751 BBEE naw edi.edi
776b3753 55 push ebp
776b3754 Bbec now ebp. esp
776b3756 53 push ebx
776b3757 6 push esi
776b3758 57 push edi

776b3759 fa0l pu=h

1}
4 ntdllKtIReportSllentProcesskxlt+lxda (//bbd/ 337
T 001> u ntdll!RtlExitUserProcess |
ek
776h3751 =938df9a88 [Canp 0006168]
Tzl EhR

776b3756 53

?76b3757 56 push esi
77603758 57 push edi
776b3759 6all push

[i}
ntdll!Rt1ReportSilentProcessExit+0xda (776b3733)

776b375b eBd3fFEfFfF call
77603760 DE40737277 pl=1g edi.offset ntdll!HlsinsiCodePage+0x1£0 (77727340
77603765 57 push edi
0:001> u 0006168
0006168 al98f00600 mow eax, dword ptr ds: [0006F098h]
00061693 56 push esi
00061694 898030010000 nov dvord ptr [eax+l30h].eax
00061692 =825010000 call 00061884
0006169 BbEO naw esl,=ax
000616al eB2£f000000 call 000e16ds
000616a6 B5c0 test sax, sax
000616b3

0006168 7409 is

Command

c==001b =s=0023 ds=0023
ntdll|ZylriteVirtuallencry:
7769520 bBEfO10000 mow
0:002> dps esp 18

00b3iE44 00043d96

00b3846 00000130

00b384c 00020000

00b3fB50 00210c48

003854 0000056

00538568 (O0b3£8Sc

003850 00b3£340

0053860 00b3£87c

00025 g

Breskpoint 0 hit

cs=001b =s=0023 ds=0023
ntdll!ZylriteVirtuallenory:
776350 biaf010000 now
0:0025 dps esp 18

00b3fB44 00043dSk

0053846 00000130

00b3ig4c 00030000

003850 001d41ds

0053654 00004dES

00b3f858 00b3f85c

003855 00b3f840

0053860 00b3£87c

0.002> =

Sreakpoint U hit

635e=0 esp=0
u] =00

» dps _es:

0:002 D 18
00b3£830 00043d96
00Bb3£834 00000130

eip=77695e=0 esp=00b3f844 ebp=00b3{860 iopl=0
es=0023

f=s=003b gs=0000

eax, 18Fh

f==003b gs=0000
eax, 18Fh

f==003b g==0000
eax. 18Fh

kil

00L3£838 7653751 nLdlllRtlExiLUsErPrD:EsE]
00b3£83c "OUESTS /0
00b3£840 00000O0S
00b3£f844 DOb3£848
00b3£848 0DObB3£230
00b3fB84c 00b3fB7c
a0z g

c==001b ===0023 ds=0023 es=0023 f==003b g==0000
ntdll!ZulWriteVirtualHemory
776950 bBEE010000 nav =ax, 18Fh

nv up i pl nz na po nc
ef1=00000202

=ax=00030000 ebx=001c2c40 =cx=00b3{f85c =dx=776964f4 =si=-00b3£850 =di=00000000
eip=77695eel esp=00b3f844 cbp=00b3I{&E0 iopl=0
es=0023

nv up ei pl nz na pe nc
=f1=00000206

eax=00030000 eb=x=776b3751 ecx=00b3f848 edx=776964f4 e=i=00000001 edi=00b3I£8390
00b3f&4c iopl=0
=0023

nv up =i ng nz na po nc
=£1-00000282

eax=01b2£178 ebx=01h2f690 son-bf7d71687 cdx=00000053 esi=776950e0 sdi-01h2fiac
=ip=776952=0 esp=01b2£154 ebp=01b2f3cd iopl=0

no up i pl zr na pe nc
ef1=00000246

el

Figure 12: Before and after IcedID’s hooks on targeted OS processes.

The left-hand part of the image above shows the svchost.exe process where a hook was
installed on the RtIExitUserProcess API, making it jump to the shellcode the next time it is

called by a legitimate thread from the svchost.exe process.

We can also see the start of the shellcode in the Interactive Disassembler (IDA), and we can
see that the first function being called fixes the hook that was installed on the

RtIExitUserProcess API.

12/16

Al 93 F@ 96 @8 mowv eax, ds:6F@98h
56 push esi

39 B8 38 81 68 88
E8 E5 @1 68 a0

call fix_patch_RtlExitUserProcess

8B F@ = =
E8 2F &8 ©0 @8 call Build IAT
85 (@ test egx, oax
74 @89 jz short loc_429D3
EE F@ 83 oo o8 call Start
85 (8 test eax, eax
75 14 jnz short loc_429E7
loc_42903: ; CODE XREF: seg@@@:e@e429C81]
85 F6 test esi, esi
74 1A jz short loc_429F1
Al 98 F© 95 88 mowv eax, ds:6F@98h
6A B8 push @
8B 3@ 30 @1 a6 o mov eax, [eax+138h]
FF 58 38 call dword ptr [eax+38h]
loc_429E7: ; CODE XREF: seg@@@:e80429D11j
; Segeeo:eeed429EF] j
6A FF push @FFFFFFFFh
FF 15 EE @0 &7 o0 call dword ptr ds:7@BESh
EB F& jmp short loc_429E7

Figure 13: Starting address for the shellcode that’s executed upon a call to
RtIExitUserProcess.

Examining the code of the RtIExitUserProcess API after the removal of the malware’s hook,
we can see that the code was restored to its original state:

Command

HodLoad: 76c30000 76cfo0on “Windows“systen3i2~USER32 411

HodLoad: 75560000 755a=000 “Windowsheysten3d2~GDIZ2 d11

ModLoad: 77260000 ?726a000 “Windows“system32-LPK 411

HodLoad: 7630000 76ecd000 “Windows“systemd2~UJSP10.d11

ModLoad: 75750000 7&576f000 “Windows systen32~IMM32 DLL

ModLoad: 76d&60000 76e2c000 “Windows“systen32~HSCTF . d11

ModLoad: 76400000 76d457000 “Windowsheystemd2~SHLVAPT . d11

ModLoad: 76ab0000 7&6b50000 ~“Windowseystemd2WADVAPIZZ2 dll

ModLoad: 75c40000 75c75000 “Windows systemn32~WS52_32 dll

HodLoad: 75ce0000 75cec000 ~Windowsssystend2™~HSI . dll

ModLoad: 72640000 72728000 ~“Windows eystend2WWINHTTE .11

ModLoad: 72680000 726cf000 “Windows“systend2wwebio dll

HodLoad: 73ce0000 7370000 ~Windowshsystemnd2~HLAapi . dll

ModLoad: 71030000 71040000 ~Windows eystend napinsp.dll

ModLoad: 71010000 71022000 “Windows“systen32-pnrpn=p.dll

HodLoad: 74c80000 74chc000 ~WindowssSystend2 mswsock . dll

ModLoad: 74cl0000 74c54000 ~Windows eystend2~DHSAPT .41l

ModLoad: 71000000 71008000 “Windows“Sy=ten32 winrnr.dll

HodLoad: 72de=0000 72dfc000 ~Windowsssystend2~IFHLPAPT DLL

ModLoad: 72440000 72dd7000 “Windows systen3 2 ~WINNSI . DLL

ModLoad: 72cc0000 72ciB000 “Windows~Systen32~fwpuclnt dll

HodLoad: 71600000 71606000 ~Windowsssystend2 rasadhlp dll

HodLoad: 74670000 74675000 ~Windows SystemniZ ~wshtcpip. dll

(770.8f4) . Break instruction esception - code 80000003 {first chance)
eax=7ffdall0 sbx=00000000 =cx=00000000 edx=771afld3? =s1=00000000 =di=00000000
=ip=77144108 esp=007afaad sbp=007afadl iocpl=0 ny up =i pl zr na pe nc
c==001b ===0023 d=s=0023 e=s=0023 f{==003b g==0000 ef1=00000246
#x% EFROE: Symbol file could not be found. Defaulted to export synbols for C ~Windows~SYSTEM3Z2-ntdll.dll -
ntdll ! DbgBreakPoint :

OOO0OO000OO0O00000O000O000n

;004 u ntdll!RtlExitUserProcess
ntdll IRt 1ExitUserProcess:

7716el?b 8bff mow edi. edi
771leel2d 55 push ebp
7716elle 8bec now ebp.esp
77162130 53 push ehx
77162131 5B push esi
77162132 &7 push edi
77162133 &

push
=

aln 0
77162135 =882000000 all ntdll |Et1ExitU=serProcess+0291 (7716elbo)

=

oo

I [tno, colo [Svs 0i<local= [Proc 000:770 | Thed 004:8f4 A5 [00R [CARS (UM

Figure 14: RtIExitUserProcess code restored to original content after uninstalling the hook.

13/16

This sums up IcedID’s split injection tactics. It appears that the malware’s operators are
getting advice from other coders, likely those working on the TrickBot project. These
modifications can make the malware’s activity stealthier, yet effective.

IcedID Keeps It Moving

IcedID emerged in 2017 as a modular banking Trojan with advanced capabilities to automate
fraudulent transactions and control user devices to take over their bank accounts. Since its
initial analysis, it has been evolving gradually over time and showing explicit collaboration
with the TrickBot Trojan by ways of common distribution and feature similarity.

In August 2018, our researchers noted that IcedID had been upgraded to behave in a similar
way to the TrickBot Trojan in terms of its deployment. The binary file had been modified to
become smaller and no longer featured embedded modules. The malware’s plugins were
being fetched and loaded on demand from a remote server after the Trojan was installed on
infected devices. These changes made IcedID stealthier, modular and also more similar to
TrickBot.

In addition to its increased stealth level, IcedID started encrypting its binary file by
obfuscating file names associated with its deployment on infected devices. Another TrickBot-
inspired modification saw IcedID add event objects, which are a means to coordinate
multiple threads of execution in Windows-based operating systems. IcedID began using
named events to synchronize the execution between its core binary and the modular plugins
it could fetch from its control server.

Although malware authors do sometimes copy from one another, these modifications were
not coincidental. Even if we only looked at the fact that TrickBot and IcedID fetch one another
into infected devices, that would be indication enough that these Trojans are operated by
teams that work together.

X-Force data from 2018 placed IcedID in the top five most active banking Trojans on a global
scale. The malware’s operators have links to other key cybergangs in the threat arena, and
they have been using IcedID to actively target the customers of major banks, payment card
providers, e-commerce companies and cryptocurrency platforms. X-Force researchers
expect this malware to continue targeting banks and payment platforms as we move into the
second quarter of 2019.

14/16

https://securityintelligence.com/new-banking-trojan-icedid-discovered-by-ibm-x-force-research/
https://securityintelligence.com/the-business-of-organized-cybercrime-rising-intergang-collaboration-in-2018/
https://securityintelligence.com/icedid-operators-using-atsengine-injection-panel-to-hit-e-commerce-sites/

m 25% - TrickBot
® 21% - Ursnif

13% - Ramnit “'
m13% - IcedID “
® 8% - Zeus Pands

4% - GootKit .

m 3% - Dridex
m 3% - Zeus Sphinx \
m 3% - URLZone

B 3% - QakBot
B 4% - Others

Figure 15: Top most active banking Trojan families in 2019 (source: IBM Trusteer).

Nir Somech
Malware Researcher — Trusteer IBM

Nir Somech is an engineer working as part of IBM X-Force research. He specializes in
researching attacks targeting the financial threat landscape. Nir holds ...

think 2022 z

IBM Think Broadcast
Let's think together.

Watch ondemand -

15/16

https://securityintelligence.com/author/nir-somech/
https://www.ibm.com/events/think%20

https://www.ibm.com/events/think%20

