
1/17

March 28, 2019

Analysis of ShadowHammer ASUS Attack First Stage
Payload

countercept.com/blog/analysis-shadowhammer-asus-attack-first-stage-payload/

Introduction

On March 25 2019, Kaspersky released this high-level advisory
(https://securelist.com/operation-shadowhammer/89992/) describing the attack against
ASUS:

“In January 2019, we discovered a sophisticated supply chain attack involving the ASUS
Live Update Utility. The attack took place between June and November 2018 and according
to our telemetry, it affected a large number of users.…

The goal of the attack was to surgically target an unknown pool of users, which were
identified by their network adapters’ MAC addresses. To achieve this, the attackers had
hardcoded a list of MAC addresses in the trojanized samples and this list was used to
identify the actual intended targets of this massive operation”

The original advisory contains lots of more useful information, but technical details were
limited at this early stage. To learn more about the attack we decided to investigate the
payloads further.

History of Activity

th

https://countercept.com/blog/analysis-shadowhammer-asus-attack-first-stage-payload/
https://securelist.com/operation-shadowhammer/89992/

2/17

The Kaspersky post references a zip file that is a copy of the ASUS Live Update Utility.
Inside this zip file were three files, two MSIs, and a file called Setup.exe. By reviewing the
history of these files on VirusTotal and examining the files themselves it was confirmed that
shellcode had been inserted within the legitimate Setup.exe and the code modified to
redirect execution.

We analyzed historic samples from VirusTotal to gain a better understanding of the attacker’s
actions over time. Kaspersky reported that this attack ran from June to November 2018, this
appeared to be true based on the samples submitted to VirusTotal. The first malicious
sample can be seen on the 29 June 2018 and the most recent on 17 November 2018.

A high-level analysis of these samples found that at least two different backdoor variants
were deployed. From June to September the attackers used an unencoded payload along
with a patched WinMain to redirect execution.

From September onwards a stealthier backdoor was deployed, that included an obfuscated
shellcode payload and decoder with execution via the function _crtExitProcess. All samples
were also found to use the same C2 channel involving asushotfix[.]com which was first

th th

3/17

registered on 5 May 2018 with an IP address 141.105.71[.]116 located in Russia.

Pivoting on this IP address the following additional domains were also found:

Domain First Seen

host2[.]infoyoushouldknow[.]biz 2013-04-27

nano2[.]baeflix[.]xyz 2016-03-24

asushotfix[.]com 2018-05-22

www[.]asushotfix[.]com 2018-07-13

homeabcd[.]com 2018-09-05

simplexoj[.]com 2018-09-11

It is unclear what role these domains played however there is a strong possibility they were
also used in the ASUS attack or by the same threat group in other attacks.

In the next sections, we’ll take a deeper dive into the sample referenced by Kaspersky
MD5:55a7aa5f0e52ba4d78c145811c830107 which included the obfuscated payload.

Loading the Shellcode

At a high level the Setup.exe binary appeared to be a legitimate file. It was signed, meta-
information matched legitimate files and the majority of the code matched other legitimate
setup files. However, when comparing a legitimate Setup.exe with the malicious one we find
the code has been patched to divert execution from _crtCoreExitProcess to a new function.

This new function (which we renamed to drop_shellcode) contains the code to extract,
decode and execute the embedded payload. By placing the diversion at the end of the
Setup.exe file right before the ExitProcess this will ensure the legitimate file runs as expected
reducing the chance of discovery.

th

4/17

Investigating the shellcode dropping function, we find that it begins by allocating memory
within the Setup.exe process with a VirtualAlloc call, then copies embedded shellcode into
the allocated memory:

Interestingly this first step only copies the first 16 bytes of the payload into memory before
decoding them. These bytes actually contain the size of the payload which is then passed to
a second VirtualAlloc call. The main shellcode is then written, decoded and executed.

The decoding routine won’t be analyzed here, but similar code has been used by Winnti
previously.

Analyzing the Shellcode

According to our analysis so far, the shellcode performs the following actions:

1. Resolves library functions it needs to call later.

a. First kernel32’s base address is found by traversing structures in the PEB and matching
the module name by checking for the k, l and dot (.) characters.

b. The modules PE table is parsed to find the export table.

c. Functions hashed with a custom function and matched by iterating through each export.

d. Functions in other modules are found in the same way, but with the help of
LoadLibraryExW to get the base address; this function is one of the first things located in
kernel32 at the start.

2. MAC addresses are found from the machine by calling IPHLPAPI.GetAdaptersAddresses.

3. The MAC addresses are hashed with MD5.

4. The MD5 hashes are compared against a hardcoded list.

a. If no match is found, a mysterious IDX file is dropped to disk.

5/17

5. If a MAC address matches, a second stage payload is downloaded from a URL using a
proxy aware API call. This goes directly into RWX memory and is called.

More details of each of these steps follow below.

Function Resolution

The shellcode starts by locating some library functions that it wants to use. This is broadly a
two-step process, first looking for LoadLibraryExW and GetProcAddress from kernel32.dll,
before resolving further functions from a number of DLLs later, armed with the address of
LoadLibraryExW to use on the second stage.

For the first step, the base address of kernel32.dll is required. To find this, the Thread
Information Block (TIB) is used to navigate structures and ultimately locate
InInitializationOrderModuleList which contains a list of loaded modules in the process.

The structures queried to get here are:

TIB -> PEB -> Ldr -> InInitializationOrderModuleList

In fact, InInitializationOrderModuleList is of type _LIST_ENTRY, which is a doubly-linked list,
and its “Flink” (or forward link) is followed to traverse this list of modules. Each entry includes
a BaseDllName field, and this field is checked in each entry to see if it matches kernel32.dll.

But in the spirit of obfuscation, they do not directly check if the name is “kernel32.dll”.
Instead, they check for the presence of the k, l, and dot (.) in the appropriate locations in the
string (checking each letter twice, once for lower case and again for upper case). And in fact,
they only check the first byte of each 2-byte Unicode character, which works in practice but is
certainly not the official way to compare Unicode characters.

This whole process can be seen in the commented code below:

6/17

Once kernel32.dll’s entry is found, its DllBase field can be read, giving the base address of
the module. This is used with a function in the shellcode that accepts a module base address
and a custom hash value for a function name. This function parses the PE header from the
module in memory to locate the exports table. It then iterates through each export and runs a
simple custom hash-like function on the name. When the matching hash value is found, the

7/17

target function has been located in the export table, without needing to include the function
name directly in the code. The address of the function is saved from the export table for later
use.

This export table searching is shown commented below, with the hash code in the grey
block:

8/17

The function resolution’s second step uses the same shellcode routine to look for hashed
function names in the export table. But as it needs to call several other DLLs it uses
LoadLibraryExW which it got in the first step to get the base address of the modules.

Below is where all the other hash values for function names are found in code, commented
with the module and function name they correspond to:

These function addresses are saved in a structure that the rest of the code often accesses
via a register base pointer. To help see what function is being called you can use the
following offsets:

Offset Function

0x4 kernel32.VirtualAlloc

0x8 kernel32.GetModuleFileNameW

0xC kernel32.WritePrivateProfileStringW

0x10 kernel32.GetSystemTimeAsFileTime

0x14 kernel32.FileTimeToSystemTime

9/17

0x18 kernel32.VirtualFree

0x1C ntdll.memcpy

0x20 ntdll.memcmp

0x24 ntdll.memset

0x28 ntdll.swprintf

0x2C ntdll.sprintf

0x30 ntdll.strncat

0x34 ntdll.MD5Init

0x38 ntdll.MD5Update

0x3C ntdll.MD5Final

0x40 IPHLPAPI.GetAdaptersAddresses

0x44 wininet.InternetOpenA

0x48 wininet.InternetOpenUrlA

0x4C wininet.InternetQueryDataAvailable

0x50 wininet.InternetReadFile

0x4 kernel32.VirtualFree

Knowing these offsets and defining them makes the code a lot more readable. We go from
this:

To this:

In case anyone finds it useful, some Python code to help produce these hashes and find
matches against real function names is provided here (slightly abbreviated):

10/17

import numpy

We expect, and require, that int_scalars overflow occurs, so ignore
numpy.warnings.filterwarnings('ignore')

find_hashes = [
 0x431A42C9, 0x0C2CBC15A, ... function hashes ...
]

names = [... list of exported functions in target DLLs ...]

hashes_2s_compliment = {}
for hash in find_hashes:
 twoscomp = hash
 if twoscomp >= 1<<31: twoscomp -= 1<<32
 hashes_2s_compliment[twoscomp] = hash

mul_by = numpy.int32(0x21)
for name in names:
 name_hash = numpy.int32(0)
 for char in name:
 name_hash = name_hash * mul_by
 name_hash += numpy.int32(ord(char))
 if name_hash in hashes_2s_compliment:
 print('{}: {}'.format(hex(hashes_2s_compliment[name_hash]), name))

MAC Addresses

Armed with these functions the shellcode continues its work, moving on to the MAC
validation phase. Here we can see it getting the MD5 hash of MAC addresses on the
machine by calling a function within the shellcode we have called get_macs_and_md5. This
is called twice. The first time gets the number of MAC addresses to help it allocate the right
amount of memory to store all the MD5 hashes. The second time it actually generates and
stores the MD5 hashes.

11/17

MAC addresses are obtained by calling GetAdaptersAddresses with AF_UNSPEC to get all
interfaces.

12/17

And the actual MD5 calls:

13/17

These MD5 hashes are then checked against a set of hashes hardcoded into the shellcode
like in the example below:

This shows the branches taken depending on whether there was a MAC address match or
not, right at the end of the entry function in the shellcode:

14/17

Stage 2 Payload Download and Execute

If there is a MAC address match, the shellcode proceeds to download a second stage from
the internet. The URL used for this stage is found hardcoded as a set of constant values,
which are little-endian, so the string fragments look backward when forced to display as
ASCII below:

Which gives the URL:

https://asushotfix[.]com/logo2[.]jpg

The URL is opened with a proxy-aware function:

15/17

Data is downloaded from the URL directly into a memory region allocated read/write/execute,
and finally the stage 2 code is called:

At the time of analysis, the second stage payload was no longer available from the callback
URL. It is likely further information will become available over the coming weeks.

Detection of ShadowHammer

16/17

There are several indicators defensive teams can hunt for including the hashes of files,
dropped files, and network-based IOCs.

SHA-256 (along with the month it was seen)

bca9583263f92c55ba191140668d8299ef6b760a1e940bddb0a7580ce68fef82 June
6aedfef62e7a8ab7b8ab3ff57708a55afa1a2a6765f86d581bc99c738a68fc74 July
ac0711afee5a157d084251f3443a40965fc63c57955e3a241df866cfc7315223 July
e78e8d384312b887c01229a69b24cf201e94997d975312abf6486b3363405e9d Sep
736bda643291c6d2785ebd0c7be1c31568e7fa2cfcabff3bd76e67039b71d0a8 Sep
9bac5ef9afbfd4cd71634852a46555f0d0720b8c6f0b94e19b1778940edf58f6 Sep
9a72f971944fcb7a143017bc5c6c2db913bbb59f923110198ebd5a78809ea5fc Oct
357632ee16707502ddb74497748af0ec1dec841a5460162cb036cfbf3901ac6f Oct
9842b08e0391f3fe11b3e73ca8fa97f0a20f90b09c83086ad0846d81c8819713 Nov

Dropped Files

For systems not matching the MAC address filter, an idx file is created two levels up relative
to the Setup.exe current directory, for example:

C:\Program Files (x86)\ASUS\ASUS Live Update\Temp\6\Setup.exe
C:\Program Files (x86)\ASUS\ASUS Live Update\idx.ini

Network

host2[.]infoyoushouldknow[.]biz
nano2[.]baeflix[.]xyz
asushotfix[.]com
www[.]asushotfix[.]com
homeabcd[.]com
simplexoj[.]com
141.105.71[.]116
hxxps://asushotfix[.]com/logo[.]jpg
hxxps://asushotfix[.]com/logo2[.]jpg

PDB Indicator

June sample – D:\C++\AsusShellCode\Release\AsusShellCode.pdb

Summary

The ShadowHammer attack is a great example of a supply chain attack where a threat actor
abused a trusted update utility to distribute malware across the globe in a targeted way. As
mentioned in the Kaspersky analysis the attack shares similarities with those performed by

17/17

the BARIUM group suggesting a continuation and even escalation in the scale and
sophistication of their operations.

From a defensive perspective, the significant time it took to uncover this attack demonstrates
that the actions taken in the first stage of the incident are stealthy and difficult to detect. But it
is quite possible that noisier indicators will be discovered as more information about the
second stage payload is released.

To provide support for real-time and retrospective detection, it is strongly recommended that
organizations deploy endpoint monitoring and response with an EDR, agent as this can give
the visibility and control needed to combat such threats.

References

[1] https://securelist.com/operation-shadowhammer/89992/

[2] https://www.virustotal.com/#/file/9a72f971944fcb7a143017bc5c6c2db913bbb59f9231101
98ebd5a78809ea5fc/detection

[3] https://www.vkremez.com/2019/03/lets-learn-dissecting-operation.html

Categories

Threats & Research

https://securelist.com/operation-shadowhammer/89992/
https://www.virustotal.com/#/file/9a72f971944fcb7a143017bc5c6c2db913bbb59f923110198ebd5a78809ea5fc/detection
https://www.vkremez.com/2019/03/lets-learn-dissecting-operation.html
https://blog.f-secure.com/category/threats-research/

