Reverse Engineering Gootkit with Ghidra Part |

dannyquist.github.io/gootkit-reversing-ghidra/

1 .;.\,W_ﬁ.: -
7/ "g:'wff"
gf :' | éh (! Lw i

T |

'H[:’ "'1r-1'"]"-+;;ﬂ;ﬂwluﬁl1 e I ‘i.'.“' 1

Open Malware - Danny Quist

Reverse Engineering and 3D Printing - Danny Quist

Blog About
Danny Quist
March 23, 2019

Ghidra is pretty handy for looking at malware. This series of post is an informal overview of
what | do. Gootkit is a great implant to learn the functionality of Ghidra. Gootkit is a NodedS
server with packaged Javascript implementing the implant functionality. There are lots of
libraries linked into the main executable including Node, OpenSSL, and many more. As a
reverse engineer it is difficult to identify and identify open libraries. In this post, | will go
through my analysis process to use and understand Ghidra’s functionality.

| will first begin by basic code analysis, and understanding how to rename variables and
types. | am going to avoid dynamic analysis initially, because dynamic analysis is something
that you can buy or implement cheaply enough. In a real-world scenario | typically start
dynamic analysis using a range of tools, then delve into the code as a secondary step.

1/14

https://dannyquist.github.io/gootkit-reversing-ghidra/
https://dannyquist.github.io/
https://dannyquist.github.io/
https://dannyquist.github.io/
https://dannyquist.github.io/about
https://ghidra-sre.org/

The purpose is to learn Ghidra, not to do a great job at reverse engineering all of Gootkit. It is
highly informal, and meant to be that way.

Ghidra All the Things!

There are now a few tutorials available on installing_ and configuring_Ghidra Ghidra. Create a
new project, and then import the decrypted rbody32 sample into the project. The sample |
will be using is:

$ shasum rbody32.x.dec
6170e1658404a9c2655c13achela2adil7bl7feae

It is a decoded version of the file downloaded from a compromised Gootkit site. While
Gootkit is the topic for this blog, this process can be applied generally to anything else.

Your import summary should look a lot like this:

2/14

https://dannyquist.github.io/ghidra-re/

Project File Name:
Last Modified:
Readonly:

Program Name:
Language ID:
Compiler ID:
Processor:

Endian:

Address Size:
Minimum Address:
Maximum Address:

of Bytes:

of Memory Blocks:
of Instructions:
of Defined Data:
of Functions:

of Symbols:

of Data Types:

of Data Type Categories:
Compiler:

Created With Ghidra Version:
Date Created:
Executable Format:
Executable Location:
Executable MDS:
FSRL:

Relocatable:
SectionAlignment:

HOH R R R OH H W

<a

Import Results Summary

rbody32.x.dec

Sat Mar 16 16:18:31 MST 2019
false

rbody32.x.dec
%86:LE:32:default (2.8)
windows

%86

Little

32

10000000

1059440b

5840995

7

0

81229

0

965

26

3

visualstudio:unknown

9.0

Sat Mar 16 16:18:29 MST 2019
Portable Executable (PE)

/home/dquist/mw/ghidra-blog/gootkit-ghidra/rbody32.x.dec

56189b5f0dd6973e0a7bc545b16c6595

file:///home/dquist/mw/ghidra-blog/gootkit-ghidra/rbody32.x.dec?MD5=56189b5T0ddB973e0

true
4096

rAdditional Information

----- Loading /home/dquist/mw/ghidra-blog/gootkit-ghidra/rbody32.x.dec
Searching for referenced library: USER32.DLL ..
Unable to find external library: USER32.DLL
Searching for referenced library: IPHLPAPI.DLL ...
Unable to find external library: IPHLPAPI.DLL
Searching for referenced library: OLEAUT32.DLL ...
Unable to find external library: OLEAUT32.DLL
Searching for referenced library: WINMM.DLL ...
Unable to find external library: WINMM.DLL
Searchina for referenced librarv: SHLWAPI.DLL ...

Figure 1: Ghidra import summary for the relevant Gootkit example

OK

Ghidra Import Summaries

Import summaries tell you critically important facts about the sample that you’re looking at.
The key thing to remember is that Ghidra is primarily a source code reverse engineering tool.

There are a few salient bits to draw your attention to:

3/14

First, compiler identification. In this case Ghidra identifies VisualStudio:unknown as the
likely compiler. This makes sense, as it is based off of a NodeJS, which is a C++ program,
and Visual Studio is the compiler of choice for Windows. Knowing the compiler is important
later when you’re puzzling through some obtuse assembly code, trying to figure out if the
compiler generated some weird code, or the malware author was being tricky. Ghidra is
excellent about identifying and categorizing compiler generated nonsense, and saves a
bunch of time.

Second, Compiler ID appears to be the the platform that the compiler was run on. As you
look at more assembly code, you'll get a good idea of how each of them generate code for
standard C and C++ programming patterns. My indicator when looking at code is whether or
not it was hand-rolled assembly, or is compiler generated. Typically hand-rolled, artisinally
crafted assembly is a good indication that there are shenanigans afoot. Hand coded
assembly can be significantly more difficult to understand, where a compiler will try to do
things the same way.

Why do | care so much about compiler produced versus hand-coded assembly? As an
analyst, you have a budget of time and attention that you can focus on every bit of code.
During an investigation | tend to hit a point of diminishing returns where fatigue sets in, and |
start to miss critically important details. The code placed around checking return values and
stack canaries is something | spend way too much time classifying in a sample. If a tool can
identify that, | can label it as not important and go on with life. If the tool does not identify
that, or more likely | get drawn in anyway, there are all sorts of suspicious APIs that are very
distracting. ExitProcess , anything thread related, etc.

Additional information is an excellent resource too. Looking at the high-level DLLs the
sample is using can give you an idea of what the functionality is going to be.

Existing Gootkit Research

Largely this document will consist of reproducing the already existing Gootkit analyses.
Gootkit is served from a compromised host and runs a small command and control server.
The user is tricked/hacked into downloading a compromised PDF/DOC/implant, which then
contacts the call-home server. Generally if you see .*/rbody32 or .*/rbody320 inthe
URL, you’ve most likely got the right sample.

@jgegeny has a copy of the extracted JavaScript files. The functionality signatures, and
overall path to success depends on understanding the JavaScript. | will focus on trying to
extract them.

In general the things you need to know about Gootkit:

1. It's based on a all-in-one compiled version of a NodeJS application. If you ever needed
a more clear and present indication that Node is evil, look no further

a/14

https://github.com/jgegeny/gootkit-xswkit-js

2. It has a second DLL inside of it to handle password and credential harvesting.
3. All of the functionality exists as JavaScript files, which we would like to decode and
obtain.

Analyzing Gootkit

Analysis Goals

1. Generate new indicators of compromise
2. Find attribution information for the authors
3. Show the functionality of Ghidra

4. Extract all the Javascript code

Assumptions

1. There is Javascript hiding inside Gootkit, and is a good source for IOCs.
2. The JavaScript files are probably compressed or encrypted.
3. The Password Grabber DLL is also embedded in this binary

Double-click the rbody32.x.dec inside of the project view and enjoy the 1337 dragon
graphic animation. The answer to “would you like to analyze now?” is always yes.

l».The Answer is Always Yes Figure 2: An exercise in clicking the Yes button until something

happens

5/14

Analysis Options ®

-Analyzers -Description

Enabled ‘Analyzer Name L~ This analyzer uses external Windows oy
Aggressive Instruction Finder (Protot... function call parameter information to
Apply Data Archives populate comments next to pushed ™
ASCII Strings
Call Convention Identification -Options
Call-Fixup Installer]]
Condense Filler Bytes (Prototype) No options available.

Create Address Tables

Data Reference

Decompiler Parameter ID
Decompiler Switch Analysis
Demangler

Disassemble Entry Points
Embedded Media

External Entry References

Function ID

Function Start Search

Function Start Search After Code
Function Start Search After Data
Non-Returning Functions - Discovered
Non-Returning Functions - Known
PDB

Reference

Scalar Operand References

Shared Return Calls

Stack

Subroutine References

Windows x86 PE Exception Handling
Windows x86 PE RTTI Analyzer

| |WindowsPE x86 Propagate External ..._|
WindowsResourceReference

x86 Constant Reference Analyzer
¥XRA Funrtinn Callee Puroe R

LA L8444 L4 L4 44444

LLL

Select All Deselect All Restore Defaults

Analyze Cancel

Figure 3: Be sure to select ‘Aggressive Instruction Finder’ and bravely ignore all the
warnings.

Ghidra Analysis Options

Figure 3 shows the analysis options that Ghidra has available. Similar to IDA, you should
most likely ignore these individual settings and just accept the defaults. (The exception being
Aggressive Instruction Finder)

Looking at some of the default options, there are all sorts of goodies available. I'll go through
my favorites so far:

6/14

1. Apply Data Archives - Search for embedded archive formats, and display information
about them. Have a blob of zip/base64/Iznt1 data you find? Ghidra looks for these as
well and calls them out.

2. Embedded Media - More often than not, especially if your sample is trying to
impersonate a benign program, you’ll find media or other sheisty information
embedded. This will create bookmarks for you to later use and analyze.

3. Windows .* - All of the internal things that Windows compilers use to make life difficult.
Previously these all had to be waded through individually. Now Ghidra will figure them
out, add salient information to the analysis, and generally save you time.

Hopefully in the time it took you to read the above, your analysis is finished. Let’s jump right
into analyzing the GUI and starting to use our workflow.

GUI Overview

After all the analysis is completed, you should be presented with the business end of Ghidra,
it's GUI. Take in the Windows 95 era Java Swing GUI, and remember a time when you could

hot-patch the page fault handler without the Windows kernel immediately labeling you as a
malcontent.

7/14

Eile Edit Analysis Navigation Search Select Tools.

Window Help

Ble- = BBFRISIDULFEYE - (A4(0x [VEIBGHOBOI

=l

ootkit-ghidra:/rbody32.x.dec

am Trees 14 & X
» & bodya2xdec

[AT]

Headers

BEEEEE

9. Sections

Program Tree

[ESymbolTree o /%
> G Imports

» & Exports

» & Functions

» ENamespaces.

10

160

16

10

71 16

160

16

10

1600

16

16

—_— 10

Type Manager |~ x 1o

RN IE] =10
» 48 Data Types

» € BuiltnTypes

Filter:

®

» Borbodya2.xdec 10
> § windows_vs12 32 10
o 10

100
@ 10

© 10000000 4d 5a

03 00 .
10000000 4d 5a

77
7/ Weaders

// ram: 10000000-1000037F
17

ume DF = @xe (Default)
IMAGE_DOS_HEADER_10000000

IMAGE...

char[2]"Mz"

4.D0S Header

10000000 [0] w, 'zt
900002 90 06 dw 9oh
900064 63 06 w30
000006 60 06 aw en
000008 04 00 dw an
900062 60 06 dw eh
90066C 1 dw FFFFD
00066¢ 60 06 e
000010 b8 00 dw B8h
900012 60 06 dw oh
900014 69 06 dw eh
000016 60 06 e
000018 40 00 dw 4oh
900012 60 06 dw oh
90061cC 66 66 00 du[4]
00

900024 60 06 dw eh
900626 60 06 o

000028 66 60 00
o

90 80 00 ...
00003C 48 61 60 BOddw 148h
000046 e 1f ba db[64]

"

XREF[42.

e_magic

e_cblp

e cric

1. Analysis Window i

1000017c(*),
FUN_10815080:100151a8(.
FUN_10919200:16019239(..
FUN_1867479¢:1007507D(
FUN_16882a02:1008eb@b(.
FUN_108edb20:100edb79(.
FUN_100edb26: 100edc5f (.
FUN_10073e26: 1007 3eba(
Uv_tcp_simultaneous_ac...
uv_tcp_simultaneous_ac.

FUN_100fac0e:1607casc(...
FUN_1606Fac0e: 100fca6e(

FUN_10112680:101127da(...
FUN_10112680:101128Cd(...
FUN_10122a20:10122a70(...
FUN_10122€0:10122799(
FUN_1013b680:1813b725(.
FUN_10190710:10198ff (.,
FUN_16212971:16219ad(.
__IshonwritableIncurre.

XREF[42... 1000017¢(¥),
UN_16815080:100151a8 (..
FUN_1019200:10019239(..
FUN_1007479C:1007507b(-..
FUN_10882a02:1008bOb(...
FUN_168edb20:100edb79 (..
FUN_100edb20:160edc5 (..
FUN_100f3e26:10073eba(...

FUN_106fac00:160fcasc (.
FUN_106facoe:1007ca6e(...
FUN_10112680:1011270a(...
FUN_10112680:101128Cd (..
FUN_10122a20:10122a76(..
FUN_10122€6:10122799(

FUN_1013b680:1013b725(...
FUN_10190710:1019d8ff (.
FUN_16212971:16219ad(...
__IsNonuritableIncurre.

3. References

Bytes of las..
e_cp Pages in file
Relocations

e_cparhdr Size of head.
e_minallochininum extr

s Initial (rel.
esp Initial SP v.
ecsum Checksum

e_ip Initial IP v.

e_res[4]

e_oenid

Reserved words

OEM identifi.
e_oeminfo OEM informat.

e_res2[10]Reserved words

e_lfanew File address..
e_program Actual DOS p...

pe—ry

Simimial~x

2. Decompiler output

none hecause we aren't looking
at code in the analysis window

9 cd 21 ..
Ma ic © 10000080 2a 11 TWAGE ==
: B entified structs
7e .. L
100001360 00 ?? 06h
10600151 00 % oen
10000152 00 7 oen
10000133 00 ?? 6h
18000134 00 22 80h | ©s Decompiler = [Bytes: rbody32.x.dec x & Defined Data x §% Defined Strings x) Functions x
@ % =[®|x
& category Description Location TLabel Code Unit e
s Found code from operand reference 10004130 LAB_10004f30
5 Found cods rom operand reference Tooois Uhb 10004102 0 arks
i SN G TEE Toaoso0n A6 10005001
4 Found code from aperand reference Toasose Uhb_1000803% PUSH 0P
s Found code fom operand reference Toaososa (A6 10003084 PUSH £BP
s Found code from operand reference 10005017 LAB_100050f7 PUSH EBP
s Found code from operand reference 100053d5 LAB_100053d5 PUSH EBP
3 Found code rom operand reference Toaosies Uhb 10003425 pust Eop
4 e e Toaossa0 [A6-10005550 husth Eop .
‘nuer 8=-
@] [fooooooa | T

Figure 4: First view of the GUI with annotations. Clean version without the annotations can

be found here

Enable Entropy Visualization

This is a cool trick that saved me a lot of time. Enable entropy visualization. Click the drop
down menu on the top right of the Listing view, and select “Show Entropy.”

RRE R

Figure 5: Click the pulldown to enable entropy visualization

8/14

https://dannyquist.github.io/assets/ghidra-gootkit/gui-first-time-annotated.png

Entropy, or the measure of randomness is useful for identifying encrypted or compressed
portions of the executable. This is probably a good time for you to learn some math if you're
not already familiar. Wikipedia provides a good overview of Entropy if you're into that sort of
thing. All you need to know is that the higher the entropy (red in this case) means that there
is likely a compressed, or encrypted blob of data. Goal 4 of our analysis goals is to extract
the compressed JavaScript, so this is a good place to start looking.

Entropy does not always mean compressed or encoded data, nor does it mean that all
encoded or compressed data is high entropy. All things being equal, it does mean something
you should take a look at. In general, it's a good place to start looking and | appreciate that
Ghidra includes this as a default option.

& Listing: rbody32.x.dec [HINEEAIER x\
1] |No Function
104af3ed 3a 27? 3Ah : [
104af3el 2d ?? 2Dh -
104af3e2 4a ?? 4Ah J
104af3e3 11 ?? 11h
104af3ed 42 ?? 42h B
104af3e5 ff ?? FFh
104af3e6 8d ?? 8Dh
104af3e7 df ?? DFh
104af3e8 69 ?? 639h i
104af3e9 a7 ?? A7h
104af3ea 91 ?? 91h
mer b ross-references (NREFs)
104af3ec 00 ?? ©eh
DAT_104af3ed XREF[4]: FUN_100f56be:100f5679(...
FUN_100f56b0:100f5705(...
FUN_100f56b0:10075710/(...
FUN_100f7680:100T7696 (...
104af3ed 07 undef.. 07h
104af3ee 00 ?? 06h
104af3ef 00 ?? ©6h
104af3fe 80 ?? 80h
104af3f1 cb ?? Csh
104af3f2 98 ?? 98h
104af3f3 de ?? DEh
104af3f4 95 ?? 95h
104af3f5 81 ?? 81h
104af3f6 2a ?? 2Ah
104af3f7 9c ?? ach
104af3f8 59 ?? 59h Y
104af3f9 1d ?? 1Dh
104af3fa ca ?? CAh
104af3fb 93 ?? 93h
104af3fc b2 ?? B2h
104af3fd ee ?? EEh
104af3fe d4 ?? D4h
104af3ff 4d ?? 4Dh M
104af400 8b ?? 8Bh
104af401 of ?? @Fh
104af402 66 ?? 66h T
104af403 66 ?? 66h f
104af404 55 ?? 55h u
104af405 10 ?? 16h
104af406 91 ?? 91h
104af407 co ?? coh
104af408 b6 ?? B&h
104af409 bc ?? BCh
104af40a 58 ?? 58h X
104af4a6b 29 ?? 29h) -
104af4ec b3 ?? B3h
104af40d c3 ?? C3h Ig
104af40e 15 ?? 15h
104af40f ab ?? ABh
104af410 10 ?? 10h Enlrn
104af411 bo ?? BOh
104af412 0b ?? ©Bh
104af413 67 ?? 67h g
104af414 64 ?? 64h d
104af415 39 ?? 3%h 9 fi " =
Nednfaie 14)94 ah o =| C; Decompiler x Bytes: rbody32.x.dec

Figure 6: The code listing with the high-entropy portions

Analysis: Find the Embedded Code Part 1 - A Failure

Now that we have a good entropy visualization, let’s try and take a shortcut to finding the
compressed code.

Inspect the High Entropy Areas

9/14

https://en.wikipedia.org/wiki/Entropy_(information_theory)

If you click next to the red area in the executable, you should see a reference to the entropy
being somewhere close to 8 in the tool-tip pop up. Select as close to the top as you can, then
scroll the code view up until you see references to functions. Why functions? Because the
address cross-references (XREFs) can contain random data, and not necessarily what
you’re looking for. Code references are where the executable is looking at that specific
address. From here we will inspect all of the XREFs and look for anything that looks like
encryption.

What does encryption code look like? This is a hard question. One way to answer that is to
compile a bunch of encryption reference code, and look at what code is generated. In the
end a couple of rules-of-thumb apply:

How to find encoding, encryption, and obfuscation the hard way

1. Is there an xor with differing operands? xor eax, 0x42 would be an example, and
xor eax, eax would not.

2. Are there lots of shift instructions in the same code? The shl and shr instructions
being the most notable

3. There’s a noticeable loop structure

4. Data is modified, and stored somewhere else in the program

With an eye on those details, | will inspect each of the listed cross references to see if | can
infer what the compressed code is.

The first reference occurs at address 0x100f56f9 inside of FUN_100f56b0, and is a good
example of what we are not looking for.

© 1[5 |5 » | &@ | = - | x | [[iDecompile:FUNL100756b0 = (rbody32.x.dec) %1 C @~ x
1
‘ /% WARNING: Globals starting with '_' overlap smaller symbols at the same address */
void __fastcall FUN_100f56be(int iParmi)
undefined FUN_100756b0()
defined AL:1 <RETURN>
undefinedl Stack[-@x..local 1 XREF[2]: 100f56e8(W), {
1005767 (R) cc & 0xffffo00;
FUN_100f56b0 XREF[1]: uv_tty_init:100f5548(c.. ri | (uint)*(ush
10075600 51 PUSH ECX
10075601 83 3d cip dword ptr [DAT_10567438],0x0
38 74 }
56 10 00 DAT_104, DAT_104e7ccc & 4
100f56b8 Of 85 INZ LAB_100f5775 if (.0 & 2) 1=0) {
b7 00 DAT_104af3ed = (bool)(DAT_104af3ed | 2);
00 00 }
100f56be 66 8b MoV AX,word ptr [ECX + 0x8] if ((.DAT 164e7ccc & 1) 1= 0) {
41 08 DAT 104af3ed = (bool)(DAT_104af3ed | 4);
100f56c2 66 a3 MoV [DAT_164e7ccc], AX }
cc 7c DAT 16567431 = (_DAT_104e7ccc & 0x40) 1= ©;
2e 10 if ((_DAT 164e7ccc & 0x20) != 0) {
100756c8 66 85 cO TEST AX,AX DAT_10567431 = (bool)(DAT_10567431 | 2);
100f56ch 75 0b Nz LAB_100f56d8 }
100f56cd b8 67 MoV EAX, 0x7 if ((_DAT_104e7ccc & 0x10) 1= 0) {
00 60 T 10567431 = (bool)(DAT 10567431 | 4);
1005642 66 a3 MoV [DAT_164e7ccc], Ax
cc 7c cc & 8) 1= 0;
4e 10
7ccc & 0x80) 1= 6
LAB_100f56d8 XREF[1]: 100f56cb(j) de7ccc & 0x4000) != 0;
> 100f56d3 8a 0d MoV CL,byte ptr [DAT_184e7ccc]
ccrc T 8Is4 | return;
4e 10
10056de 32 cO XOR
1005620 53 PUSH
100f56e1 32 ed XOR CH, CF
100f56e3 Of b6 O MOVZX EAX,AL
10075606 32 db XoR BLEL
10075608 88 6C MoV byte ptr [£sP + local 1],cH
100f56ec 32 ff XOR BH, BF
100f56ee ba 01 MoV EDX, Ox1
10075673 f6 c1 04 TEST CL,0x4
100f56f6 Of 45 c2 CHOVNZ EAX,EDX
[ieofs6f9 a2 ed Y [DAT_164af3ed], AL
3 o
100f56Te 6 c1 02 TEST L ox2
1005701 74 07 z LAB_160f570a
1005703 6c 02 oR AL, 0x2
10075705 a2 ed MoV [DAT_164af3ed], AL
3 4a 10
LAB_100f570a XREF[1]: 100f5701(3)
100f570a 84 ca TEST DL,
100f570c 74 07 9z LAB_100f5715
100f570e 6C 04 or AL, 0x4
100fs5710 2 j‘; o [DAT_104af3ed], A Gy Decompile: FUN_100f56b0 « (8] Bytes: rbody32.xdec = g4 Defined Data = g Defined Strings x ¥ Functions <

10/14

Figure 7: FUN_100f56b0 assembly view and its decompilation

Rename Global Variables and Functions Using ADD

The first thing to do is to change the name of DAT_104af3ed to something more noticeable.
Since reverse engineering is all about abductive reasoning, I’'m going to assume (abduct)
that this is compressed or encrypted code. If any facts present themselves that contradict
this assumption, | will modify my assumption and subsequently change the variable name to
match my new assumption. Abductive reasoning is a good lifestyle choice, but that’s a highly
personal matter. In the grand effort to increase global information entropy, confusion, and
make a slightly offensive joke | call it Abductive Data Describer (ADD) workflow.

Gaze Upon the Magnificence of the Decompiler

You should notice that the decompilation window now has code in it. You may also notice
that there are no goto s in this code. Further inspection will reveal that aside from
automatically assigned labels, the code looks more or less reasonable. When | first reversed
Gootkit with Ghidra and saw this decompilation, | had a very Jodie Foster in Contact moment
when [first saw the decompiler working. Decompiler quality is informally judged by how
many goto s produced instead of the more common if/else/switch/throw/catch statements.
C and C++ developers are threatened from birth against using goto s, except in some very
narrow circumstances, so a decompiler using them is akin to taking a shortcut. In practice |
have found that once you fully fill out the types of all the variables, the decompiler outputs
legible C code. Programming idioms and patterns matter, so it's a good idea to study them.

Let’'s rename a variable using our ADD workflow:

11/14

https://en.wikipedia.org/wiki/Abductive_reasoning
https://www.youtube.com/watch?v=RHBPnmXBm0g

|+ Decompile: FUN_100f56b0 - (rbody32.x.dec) G W@ @l x

1

2 |[/* WARNING: Globals starting with '_' overlap smaller symbols at the same address */
3

4 |void _ fastcall FUN_100f56b8(int iParmi)

5

6 |{

7 uint uvari;

8

9 | if (_DAT_18567438 == 0) {

10 uvarl = DAT 104e7ccc & Oxffffooeo;

11 _DAT_184eT7ccc = uvarl | (uint)*(ushort *)(iParmli + 8);

12 if (*(ushort *)(iParml + 8) == 0) {

13 _DAT_184e7ccc = CONCAT22((short){uvarl == 0x10),7);

14 3}

15 DAT_l84af3ed = (_DAT_104e7ccc & 4) 1= 0;

16 if ((_DAT 1@4e7ccc & 2) 1= 0) { -

17 DAT_104af3ed = (bool)({DAT_104af3ed | 2);

. Click here

19 if ((_DAT 104e7ccc & 1) 1= 08) {

20 DAT_1084af3ed = (bool)(DAT_184af3kd | 4);

21

22 DAT_18567431 = (_DAT_104e7ccc & 0x40) != 0;

23 if ((DAT 1@4e7ccc & 0x20) I= 0) { L] A

24 DAT_10567431 = (bool)(DAT_10567431 | 2): ress ower case
25 1

26 if ((_DAT_104e7ccc & 0x10) != 8) {

27 DAT_10567431 = (bool)(DAT_10567431 | 4);

28 1

29 DAT 18567432 = (_DAT 104e7ccc & 8) 1= 0;

30 _DAT_10567438 = 1;

31 DAT_1856743c = (_DAT_104e7ccc & Ox80) 1= 8;

a2 DAT_10567432 = (_DAT_1@4e7ccc & 0x4000) != 0; Hename ‘Io ‘laste
33| }

34 return;

35 |} Rename Global vVariable ®
36

Rename DAT_104af3ed: suspiciously_high_entropy_data

0K Cancel

Figure 8: Rename the variable pointing to the high-entropy code to something more
descriptive

Rename your Functions

This function is most likely not what we are looking for, however we have invested some time
in looking at it. It's a good idea to rename the function any time you have a high-level
concept you’re looking for. My names tend to be pretty descriptive, and describe both my
confidence in and the contents of the function. | use uncertain names like

some_xors_and_bitshifts to imply how much time I've spent on it. Later I'll change it to
something more specific if | spend more time on it, like high_entropy_flag mod() and
actually know what it’s function is.

There is no xor instructions, and there is no loop. Likely this is a helper function that is

looking at the flags of the data. It's a good idea to rename functions with your best guess

(ADD), so I'm going to do that. I've also relabeled this function as
high_entropy_flag_mod() .

12/14

Rename your variables

If you figure out the types used in a code sample, you can redefine those as well using
CTRL-L , or right-clicking and selecting ‘Retype Variable’. The more correct information you
provide about the types, the more accurate the decompiler output will be.

Next function! To get back to the data view, click the left arrow button until you see the view
again. This works similar to the escape key in IDA and Binary Ninja. If you renamed the
function, your listing should look like this:

104af3ec 00 ?7? 0oh

suspiciously_high_entropy_data XREF[4]: high_entropy_flag_mod:..
high_entropy_flag_mod:..
high_entropy_flag_mod:..
FUN_100T7680:100T7696(...

104af3ed 07 undef.. ©7h
104af3ee 00 ?7? 08h
104af3ef 00 77 08h
1RAafF2Ffn an b] arh

Figure 8: The updated code listing once you have renamed the referencing function

Notice that all but one of the functions has been renamed, reducing how many functions you
need to analyze. There is only one remaining, FUN100f7680 and it bears inspection. The
decompiler shows that a lot of our encryption qualifications are met: xors, bit shifting, and
evena do {} while () loop! Upon further inspection, the only xor in the code is at the
very top of the function. This is a trick that Visual Studio uses to prevent stack based buffer
overflows called a Canary. If you see an xor at the beginning of a function, this is most likely
what it is. Similarly, there will be a subsequent function call that reverses the process, and
exits the program.

Further inspection of the function shows that this is just a flag checking algorithm inside of a
loop. Rename the function (I used high_entropy_loop_flag check())and move on. A
good next step is to look at the XREFs for the function, and look at the parent code. | only
saw one XREF FUN_100f7bc® so thatis the next target.

Inferring Functionality using API Calls

The first thing | noticed about FUN_100f7bco are the API calls being made. These function
calls give us an idea about what the program is being used for. Looking up API calls on
MSDN will give you an idea about what the developer is doing.

API Call (MSDN) Typical Usage

WaitForSingleObject ~ Wait until the specified object is available or times out. Typically
used to implement a Mutex, Semaphore, or other multiprocess
primitives

13/14

https://docs.microsoft.com/en-us/windows/desktop/api/synchapi/nf-synchapi-waitforsingleobject

API Call (MSDN) Typical Usage

MultiByteToWideChar Convert a multi-byte character to a ‘wide’ character. Unicode in
Windows is full of pain and misery due to an early Windows
design decision to ignore Unicode

WriteConsoleW Write a buffer to the console. The W stands for ‘wide’. An A at
the end would indicate an ascii string

GetlLastError Why did my last function return an error? The Linux pattern is to
use errno then bitteryly complain about reentrancy issues

Table 1: A listing of API calls found in FUN_100f6bc0O

Conclusion: This is OpenSSL

| quickly came to the realization that despite my initial hopes, this is not a decryption function.

| follow a similar renaming process for all of the referenced functions, until everything is
renamed. This particular branch of code seems to focus on outputting data to the terminal.

Sometimes you win, and sometimes you lose. | figured out | was in the wrong area when |
scrolled a bit further down in listing and saw this jump out at me:

FRVE SRVIVIVIC Rviv] (] v

104feobb 00 ?? 00h
PTR_s_OpenSSL_DH_Method_1@4fe8bc XREF[1]: FUN_101@ela®:1018e229(...

104f00hc e4 62 addr s_OpenSSL_DH_Method_104862e4

48 10
104fe0ce fo 1f addr FUN_10101ff@

10 10
104f00c4 bo 21 addr LAB_101021b0

10 10
104f00CS8 40 23 addr LAB_10102340

Since the implant portion of Gootkit is packaged Javascript with an embedded NodeJS
server, which uses OpenSSL, this is likely just a statically linked copy of the OpenSSL code.
In other words, a false lead.

Next Steps

In the next post, | will go over Ghidra’s binary diffing feature and see if it can help identify
embedded libraries.

14/14

https://docs.microsoft.com/en-us/windows/desktop/api/synchapi/nf-synchapi-waitforsingleobject
https://docs.microsoft.com/en-us/windows/console/writeconsole
https://msdn.microsoft.com/en-us/library/windows/desktop/ms679360.aspx
https://en.wikipedia.org/wiki/Reentrancy_(computing)

