Bl_D Ransomware Redux (Now With 100% More Ghidra)

rhyolite March 10, 2019

I’'m still digging into Ghidra, building off of my last post which was meant to be a kind of “IDA
to Ghidra Crossover” guide. For more Ghidra practice, | took a piece of ransomware that |
analyzed before (using IDA) and worked on it with Ghidra. Whenever it makes sense I'll do a
side-by-side comparison. I'm using Ghidra 9.0 Public and Ida Free 7.0 (both running in a 64-
bit VM).

Once | loaded the ransomware, one thing | noticed immediately is that Ghidra didn’t catch
that there was a new function right after the entry/start function, but IDA did:

A60 B arfb wbthy LED W IDA - bid_ransomware.bin C:\MA\Iab\bid_ransomware.bin (=2 B8 ===
Ll File Edit Jump Search View Debugger Options Windows Help
S e BN B Y DO b A > P D
§ |] I | I M
Library function [l Regular function [l Instruction Data Unexplored External symbol
fFnc. O @ x || @Ho. B | (O ke [A] st.. Tl En.. *E) Im.. [ex.d (B
_____ Function name BC retn
- BC sub_4@818A8 endp
|] sub_s01FES BC
] sub_401F&F 80
[F] sub_401EDA 8D
1| sub_401E9A BD
1 sub_s018A0 |° 80
|7 sub_401815 o .
7) sub_401758 BD public start
7 sub 40167 BD start proc near
Lf | sub_ 31'3-’f BD push @ ; lpModuleName
7| sub 40133 BF call GetModuleHandleA
f| sub_401292 c4 moy hinstance, eax
. ; _— A LF | sub_4010E7 g call sub_481848
00401c ah MOV [DAT_00404bZc], f_ sub_4010CF CE push ™ ; uExitCode
(7] sub_%01046 D@ call ExitProcess
oo40le dz £ CA FUN_004018a0)f sub 401000 D@ start endp
= o Da
LF| start 05
| IstrlenW oS
1| IstrlenA D5
Lf | IstrepyW D5
7 Istrempiw D5
| 7| IstrempiA D5 t
£ IstrempW D5 DialogFunc proc near
£ lstrcatw gg
Fd =5 = D5 hkind = dword ptr &
Fi WhetOpenEnu D5 arg_4 = dword ptr @ch
Lf | WhetEnumRes D5 arg_8 = dword ptr 18
| 7| WhetCloseEnu D5 arg_C = dword ptr 14h
f | UpdateWindoy D5
Z UnmapViewOf D5 push ebp
7 TranslateMes: s g ebp, esp
e, - D8 mov eax, [ebp+a
h ’ 000010BC 0000000000401CBC: sub_40] (Synchronized with Hex Vi =
Line 15 of 91 4 L ¢
[Z] output window O & x
The initial autcamalysis has been finished. =
nnans o e IDC
|
AU idle Down Disk: 40GE

Look at 401CD5...
I’m not sure why this is. One thing | suppose you could do is look for function entry
sequences (PUSH EBP; MOV EBP, ESP) and then manually create a function when you find
one. In Ghidra, you'd just put the cursor in the spot where you want to create the function,
and then hit F:

1/9

http://zirconic.net/2019/03/bi_d-ransomware-redux-now-with-100-more-ghidra/
https://zirconic.net/2019/03/ghidra-fuck-yeah/
https://zirconic.net/2018/07/bi_d-ransomware/

undefinedd stdcall entry (HWUND param 1, int param 2, in..

undefineds
HITHD

int

int

int

a0d0lchd F
00401lcht

0040lccd al

oo4nleco

0040lcc
00401lcdo

Mow

CALL

PUSH
CALL

undefir
undefinedd Eix: 4

HUMD Stack[Oxd]:4

int
int
int

00401lcds
00401 cde

0040lcr
0040ledh 3d 10 01

F1T3

Mow
Mow
CHF

param 3
param 4

GetModuleHandled

[DAT 00404bzc],

FON_004015a0

Jdword pte [
LO0=110

Press F to Pay-Respeet Create a Function
On the other hand, | remember there was a part of the code that IDA wasn’t as successful

with. Ghidra did better on this part, at least recognizing that there’s a function there while IDA

got a bit more confused:

+ param 2]

YREF[2]:

Entry Foint(¥*)

WFEF[1]:

oo4anl
oo4anl
o040l
o040l
o040l
o040l
o040l

2/9

Y IDA - bid_ransomware.bin C:\MA\lab\bid_ransomware.bin |-]
58 o)] f 3 - | 3 ¢ i o7 O R File Edit Jump Search View Debugger Options Windows Help
%= Listing: bid_ransomware bin SH e - LS) v @0 dde R P T
- B I | I =
Library function [ll Regular function [ll Instruction [Data Il Unexplored | External symbol
Arnc. 0 8 x | Eo. @ | Dhe. Est. B3 | Elen | & m. Pext ¥
Function name - B1F81 jz short near ptr loc 481F9A+4
- B1F83 lea eax, [esp+2dh+var_1C]
Lf| sub_s01FER B1FE7 push eax
£ s _a01FeF Q1788 call near] ptr loc_401F9A+2
| 7] sub_401EDA 81F8D push ebx
(7] sub_s01E94 ®1FSE db 55h
7] sub_401840 B1FBE inc esp
7] sub_401815 = B1F%e bound esi, gs:[ebp+s7h]
(3l B1F34 push eax
(£] sub_d01758 ~--" e1res ib short loc_46280@
L] wb_201675 , e1Fa7 e short locret 482002
UL sub %0133 ' 81F57 —
7] sub_401292 . e1F97
is\n_-wlUE? ' @1F99 insb
Lf | sub_4010CF ' BIF3A
7] sub_40106 ' :JL-OH loc_401F9A: ; CODE XREF:
- FaA ; sub_4@1F&F+
':—. ft.:f%ﬂlﬂﬂﬂ B1F3A db ,T-'_)
= a1FaA add Bs:[bp+si+@], ch
{,- Istrienw ' BLFAR call LookupPrivilegeValueA
L] lstriend | B1FAS test eax, eax
1401 £%e (PLUID paranEEllGe ! - B1FA7 jz short locret_4@1FE6
] Istrempiw |1 ® eiras mov dword ptr [esp+léh], 1
Emnmm ! 2 mov eax, [esp+8]
J,_ IstrempW | . bl':[-‘:‘x mov [esp+18h], eax
7] Istreatw ! | GL:BG mov eax, [IL_‘SF-CLW]
i @1FBD moy [esp+lCh], eax
= LR ! ' B1FC1 mov dword ptr [esp+2eh], 2
Lf| whetOpenEnu 11 e1Fce lea eax, [espsish]
7| WhetEnumRes J © e1FcD push eax
7] WhetClosetnu (11" earce lea eax, [esp+18h]
7| updateWindos Py erD2 push eax
7] UnmapViewof 01 * exrps push 1eh
71 TranstateMes: ! | B1FD5 lea eax, [esp+28h]
? TimerFune ' GLiD‘..r push eax
= N B1FDA push @
7 | TerminatePro: | B1FDC mov eax, [esp+lah]
f| startAddress 11" e1ree push eax
7] skeep 1 B1FEL call AdjustTokenPrivileges
7] showWindow
’ ! ! 00001388 0000000000401F88: sub_401 (Synchronized with Hex Vi -
Line 2 of 51 v v]
AU: ide Down Disk: 40GB

As | was looking at the function at 4017B8, besides noticing that this was another function
that IDA didn’t recognize, | noticed that Ghidra labels strings in a nice way where the label
contains both a reference to the string itself and also the address. IDA will sometimes just
give you a very generic name without including the address in the label. You can change the
IDA options around strings so that it will not automatically generate a name (and set options
like string prefix, etc.) but then you just get something like “asc_401414" which isn’t that
meaningful either. I'm not sure how IDA generates the names, and the documentation is a bit
vague: “If this option is set, IDA will give meaningful names to newly created string literals.”

3/9

https://www.hex-rays.com/products/ida/support/idadoc/614.shtml

3 v o v =
& Listing: bid_ransonware bin = H| =~ ‘n!] ".‘L » [@&» ak» P =T &
x . I N N I =

Library fu [l Regular fi [l Instructio Data Unexplore = External £

08 x| Bo. 0 | The. 0 | st Ted |k
Functionr * le::e N -
— re 8
i a1 endp
LS| sub_40
7] sub_40
£ sub_40 push ebp
T_ sub 40 mov ebp, esp
7 s\.b_qj; add esp, @FFFFFFFBh
7 sub - push offset NewFileName
L— b call DeleteFileA
£ 5ub_40 push 18888h
1) b push 4gh
f| sub_40 call Globalalloc
1| sub_40 mov [ebp-4], eax
Lf] sub_20 add eax, 860eh
7] sub_40 push eax
7l g_b_q-j push Beadh
7] start :“: C:: t N
= pus| offset Name
i Istrier call GetEnvironmentVariabled
LL] Istrien push 888@h
’; Istrep push eax
f | Istrem push e
F] strem call GetModuleFileNamed
7] Istrem pop ecx
=1 push 8
f= Is(r:cal push e
fpy Writel push dword ptr [ebp-4]
= push ecx
F| Whett push @
7] wiett push @
£] updat call ShellExecuteA
[7] vama push dword ptr [ebp-4]
7| Transl ia].l GlobalFree
=1 eave
g Tt retn
’ 1| Termi
GerModuleFil 7] startac
7] Sleep
71 Show\ ~

7 000000000040180° (Synchronized w: -
Line 7 of 91 14 " '

Ghidra and IDA Strings Compared

Changing not very descriptive parameters like 0x40000000 to something like
GENERIC_WRITE is easy in both programs. In IDA, it's M to bring up the enumerations, and
then you pick one from the list. In Ghidra, it's E to “Set Equate” and then pretty much the
same process — look up the value you want to apply there.

& Listing: bid_ransomware bin
1

r ke

| GEMERIC_WRITE wdows_ws12_32hwinnLhidefines

LABE_ 0040105

Apply To: (& Current location Entire program

Options:

dword prr [

CreateFiled

Decompile: FUN_00401000 | B8 Defined &

Changing 0x40000000 to GENERIC_WRITE

4/9

| decided to make a copy of the sample and changed one of the lines in the ransom note to
be “TEST RANSOMWARE PLEASE IGNORE” so | could try out the “Determine Program
Differences” window. Seems that you need to import the other file into the current project so
you can compare differences between the two programs. There’s a lot of options here that
you can use with this tool:

J4 ram: 00400000-00400:

;@ Determine Program Differences

Do Differences On

P00 4d Sa 90 W Bytes W Labels W Code Units
0o 03 0o
0 A6 T W References W Program Context & Comments
100000 4d 54 & Bookmarks & Propetties W Functions

Select All Deselect All

W00008 04 00 Address Ranges To Diff
e N
100000 o
_________ ntire Program
0lz 00 00
4 00 00
016 00 0o
015 40 0o
01a 00 00
0lc 00 00
oo oo

SRR L [N ELE A

Program Differences Options
Since | just quickly edited it in a text editor it screwed something up because it inserted
OxODOA in certain places, but even so | can still see how the differences get highlighted, as
well as how you can quickly navigate between differences by right-clicking and selecting
options from the pop-up menu:

5/9

Show Diff Apply Settings

Select All Differences

Navigating Around Differences

Like in IDA, you can right click on a value in the program listing and change how it’'s
displayed:

6/9

0oh

| Popup
! Ctrl+D

Cirl+Shift+ G

et Register Values.. Ctrl+R (= ; Q000000000100101k

Displaying 0x25 Differently

Also, it’s nice to see that Unicode strings are picked up automatically in Ghidra, not just
ASCII strings. It's not that big of a deal to tell IDA to treat something as a Unicode string, but
having Ghidra automatically do this is one of those little things that | appreciate because it's
something that | find tedious (maybe there’s a way to make this happen automatically in IDA
that | just never learned).

7/9

FUN_004

FITH_0odd

en process] 0040459f *PEF[3]: FON_00401f

FUN_00401£

0040459 Sh O unicode

004045cl1] unicode

004045cE unicode

00404521 unicode u"dllhost. exe™

004045£9

00404611 3 unicode

A Mix of ASCII and Unicode Strings in Ghidra’s Program Listing
Finally, | like how Ghidra identifies thunk functions:

8/9

FON_004015a0:00401cad(c)

thunk HWND _ stdcall & Item (HWND hDlg, int nIDDlgItem)
-Functior] piGetDlglten

YEEF[1]: FUN_00401es
DLL::GetDlglten]

» HWND hind,...

EOOL
LPMAEG
HITHI
UINT

FUN_004015a0:00401c30(c)

004 £t JT
31 40 oo

Insert “Who’da Thunk It?” Joke Here
Going through a sample that | previously analyzed with IDA helped me get more accustomed
to Ghidra because | have some idea of how it the final product should look already. The more
| use Ghidra the more | like it. I'm still going to keep IDA around — for instance, | tried
loading up a really old DOS game executable, and while Ghidra didn’t come up with anything
meaningful in the program listing using automated analysis, IDA Free 7.0 at least came up
with some results. Time permitting, I'll try to look at samples in both programs for a while just
to see how things differ.

9/9

