
1/3

NozomiNetworks

NozomiNetworks/greyenergy-unpacker: Toolkit collection
developed to help malware analysts dissecting and
detecting the packer used by GreyEnergy samples.

github.com/NozomiNetworks/greyenergy-unpacker

Repository

Toolkit collection developed to help malware analysts dissecting and detecting the packer
used by GreyEnergy samples.

Packer Overview

The GreyEnergy dropper is protected using a custom packer with the following
characteristics:

Custom decryption algorithm
LZW (variant) decompression algorithm
Junk code & JMP instructions (anti-analysis)
Memory wiping (anti-forensic)
Dynamically-resolved WinAPIs
Overlay data payload (There are no suspicious sections in the PE header.)

Once the dropper has been decrypted/decompressed in memory, the packer performs the
following steps:

https://github.com/NozomiNetworks/greyenergy-unpacker

2/3

Parses the dropper's PE header, searching for the appended data
Copies the final malware in memory, reading it from the appended data
Resolves the dropper's imports
Relocates the dropper's executable
Jumps to the dropper's entry point

The dropper stores the final malware in the filesystem, establishing persistence.

greyenergy_unpacker.py

An easy-to-run tool that automatically extracts GreyEnergy packed files.

Usage

Unpacks the malware storing it on the disk.

Unpacks the malware dumping also the dropper component.

Yara module

The file greyenergy.c is a YARA module developed to parse the GreyEnergy packer,
decrypting only the first part of the appdata in order to confirm the detection.

After the compilation, it is possible to detect the malicious file just using the new keyword
is_packed .

Installation

Detailed information about the compilation can be found in the official Yara documentation

The file build.sh contained inside the Yara's root directory configures and compiles
automatically the source code. Currently it is not mentioned in the documentation, so that
could be changed in the near future.

python3 greyenergy_unpacker.py -f suspicious.bin
INFO : Processing the file 'suspicious.bin' (SHA256
d4e97a18be820a1a3af639c9bca21c5f85a3f49a37275b37fd012faeffcb7c4a)
INFO : Malware unpacked in 'suspicious.bin_malware_unpacked.bin' (SHA256
7e154d5be14560b8b2c16969effdb8417559758711b05615513d1c84e56be076)

python3 greyenergy_unpacker.py -d -f suspicious.bin
INFO : Processing the file 'suspicious.bin' (SHA256
d4e97a18be820a1a3af639c9bca21c5f85a3f49a37275b37fd012faeffcb7c4a)
INFO : Dropper unpacked in 'suspicious.bin_dropper_unpacked.bin' (SHA256
a7d3f2b6cec72a324c375e4335e42b1f1f4d9642347d38f3de7ec706fcf25147)
INFO : Malware unpacked in 'suspicious.bin_malware_unpacked.bin' (SHA256
7e154d5be14560b8b2c16969effdb8417559758711b05615513d1c84e56be076)

https://yara.readthedocs.io/en/v3.7.0/writingmodules.html#writing-modules

3/3

Rule example

Tested Samples

Both the Yara module and the unpacker script have been successfully used to unpack the
following samples (SHA-256):

import "pe"
import "greyenergy"

rule GreyEnergyPacker {
 condition:
 greyenergy.is_packed(pe.overlay.offset)
}

b60c0c04badc8c5defab653c581d57505b3455817b57ee70af74311fa0b65e22
d4e97a18be820a1a3af639c9bca21c5f85a3f49a37275b37fd012faeffcb7c4a

