
1/23

Cofense January 21, 2019

The Kutaki Malware Bypasses Gateways to Steal Users’
Credentials

cofense.com/kutaki-malware-bypasses-gateways-steal-users-credentials/

CISO Summary

It’s a case of hiding in plain sight. Cofense recently found a phishing campaign that hides
the Kutaki malware in a legitimate application to bypass email gateways and harvest users’
credentials.

A data stealer, Kutaki uses old-school techniques to detect sandboxes and debugging, but
don’t underestimate it—Kutaki works quite well against unhardened virtual machines and
other analysis devices. By backdooring a legitimate application, it can fool unsophisticated
detection methodologies.

Learn how Cofense Intelligence keeps IT teams ahead of the latest phishing and malware
threats like this new campaign.

Full Details

Cofense Intelligence recently uncovered a small-scale phishing campaign delivering a
sample of the Kutaki information stealer and keylogger that was hidden inside a legitimate
Visual Basic application and delivered as an OLE package within a weaponized Office
document.

TM

TM

https://cofense.com/kutaki-malware-bypasses-gateways-steal-users-credentials/
https://cofense.com/
https://cofense.com/product-services/phishing-intelligence/
https://github.com/marifrahman/RMS/tree/master/CODE

2/23

Kutaki uses a series of anti-virtualization and anti-analysis techniques that were ostensibly
copied verbatim from a series of blogs dating back to 2010-2011. Kutaki – a data stealer – is
capable of harvesting Input data directly from keyboards, mice, clipboards, microphones, and
screens (in the form of screenshots). The campaign observed by Cofense Intelligence also
saw Kutaki retrieve a copy of SecurityXploded’s BrowserPasswordDump utility by dropping
and executing a copy of cURL for Windows.

Despite the evasion techniques being antiquated, they are somewhat successful against
causal observation and analysis.

Hiding in Plain Sight: Obfuscation

This variant of Kutaki uses the source code as a Visual Basic training app to hide its
malicious content. By backdooring an ostensibly simple training app, it attempts to exploit
any potential whitelisting or simply bypass static signatures.

Figure 1 shows the backdoored application as a project breakdown. Figure 2 is a closer view
of the procedures.

https://securityxploded.com/browser-password-dump.php
https://curl.haxx.se/windows/

3/23

Figure 1: the project breakdown

Figure 2: The code sections (procedures) present in the project.

Even for non-programmers, there are certain procedure names that seem to be wildly
misplaced. Indeed, we can see a close (but not quite complete) correlation between the
Forms – which are GUI elements – and the procedures that power them. Figure 3
demonstrates this mapping.

4/23

Figure 3: Form elements relative to their procedure (code) counterparts.

Final proof that this application has been backdoored can be found by inspecting the
procedures. Figure 4 shows legitimate procedures compared with those that have been
injected.

5/23

Figure 4: “ff” and “frmLogin” are original procedures. “chee”, “saamneao”, “dewani” and
“ende” are injected.

Not only do we see a discrepancy between the naming conventions – most legitimate
procedures here begin with ‘frm’ – but we can also intuit the random names assigned to the
injected procedures. Further, the functions – those found within the injected procedures –
have unresolvable names, so they’re simply assigned one by the decompiler.

Diving into some of this injected code yields even more obfuscation. Strings within the binary
are reversed and decoded using the rtcStrReverse function. Figure 5 shows an example of
such obfuscation.

6/23

Figure 5: 3 instances of rtcStrReverse being used to deobfuscate stored strings.

Similar string obfuscation techniques can be found masking suspicious API calls. Figure 6
shows the obfuscation of Sleep and ShellExecuteA strings.

https://docs.microsoft.com/en-us/windows/desktop/api/synchapi/nf-synchapi-sleep
https://docs.microsoft.com/en-us/windows/desktop/api/shellapi/nf-shellapi-shellexecutea

7/23

Figure 6: Sleep and ShellExecuteA strings.

These strings are part of a small struct used by DllFunctionCall – a method by which Visual
Basic applications can retrieve the addresses of functions from specific DLLs. The struct
looks something like this:

typedef struct _DllFunctionCallDataStruct {

void * lpLibName;

void * lpExportName;

} DllFunctionCallDataStruct;

We can see how this structure maps to what we see in the disassembly in figure 6. All calls
to DLLFunctionCall are wrapped in identical snippets, as demonstrated in Figure 7.

8/23

Figure 7: a typical wrapper for calls to DllFunctionCall.

After careful analysis, we find that 18 high-value API calls are obfuscated in this manner.
Figure 8 details these.

Figure 8: De-obfuscated API calls used by Kutaki to perform some of its malicious activity.

9/23

Anti-Virtualization

Kutaki employs some basic checks and comparisons to identify whether it is executing within
a virtualized environment. The first of these involves reading the
HKLM\System\CurrentControlSet\Services\Disk\Enum registry key and comparing the
returned string against a list of “undesirable” strings. Figure 9 details the read of this key.

Figure 9: Kutaki reads disk metadata from the registry.

This registry key contains information about the disks present on the machine. The first disk
is stored in a value named “0”, the second in a value named “1” and so on. In the instance of
this analysis VM, the value 0 contains the data observed in figure 10.

Figure 10: Example data from the Disks\Enum registry key.

10/23

The highlighted text shows that the disk belongs to a VirtualBox VM. Figures 11 and 12 show
two different string comparisons, attempting to identify different types of virtual machines
present. Figure 13 is all the strings Kutaki will compare against.

Figure 11: Check if the registry value contains “VIRTUAL” anywhere within the string.

https://www.virtualbox.org/

11/23

Figure 12: Check if the registry value contains “VBOX” anywhere in the string.

12/23

Figure 13: Anti-virtualization strings.

The string comparison seen in figure 12 would match the data found in the registry value
displayed in Figure 10. Despite the match, Kutaki doesn’t immediately exit, rather it
continues with other virtualization checks. Only after all checks are completed will it
determine whether execution should continue. Figure 14 shows the execution flow of this
concept. The specifics of the results checker are detailed later.

Figure 14: Anti-analysis/virtualization chain.

To supplement the disk checks, Kutaki attempts to determine whether specific modules,
which belong to sandboxes and debugging utilities, have been injected into its address
space. It achieves this by using a combination of CreateToolhelp32Snapshot, Module32First
and Module32Next. These APIs take a snapshot of the running process (including heap,
modules, etc.), find the first module, and iterate over subsequent modules mapped to the
process, respectively. Figure 15 shows Kutaki setting up the snapshots and retrieving a
pointer to the first module.

https://docs.microsoft.com/en-us/windows/desktop/api/tlhelp32/nf-tlhelp32-createtoolhelp32snapshot
https://docs.microsoft.com/en-us/windows/desktop/api/tlhelp32/nf-tlhelp32-module32first
https://docs.microsoft.com/en-us/windows/desktop/api/tlhelp32/nf-tlhelp32-module32next

13/23

Figure 15: Kutaki setting up a module-identification loop.

Kutaki checks for the existence of sbiedll.dll and dbghelp.dll. These modules belong to
Sandboxie and Microsoft, respectively. Figure 16 shows the de-obfuscation and comparison
routine for dbghelp.dll.

https://www.sandboxie.com/SBIE_DLL_API
https://docs.microsoft.com/en-us/windows/desktop/debug/debug-help-library

14/23

Figure 16: Windows Debug DLL de-obfuscation and string comparison.

All the comparison results are stored in a data structure, which is later checked by the
_check_anti_analysis routine.

In a final check to ensure it is not being observed, Kutaki once again reads a registry key —
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion — this time checking
for the existence of some very specific ProductID values within the CurrentVersion hive.
Figure 17 shows this function.

15/23

Figure 17: Opening the registry key to facilitate value comparisons.

Kutaki attempts to find a value with the name “ProductID”. If it finds one key with that value, it
will loop through three string comparisons, attempting to identify three sandbox platforms.
Some pseudocode to roughly describe this process could be:

p_id = RegQueryValueExA(“ProductID”)

if (p_id)){

if (p_id == ‘76487-337-8429955-22614’) {

return “Anubis”

}

elif (p_id == ‘76487-644-3177037-23510’) {

return “CWSandbox”

}

16/23

elif (p_id == ‘55274-640-2673064-23950’) {

return “JoeSandbox”

}

else {

return None

}

}

Figure 18 shows this nested loop as it exists with Kutaki.

Figure 18: Looping through checks for various sandboxes.

Once all of the checks have been processed, Kutaki parses the results to determine if its
main loop should finish or continue executing. The check procedure parses every result for a
non-zero “return code” (i.e. something was detected) and, if it such a return code is found,
the main loop exits. Figure 19 shows an example of these checks.

17/23

Figure 19: Parsing the results of one of the anti-analysis checks.

Behavior

Once Kutaki has determined it is not being monitored, it will proceed with its primary purpose
of preparing the machine for data-theft. During this process, Kutaki extracts an image from
its resources, drops it to the user’s temp directory and launches it with
ShellExecuteA(“cmd.exe /c C:\Users\admin\AppData\Local\Temp\images1.png”). This
displays a decoy image to fool the user into believing the OLE package they clicked on was
simply an image. Figure 20 is the precise image dropped to disk and displayed to the user.

18/23

Figure 20: Decoy image launched by Kutaki.

The document is an invoice template; clearly the actors deploying this put very little effort into
this decoy document, as a quick Google search shows it to be the second image hit using
the search term “tax details to invoice”. Indeed, this is the exact image used by the attackers:
hxxp://batayneh[.]me/invoice-with-bank-details-template/invoice-with-bank-details-template-
blank-tax-luxury/

After displaying the document, Kutaki checks its current executable name against the
hardcoded string “hyuder” and, if it does not match, proceeds to drop a copy of itself, with the
new name, to

C:\Users\<username>\AppData\Roaming\Microsoft\Windows\Start
Menu\Programs\Startup\hyuder.exe

Figure 21 shows this check in a debugger. If a new process is launched, the parent process
will sit idle without exiting.

19/23

Figure 21: Kutaki comparing its current name to the desired.

Figure 22 shows Kutaki building the file path to which it will drop a copy of itself. By dropping
to the startup folder, Kutaki achieves persistence.

Figure 22: Kutaki builds out the string it will use to drop a copy of itself and achieve
persistence.

20/23

Kutaki executes the dropped code and proceeds to execute its primary malicious
functionality. Note: some readers will no doubt question whether simply renaming the
executable “hyuder.exe” will prevent it from dropping a copy of itself. This is correct; Kutaki
will execute directly without dropping anything further, if it is running with an approved name.
The rest of the code is somewhat uninteresting, mostly because almost all the malicious
behavior occurs outside of the binary itself.

Before proceeding further, Kutaki will check in with its C2 server, announcing the new
infection. Figure 22 is some example traffic observed during analysis.

Figure 23: Kutaki’s C2 server is offline.

Kutaki also comes bundled with a copy of cURL – a Linux app ported to Windows which
allows command line access to internet resources. It uses cURL to retrieve a payload from a
remote host, although quite why it does this is unclear – it has the capability to contact
remote servers as demonstrated by its initial attempt to contact its C2 server. Regardless,
the use of cURL is by design, as the host from which it attempts to download a further
payload refuses connections unless the User Agent is set to one referencing cURL. Figure
23 documents the connections made by cURL to the remote host, retrieving a secondary
payload.

21/23

Figure 24: Kutaki uses cURL to download and execute a secondary payload. Note the User-
Agent string “curl/7.47.1”.

The payload retrieved, in this case, was a copy of SecurityXploded’s
BrowserPasswordDump. This utility is designed to retrieve passwords from the vaults of the
following browsers:

Firefox
Google Chrome
Microsoft Edge
Internet Explorer
UC Browser
Torch Browser
Chrome Canary/SXS Cool
Novo Browser
Opera Browser

22/23

Apple Safari

Because the C2 server was offline, we were unable to monitor the exfiltration of stolen data
facilitated by the BrowserPasswordDump utility.

Old Does Not Mean Ineffective

Kutaki uses some old-school, well-documented techniques to detect sandboxes and
debugging. These are still effective against unhardened virtual machines and other analysis
devices. Additionally, by backdooring a legitimate application, unsophisticated detection
methodologies could well be fooled.

To learn more about recent malware trends, read our 2018 year-end review.

Appendix

Sources

https://www.alienvault.com/blogs/labs-research/your-malware-shall-not-fool-us-with-those-
anti-analysis-tricks

https://www.fireeye.com/blog/threat-research/2011/01/the-dead-giveaways-of-vm-aware-
malware.html

ProductID Checks

76487-337-8429955-22614 // Anubis Sandbox

76487-644-3177037-23510 // CW Sandbox

55274-640-2673064-23950 // Joe Sandbox

AntiVM Strings

VIRTUAL

VBOX

*VMW

sbiedll.dll

Dbghelp.dll

IoCs

hxxp://babaobadf[.]club/kera/kera3x[.]php

https://cofense.com/
https://www.alienvault.com/blogs/labs-research/your-malware-shall-not-fool-us-with-those-anti-analysis-tricks
https://www.alienvault.com/blogs/labs-research/your-malware-shall-not-fool-us-with-those-anti-analysis-tricks

23/23

hxxp://janawe[.]bid/FF/om2[.]exe

Artefacts

89D45698E66587279460F77BA19AE456

A69A799E2773F6D9D24D0ECF58DBD9E3

70bf5dd41548e37550882eba858c84fa

8e4aa7c4adec20a48fe4127f3cf2656d

All third-party trademarks referenced by Cofense whether in logo form, name form or product
form, or otherwise, remain the property of their respective holders, and use of these
trademarks in no way indicates any relationship between Cofense and the holders of the
trademarks.

Don't miss out on any of our phishing updates! Subscribe to our blog.

