
1/6

15 January 2019

Analyzing COMmunication in Malware
0ffset.net/reverse-engineering/analyzing-com-mechanisms-in-malware

0verfl0w_

15th January 2019

4 Comments

If you follow me on Twitter (@0verfl0w_), you may have noticed a while back that I was

analyzing a sample of Ursnif/Gozi/ISFB (which I will refer to as ISFB) and was confused as

to how it was able to communicate with its C2 servers through a separate process, without

injected DLL’s or process hollowing. I managed to locate a great article by Mandiant (here)

from 2010 about how COM can be used to control a process, such as Internet Explorer, into

performing certain actions.

In this post, I will be exploring the COM mechanisms that the latest versions of ISFB utilize

in order to contact the command and control servers stealthily. I do have quite a long post

going up (hopefully) in the next couple of weeks that goes into detail about this specific

strain of ISFB, and the multiple unpacking stages it goes through before the final stage, so

stay tuned for that!

What is exactly is COM?

According to Microsoft, “The Microsoft Component Object Model (COM) is a platform-

independent, distributed, object-orientated system for creating binary software

components.” To sum it up, COM allows programs to interact with each other through COM

objects. This interaction can occur

“within a single process, in other processes, and can even be on remote computers“, and

the language that the program was written in does not matter – as long as it is able to create

structures of pointers and call functions through those pointers, it is COM Compatible –

meaning languages like Visual Basic and Java can use COM. If you want to learn more about

COM, you can check out Microsoft’s own description and tutorials on it here.

As a result of the progression of technology, COM isn’t used as frequently anymore, and

therefore when an analyst comes across a piece of malware utilizing this unfamiliar

communication method, it may be difficult to pinpoint what is happening, and how. Static

analysis is even more complex, unless you know what you are looking for – which is what

this article is about.

COM Mechanisms and its use in the ISFB Loader

Second Stage Loader MD5: 5019f31005dba2b410b21c4743ef4e98

https://www.0ffset.net/reverse-engineering/analyzing-com-mechanisms-in-malware/
https://www.0ffset.net/author/dan489400/
https://twitter.com/0verfl0w_
https://www.fireeye.com/blog/threat-research/2010/08/reversing-malware-command-control-sockets.html
https://docs.microsoft.com/en-us/windows/desktop/com/the-component-object-model


2/6

I have uploaded the first stage and dumped second stage loader to VirusBay, so that you

can follow the steps if you want to. I will be focusing on the second stage loader, as that is

where the communication with the C2 occurs. I will be analyzing it statically using IDA,

although you can do it dynamically as well.

The first giveaway that malware could be using COM functionality for communicating with

it’s C2 server is a call to CoInitializeEx. Calling this function will initialize the COM library

so that the calling thread can utilize it’s functionality. Taking a look at the flow of this

sample, it is clear that if initializing the library fails, it will exit – hinting that it heavily relies

on the COM library being loaded successfully.

Once we have discovered it is initializing the COM library, we can search for calls to

CoCreateInstance, as this spawns an uninitialized object of the class associated with a

specific CLSID, meaning you will notice a new process being spawned after you step over

this call. Whilst there are many cross references to CoCreateInstance in this sample, we are

able to determine which one calls Internet Explorer based on the CLSID pushed before the

function call. IDA will show you the CLSID based on how it looks in memory, and as a

result, we can find the corresponding object that is called. But how?

https://beta.virusbay.io/


3/6

The CLSIDs of different objects are stored in the registry, and so whenever

CoCreateInstance is called, the system checks the registry for the passed CLSID. From the

image above, we can tell that the CLSID being utilized is {0002DF01-0000-0000-

C000-000000000046}, which we can lookup in the registry. You can find a list of all the

available CSLIDs at HKEY_CLASSES_ROOT\CLSID. Once the CLSID has been located,

it should reveal what process is being created, and in this case it is Internet Explorer

(Ver 1). Moreover, the IE_riid that is being passed to the function informs us of the

interface being used – in this case the riid being used is {EAB22AC1-30C1-11CF-A7EB-

0000C05BAE0BE}, which when looked up in the registry reveals that it is the

Microsoft Web Browser Version 1. When we google this riid, it comes up with results

for the IWebBrowser interface.

Now that we know for sure what instance is being created, we can look at what functions are

being called. IDA Pro has a plugin called COM helper which will detect CLSIDs and alter the

names to resemble what they point to, however this isn’t possible in the free version, so you

would have to look it up in the registry. When looking at calls to COM functions in IDA, all



4/6

you would see is call dword ptr [ecx+2Ch], which doesn’t tell you much unless you know

the functions inside out. That is why we have to create a structure in IDA that allows us to

assign understandable functions to these pointers. Simply click on the Structures tab and

press the INSERT Key to add a new structure. Then click Add Standard Structure. In

this case, we know Internet Explorer is being called, and a quick google search for

“Controlling Internet Explorer using COM C” will show code on several pages referring to

IWebBrowser2, and so the Standard Structure we want to create is called

IWebBrowser2Vtbl, which is possible to create using the free version of IDA Pro.

Furthermore, we know that IWebBrowser was being used as well, so we should also

create a Standard Struct for that as well.

One way you can determine other interfaces that are being utilized is to simply look for calls

to QueryInterface, as this retrieves pointers to all calls available in that Interface. This

will allow you to create the correct standard structures, and resolve the calls to these

functions.

This standard structure will contain a list of functions exported by IWebBrowser2, and so

we can simply resolve any pointers to those functions, such as dword ptr [ecx+2Ch],

which can be resolved to IWebBrowser2Vtbl.Navigate(). Dynamic analysis becomes

quite important here, as you can then start matching up functions correctly, rather than

assuming a pointer is pointing to a function in that struct.



5/6

If you were debugging this program, these functions would show up as

ObjectStublessClient, and sometimes you will have to rely on the pushed values to

determine what the function was doing. Once we have fully resolved most of the calls, we

can get an idea of what is happening:

Instance of Internet Explorer is created using CoCreateInstance

IWebBrowser2->Navigate() is called, passing the C2 URL and gathered data as

arguments. This will cause IE to navigate to that URL

IWebBrowser2->get_ReadyState() is called, comparing the return value with 4

(READYSTATE_COMPLETE) – if it is 4, the function will continue, otherwise it

will sleep for 500 milliseconds and retry the call.

IWebBrowser2->get_Document() is called, which physically loads in the page that has

been navigated to.

IUnknown->QueryInterface() is called, passing the CLSID for IHTMLDocument2 to

it.

IUnknown->QueryInterface() is called, passing the CLSID for IHTMLElement to it.

IHTMLDocument2->get_Body() is called, which returns a pointer to the website

body.

IHTMLElement->get_OuterText() is called, which returns the raw data from the C2

server

The data is then decrypted and parsed by the malware



6/6

COM usage currently seems quite popular among malware authors, possibly due to the fact

that it is often undetected by several anti malware programs, as well as being able to remain

under the radar from unsuspecting researchers, such as myself – such as this post by

Nocturnus Research Team, which details how the banking trojan Ramnit utilizes COM API

to create scheduled tasks, in an attempt to remain persistent.

So that brings an end to this brief post – but make sure to stay tuned for a much longer post

on reversing ISFB, sometime this month!

4 Comments

Comments are closed.

 

 

https://www.cybereason.com/blog/banking-trojan-delivered-by-lolbins-ramnit-trojan

