A Quick Solution to an Ugly Reverse Engineering
Problem

msreverseengineering.com/blog/2019/1/14/a-quick-solution-to-an-ugly-reverse-engineering-problem

January 14, 2019

L.

L

January 14, 2019 Rolf Rolles

Reverse engineering tools tend to be developed against fundamental assumptions, for
example, that binaries will more or less conform to the standard patterns generated by
compilers; that instructions will not jump into other instructions; perhaps that symbols are
available, etc. As any reverse engineer knows, your day can get worse if the assumptions
are violated. Your tools may work worse than usual, or even stop working entirely. This blog
post is about one such minor irritation, and the cheap workaround that | used to fix it.

In particular, the binary | was analyzing -- one function in particular -- made an uncommon
use of an ordinary malware subterfuge technique, which wound up violating ordinary
assumptions about the sizes of functions. In particular, malware authors quite often build
data that they need -- strings, most commonly -- in a dynamic fashion, so as to obscure the
data from analysts using tools such as "strings" or a hex editor. (Malware also commonly
enciphers its strings somehow, though that is not the feature that I'll focus on in this entry.)
As such, we see a lot of the following in the function in question.

.text:004048C7 C6 B85 FC E5 FF FF 4D mov [ebp+var 1A04], 4Dh ; 'M'
.text:004048CE C6 85 FD E5 FF FF 52 mov [ebp+var 1A03], 5Ah ; 'Z'
.text:004048D5 C6 85 FE E5 FF FF 90 mov [ebp+var 1a02], 90h
.text:004048DC C6 85 FF E5 FF FF 00 mov [ebp+var 1A01], O
.text:004048E3 C6 85 00 E6 FF FF 03 mov [ebp+var 1A00], 3
.text:004048EA C6 85 01 E6 FF FF 00 mov [ebp+var 19FF], O
.text:004048F1 C6 85 02 E6 FF FF 00 mov [ebp+var 19FE], O
.text:004048F8 C6 85 03 E6 FF FF 00 mov [ebp+var 19FD], O
.text:004048FF C6 B85 04 E6 FF FF 04 mov [ebp+var 19FC], 4
.text:00404906 C6 B85 05 E6 FF FF 00 mov [ebp+var 19FB], O
.text:0040490D C6 B85 06 E6 FF FF 00 mov [ebp+var 19FA], O
.text:00404914 C6 85 07 E6 FF FF 00 mov [ebp+var 19F9], O
.text:0040491B C6 85 08 E6 FF FF FF mov [ebp+var 19F8], OFFh
.text:00404922 C6 85 09 E6 FF FF FF mov [ebp+var 19F7], OFFh
.text:00404929 C6 85 OA E6 FF FF 00 mov [ebp+var 19F6], O
.text:00404930 C6 85 0B E6 FF FF 00 mov [ebp+var 19F5], O
.text:00404937 C6 B85 0C E6 FF FF BB mov [ebp+var 19F4], OB8h ; ' '

What made this binary's use of the technique unusual was the scale at which it was applied.
Typically the technique is used to obscure strings, usually no more than a few tens of bytes
apiece. This binary, on the other hand, used the technique to build two embedded
executables, totaling about 16kb in data -- hence, there are about 16,000 writes like the one
in the previous figure, each implemented by a 7-byte instruction. The function pictured

1/6

https://www.msreverseengineering.com/blog/2019/1/14/a-quick-solution-to-an-ugly-reverse-engineering-problem
http://10.10.0.46/blog?author=5111cf9ee4b0a36262da10df

above comprises about 118KB of code -- over 25% of the total size of the binary. The
function would have been large even without this extra subterfuge, as it has about 7kb of
compiled code apart from the instructions above.

The Hex-Rays decompilation for this function is about 32,500 lines. The bulk of this comes
from two sources: first, the declaration of one stack local variable per written stack byte:

HAWDLE w103

HANDLE v104; // [esp+224h] [shp-3EF4h]
char v105; // [esp+228h] [ghp-3EFOh]
char Stringl[&4]:; // [esp+268h] [ghp-3EBOh]
int v107; // [esp+2B8h] [shp-3E70h]
char v108; // [esp+2CCh] [ghp-3E4Ch]
char v109; // [esp+2FOh] [ghp-3E28h]
char v110; // [esp+314h] [ghp-3E04h]
char vlll; // [esp+315h] [ghp-3E03h]
char v112; // [esp+316h] [ghp-3E02h]
char w113; // [esp+317h] [ghp-3E01lRh]
char vll4; // [esp+318h] [ghp-3E00h]
char v115; // [esp+315h] [ghp-3DFFh]
char wvllée; // [esp+31Ah] [ghp-3DFER]
char v117; // [esp+31Bh] [ghp-3DFDh]
char v118; // [esp+31Ch] [ghp-3DFCh]
char v119; // [esp+31Dh] [ghp-3DFBh]

// [esp+220n] [ehp-3EFSh]

Second, one assignment statement per write to a stack variable:

v83Ze = T7;
wva327T a0 ;
w9328 -112;
va325 -
w8330
w8331
w8332
w8333
w9334
w8335
w9336
wa337)7
w9338 1r
w9338 1r
w9340 -
w9341)7
w9342 -T72;
w9343 -
w9344
w8345 =

To IDA's credit, it handles this function just fine; there is no noticeable slowdown in using
IDA to analyze this function. Hex-Rays, however, has a harder time with it. (I don't
necessarily blame Hex-Rays for this; the function is 118KB, after all, and Hex-Rays has
much more work to do than IDA does in dealing with it.) First, | had to alter the Hex-Rays
decompiler options in order to even decompile the function at all:

2/6

Mo | % TSN T A S W e B | a1

mov ﬂ Hex-Rays Decompiler Analysis Options >

mow

mov Use JUMPOLT() for out-of-function jumps

mov Display casts

N Hide unordered fpu comparisons b
| ﬁ o _ IUse 55E intrinsic functions . |
ﬂ Hex-Rays Ignore overlapped variables
IUse fast structural analysis
Variable defin

Print only constant string literals

Function body Convert signed comparisons to bit operations
Marked funct Un-merge tail branch optimizations

[] keep curly braces for single-statement blocks
Commentinde [] Optimize away address comparisons

Block indent [] pisplay string literal casts

Right margin Pressing 'Esc’ closes the view
Assume all functions spoil flags

~LLL

Analysisof [Keep all indirect memory reads
[] keep exception related code

To modify defa
[] Show ARMvE. 3 PAC instructions
T — —
Max function size to analyze in KB 64 w || | Cptions
mov 1 MsvC-spedfic options: "
Mo Mame of dispatch guard | guard_dispatch_icall e |
mowv Mame of check guard | guard_chedk_icall w |
mov cance
mowvw - .
mov [ebp+var 19E5], 0

After making this change, Hex-Rays was very slow in processing the function, maxing out
one of my CPU cores for about five minutes every time | wound up decompiling it. This is
suboptimal for several reasons:

« | often use the File->Produce file->Create .c file... menu command more than once
while reverse engineering a particular binary. This function turns every such command
into a cigarette break.

e Some plugins, such as Referee, are best used in conjunction with the command just
mentioned.

» When using the decompiler on this function in an interactive fashion (such as by
renaming variables or adding comments), the Ul becomes slow and unresponsive.

3/6

https://github.com/jkoppel/project-ironfist/tree/master/tools/Revitalize/Referee

» Randomly looking at the cross-references to or from a given function becomes a
game of Russian Roulette instead of a normally snappy and breezy part of my reverse

engineering processes. Decompile the wrong function and you end up having to wait
for the decompiler to finish.

Thus, it was clear that it was worth 15 minutes of my time to solve this problem. Clearly, the
slowdowns all resulted from the presence of these 16,000 write instructions. | decided to
simply get rid of them, with the following high-level plan:

Extract the two .bin files written onto the stack by the corresponding 112KB of
compiled code

Patch those .bin files into the database

Replace the 112KB worth of instructions with one patched call to memcpy()

Patch the function's code to branch over the 112KB worth of stack writes

The first thing | did was copy and paste the Hex-Rays decompilation of the stack writes into
its own text file. After a few quick sanity checks to make sure all the writes took place in
order, | used a few regular expression search-and-replace operations and a tiny bit of
manual editing to clean the data up into a format that | could use in Python.

Next, a few more lines of Python to save the data as a binary file:

data? = map(lambda =x: x & 0xFF, datal)

newFile = open({("datacess.kin™, 'wk')
newFile.write(bytearray(dataz))
From there, | used IDA's Edit->Patch program->Assemble... command to write a small

patch into the corresponding function:

4/6

ﬂ DA - backdoor.idb (backdoor.ex) C\Workh CPPClass\backdoor.idb

File | Edit
B | [y

'
L

[

_l:l'l
=3
B X % % B B B

re

P Fi P Fi -_— Fi

rh

Jump Search
Copy

Eegin selection
Select all

Select identifier
Export data

Code

Data

Struct var...
Strings
Array...
Undefine

Rename

Operand type
Comments
Segments
Structs
Eunctions
Patch program
Other

Plugins

View Debugger

b v DO il it o

Ctrl+C
Alt+L

Shift+Enter
Shift+E

z
D
Alt+0

bk
Mumpad+*
u
M

[l el [el o el [e [e S e [e B B

Fi Su.u_-.:uaa--.:u
sub 4032D0
ManagerSendInfo

After a bit of fiddling and manual hex-editing the results, my patch was installed:

.text:004048BA call
.text:004048BF test
.text:004048C1 jz

.text:004048C7 lea
.text:004048CD mov
.text:004048D2 mov

.text:004048D7

.text:004048D9 jmp

.text:004048D9

.text:004048D9

.text:004048D9 ;
.text:004048DE

.text:004048DF db 5Ah
.text:004048E0 db 90h
.text:004048E1 db 0
.text:004048E2 db 3

And then | used a two-line IDC script to load the binary files as data in the proper location:

sub_432E90
eax, eax
loc 41FBAE

Lumina

Options

Windows

Help

I]
iction Data Unexplored External symbol [l
Imports B

Segrent Start Le

LLEXD 00401230 o

.Lext 00401D50 o

LLEXD 00401E10 o

.Lext 00401ESO o

LLEXD 00401F00 o

.Lext 00402020 o

LLEXD 00402000 o

.Lext 00402120 o

LLEXD 00402170 o

.Lext 00402290 o

LLEXD 00402440 o

.text 004024E0 o

LLEXD 0049028A0 o

.Lext 00402EBO o

Change byte... '
Change word... I
Azzemble... I

7] Patched bytes Ctrl+AltsP |

Apply patches to input file...

edi, [ebp+var 3E04] ;

ecx, 3EO0Oh

esi, offset recovered data ;

rep movsb

after writes

HE

NetworkCallbackThread endp

recovered data db 4Dh ; M

PATCH
PATCH
PATCH
PATCH
PATCH

DATA XREF: NetworkCallbackThread+E52:0

5/6

Execute script

. Snippet list Please enter script body

Marme 1| loadfile({fopen("c:\\work\\CPPClass\\Backdoor\\data9215.bin™, “rb"), @, Ox004B48DE, 9216);
@ STL Set Declarati || -|loadfile(fopen("c:\iwork\\CPPClass\\Backdoor\\data6655.bin", “"rb"), 0, 0x004848DE+9216, 6656);

E Load bytes *
@ STL List Declarat..
@ STL Declarators
@ RITI Inheritance

Afterwards the navigation bar showed that about 31% of the text section had been

converted into data:
BT] —
B

Library function [l Regular function ll Instruction nexplored External symbol [Lumina function
And now the problem is fixed. The function takes approximately two seconds to decompile,
more in line with what we'd expect for a 7kb function. Hooray; no more endless waiting, all
for the time cost of about three accidental decompilations of this function.

(T]

This example shows that, if you know your tools well enough to know what causes them
problems, that sometimes you can work your way around them. Always stay curious,
experiment, and don't simply settle for a suboptimal reverse engineering experience without
exploring whether there might be an easier solution.

6/6

