
1/14

Objective-See's Blog
objective-see.com/blog/blog_0x3B.html

Middle East Cyber-Espionage

analyzing WindShift's implant: OSX.WindTail (part 1)

December 20, 2018

📝 👾 Want to play along?

I’ve shared various OSX.WindTail samples (password: infect3d) …don’t infect yourself!

In this blog post, we’ll analyze the WindShift APT group’s 1 -stage macOS implant:
OSX.WindTail (likely variant A)

Specifically we’ll detail the malware’s:

initial infection vector
method of persistence
capabilities
detection and removal

Background

A few months ago, Taha Karim (head of malware research labs, at Dark Matter) presented
some intriguing research at Hack in the Box Singapore.

In his presentation, “In the Trails of WindShift APT”, he detailed a new APT group
(WindShift), who engaged in highly-targeted cyber-espionage campaigns. A Forbes article
“Hackers Are Exposing An Apple Mac Weakness In Middle East Espionage” by Thomas
Brewster, also covered Karim’s research, and noted that:

“[the APT] targeted specific individuals working in government departments and critical
infrastructure across the Middle East”

To me, besides WindShift’s targets, the most intriguing aspect of this APT group was (is?)
their use of macOS vulnerabilities and custom macOS implants (backdoors). In his talk,
Karim provided a good overview of the technique utilized by WindShift to infect macOS
computers, and the malware they then installed (OSX.WindTail.A , OSX.WindTail.B , and
OSX.WindTape). However, my rather insatiable technical cravings weren’t fully satisfied, so

I decided to dig deeper!

st

https://objective-see.com/blog/blog_0x3B.html
https://objective-see.com/downloads/malware/WindTail.zip
https://gsec.hitb.org/sg2018/
https://gsec.hitb.org/materials/sg2018/D1%20COMMSEC%20-%20In%20the%20Trails%20of%20WINDSHIFT%20APT%20-%20Taha%20Karim.pdf
https://www.forbes.com/sites/thomasbrewster/2018/08/30/apple-mac-loophole-breached-in-middle-east-hacks/#4b6706016fd6
https://twitter.com/iblametom

2/14

From the details Karim’s talk, I was able to replicate WindShift’s macOS exploitation
capabilities:

If you want to remotely infect Macs, read this 🍎🤒https://t.co/nQ7tHZm4Ec

credit:
0� WINDSHIFT APT who is infecting🍎-users of Middle Eastern .govts
1� Taha Karim/@GuardedbyGenius for the excellent "The Trails of WINDSHIFT APT"
talk at @hitbgsec 🙏

— patrick wardle (@patrickwardle) August 30, 2018

My blog post, “Remote Mac Exploitation Via Custom URL Schemes”, describes the technical
details of how WindShift (ab)used custom URL schemes to infect macOS systems. The
image below provides a illustrative overview.

…however, as the malware samples discussed in Karim’s talk were never publicly shared, a
full-technical analysis was never available…until now!

Analyzing OSX.WindTail

Earlier today, Phil Stokes, uncovered an interesting application on VirusTotal. He noted that
in Karim’s talk, one of the slides contained a file name: Meeting_Agenda.zip …which was
identified as by Karim as malware:

https://t.co/nQ7tHZm4Ec
https://twitter.com/GuardedbyGenius?ref_src=twsrc%5Etfw
https://twitter.com/HITBGSEC?ref_src=twsrc%5Etfw
https://twitter.com/patrickwardle/status/1035106254077579264?ref_src=twsrc%5Etfw
https://objective-see.com/blog/blog_0x38.html
https://twitter.com/philofishal

3/14

On VirusTotal, if we search for files with this name, we find what appears to be a match!

The sample (SHA-1: 4613f5b1e172cb08d6a2e7f2186e2fdd875b24e5) is currently only
detected by two anti-virus engines:

https://www.virustotal.com/gui/file/ad282e5ba2bc06a128eb20da753350278a2e47ab545fdab808e94a2ff7b4061e/detection

4/14

Using the similar-to: search modifier, I uncovered three other samples, that are not
flagged as malicious by any anti-virus engine!

NPC_Agenda_230617.zip1
 SHA-1: df2a83dc0ae09c970e7318b93d95041395976da7

Scandal_Report_2017.zip
 SHA-1: 6d1614617732f106d5ab01125cb8e57119f29d91

Final_Presentation.zip
 SHA-1: da342c4ca1b2ab31483c6f2d43cdcc195dfe481b

If we download and extract these applications, the uses Microsoft Office icons, likely to avoid
raising suspicion:

5/14

In his talk, Karim notes, “[the WindShift] attackers gave a backdoor a realistic look by
mimicking an Excel sheet icon”.

…the fact that our samples all similarly utilize Microsoft Office icons, is the first (of many)
characteristics that lead us to confidently tie these samples to the WindShift APT group.

Via the WhatsYourSign utility, we can confirm that indeed they are applications (not
documents):

https://objective-see.com/products/whatsyoursign.html

6/14

Moreover the utility indicates that the application (i.e. Final_Presentation.app) is neither
fully signed and that its signing certificate has been revoked. We can confirm this with the
codesign and spctl utilities:

$ codesign -dvvv Final_Presentation.app
Executable=Final_Presentation.app/Contents/MacOS/usrnode
Identifier=com.alis.tre
Format=app bundle with Mach-O thin (x86_64)
...
Authority=(unavailable)
Info.plist=not bound
TeamIdentifier=95RKE2AA8F
Sealed Resources version=2 rules=12 files=4
Internal requirements count=1 size=204

$ spctl --assess Final_Presentation.app
Final_Presentation.app: CSSMERR_TP_CERT_REVOKED

The fact that the signing certificate(s) of all the samples are revoked
(CSSMERR_TP_CERT_REVOKED) means that Apple knows about about this certificate…and
thus surely this malware as well. …yet the majority of the samples (3, of 4) are detected by
zero anti-virus engines on VirusTotal.

Does this mean Apple isn’t sharing valuable malware/threat-intel with AV-community,
preventing the creation of widespread AV signatures that can protect end-users?! 🤔

Narrator: yes

of course sometimes they may not have permission (if the information was sourced from
elsewhere).

*

*

7/14

Before diving into reversing/debugging these samples, let’s take quick peak at their
application bundles:

First, note the main executable is named usrnode . This is also specified in the application’s
Info.plist file (CFBundleExecutable is set to usrnode):

8/14

$ cat /Users/patrick/Downloads/WindShift/Final_Presentation.app/Contents/Info.plist
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>
 ...
 <key>CFBundleExecutable</key>
 <string>usrnode</string>
 ...
 <key>CFBundleIdentifier</key>
 <string>com.alis.tre</string>
 ...

 <key>CFBundleURLTypes</key>
 <array>
 <dict>
 <key>CFBundleURLName</key>
 <string>Local File</string>
 <key>CFBundleURLSchemes</key>
 <array>
 <string>openurl2622007</string>
 </array>
 </dict>
 </array>
 ...
 <key>LSMinimumSystemVersion</key>
 <string>10.7</string>
 ...
 <key>NSUIElement</key>
 <string>1</string>

</dict>
</plist>

Other interesting keys include LSMinimumSystemVersion which indicates the (malicious)
application is compatible with OSX 10.7 (Lion), and NSUIElement key which tells the OS to
execute the application without a dock icon nor menu (i.e. hidden).

However the most interesting key is the CFBundleURLSchemes (within the
CFBundleURLTypes). This key holds an array of custom URL schemes that the application

implements (here: openurl2622007). In the aforementioned blog post “Remote Mac
Exploitation Via Custom URL Schemes”, we described how WindShift (ab)used custom URL
schemes to infect macOS systems…in exactly this manner! Yet another data point tying our
samples to WindShift.

The OSX.WindTail.A sample described by Karim used a similarly named custom URL
scheme: openurl2622015

Ok, let’s dive in to look at some disassembly!

Loading the main binary usrnode into a disassembler (I used Hopper), we start at the
main() function:

https://objective-see.com/blog/blog_0x38.html
https://www.hopperapp.com/

9/14

int main(int arg0, int arg1, int arg2, int arg3, int arg4, int arg5) {

 r12 = [NSURL fileURLWithPath:[[NSBundle mainBundle] bundlePath]];
 rbx = LSSharedFileListCreate(0x0, _kLSSharedFileListSessionLoginItems, 0x0);

 LSSharedFileListInsertItemURL(rbx, _kLSSharedFileListItemLast, 0x0, 0x0, r12,
0x0, 0x0);
 ...

 rax = NSApplicationMain(r15, r14);
 return rax;
}

The LSSharedFileListInsertItemURL API is documented by Apple. Just kidding: “No
overview available”:

So what does the LSSharedFileListInsertItemURL API do? It adds a login item, which is
mechanism to gain persistence and ensure that the (malicious) application will be
automatically (re)started everytime the user logs in. This is visible via System
Preferences application:

…not the stealthiest persistence mechanism, but meh, gets the job done!

https://developer.apple.com/documentation/coreservices/1444471-lssharedfilelistinsertitemurl?language=objc

10/14

The main() function invokes the NSApplicationMain method, which in turn invokes the
applicationDidFinishLaunching method:

-(void)applicationDidFinishLaunching:(void *)arg2 {
 r15 = self;
 r14 = [[NSDate alloc] init];
 rbx = [[NSDateFormatter alloc] init];
 [rbx setDateFormat:@"dd-MM-YYYYHH:mm:ss"];
 r14 = [[[[rbx stringFromDate:r14] componentsSeparatedByCharactersInSet:
 [NSCharacterSet characterSetWithCharactersInString:cfstring____]]
 componentsJoinedByString:@""] stringByReplacingOccurrencesOfString:@" "
withString:@""];

 rcx = [[NSBundle mainBundle] resourcePath];
 rbx = [NSString stringWithFormat:@"%@/date.txt", rcx];
 rax = [NSFileManager defaultManager];
 rdx = rbx;
 if ([rax fileExistsAtPath:rdx] == 0x0) {
 rax = arc4random();
 rax = [NSString stringWithFormat:@"%@%@", r14,
 [[NSNumber numberWithInt:rax - (rax * 0x51eb851f >> 0x25) * 0x64,
 (rax * 0x51eb851f >> 0x25) * 0x64] stringValue]];
 rcx = 0x1;
 r8 = 0x4;
 rdx = rbx;
 rax = [rax writeToFile:rdx atomically:rcx encoding:r8 error:&var_28];
 if (rax == 0x0) {
 r8 = 0x4;
 rax = [NSUserDefaults standardUserDefaults];
 rcx = @"GenrateDeviceName";
 rdx = 0x1;
 [rax setBool:rdx forKey:rcx, r8];
 [[NSUserDefaults standardUserDefaults] synchronize];
 }
 }
 [r15 read];
 [r15 tuffel];
 [NSThread detachNewThreadSelector:@selector(mydel) toTarget:r15 withObject:0x0];

 return;
}

Pulling apart the above code, we can see: 1. The (malicious) application generates the
current date/time, and formats it. 2. Builds a path to date.txt in it’s application bundle
(Contents/Resources/date.txt) 3. If this file doesn’t exist, write out the (formatted) date
and a random number 4. If this fails, set the GenrateDeviceName (sic) user default key to
true 5. Read in the data from the date.txt file 6. invoke the tuffel method 7. Spawn a
thread to execute the mydel method
Clearly steps 1-5 are executed to generate, then load, a unique identifier for the implant.

Let’s observe this happening (via the fs_usage utility):

11/14

fs_usage -w -filesystem | grep date.txt
00:38:09.784384 lstat64
/Users/user/Desktop/Final_Presentation.app/Contents/Resources/date.txt usrnode.8894
00:38:09.785711 open F=3 (R_____)
/Users/user/Desktop/Final_Presentation.app/Contents/Resources/date.txt usrnode.8894
...

cat ~/Desktop/Final_Presentation.app/Contents/Resources/date.txt
2012201800380925

The tuffel method is rather involved (and we’ll expand upon in an update to this blog
post). However, some of it’s main actions include:

1. Moving the (malicious) application into the /Users/user/Library/ directory
2. Executing this persisted copy, via the open command
3. Decrypting embedded strings that relate to file extensions of (likely) interest

We can observe step #2 (execution of the persisted copy) via my open-source process
monitor library, ProcInfo:

procInfo[915:9229] process start:
pid: 917
path: /usr/bin/open
user: 501
args: (
 open,
 "-a",
 "/Users/user/Library/Final_Presentation.app"
)

Step #3, (string decryption) is interesting as it both reveals the capabilities of the malware as
well as (again) helps identify the (malicious) application as OSX.WindTail . The yoop
method appears to be the string decryption routine:

-(void *)yoop:(void *)arg2 {
 rax = [[[NSString alloc] initWithData:[[yu decode:arg2]
AESDecryptWithPassphrase:cfstring__] encoding:0x1] stringByTrimmingCharactersInSet:
[NSCharacterSet whitespaceCharacterSet]];
 return rax;
}

Specifically it invokes a decode and AESDecryptWithPassphrase helper methods.
Looking closer at the call to the AESDecryptWithPassphrase method, we can see it’s
invoked with a variable named cfstring__ (at address 0x100013480). This is the (hard-
coded) AES decryption key:

cfstring___100013480:
 0x000000010001c1a8, 0x00000000000007d0,
 0x000000010000bc2a, 0x0000000000000010 ; u"æ$&łŁńŚŽ~Ę?|!~<Œ",

https://github.com/objective-see/ProcInfo

12/14

Interestingly this is the exact same key as Karin showed in his slides, for OSX.WindTail.A:

To see what the (malicious) application is decrypting, we can simply set a breakpoint within
the yoop method, and then dump the (now) decrypted strings:

(lldb) b 0x000000010000229b
Breakpoint 8: where = usrnode`___lldb_unnamed_symbol6$$usrnode + 92, address =
0x000000010000229b
(lldb) po $rax
http://flux2key.com/liaROelcOeVvfjN/fsfSQNrIyxeRvXH.php?very=%@&xnvk=%@

It’s rather easy to break ‘AES’ when you have the key 🤣

Other strings that are decrypted (as noted) relate to file extensions of (likely) interest such as
doc , pdf , db , etc. Makes sense that a cyber-espionage implant would be interested in

such things, ya?

Moving on the myDel method appears to attempt to connect to the malware’s C&C servers.
Of course these are encrypted, but again, by dynamically debugging the malware, we can
can simply wait until it invokes the AES decryption routine, then dump the (now) plaintext
strings:

(lldb) x/s 0x0000000100350a40
0x100350a40: "string2me.com/qgHUDRZiYhOqQiN/kESklNvxsNZQcPl.php

...
(lldb) x/s 0x0000000100352fe0
0x100352fe0: "http://flux2key.com/liaROelcOeVvfjN/fsfSQNrIyxeRvXH.php?very=%@&xnvk=%@

The C&C domains (string2me.com and flux2key.com) are both WindShift domains, as
noted by Karim in an interview with itWire

“the domains string2me.com and flux2key.com identified as associated with these
attacks”

These domains are currently offline:

https://www.itwire.com/security/84324-researcher-unsure-if-apple-has-acted-to-curb-malware.html

13/14

$ ping flux2key.com
ping: cannot resolve flux2key.com: Unknown host

$ nslookup flux2key.com
Server: 8.8.8.8
Address: 8.8.8.8#53

** server can't find flux2key.com: SERVFAIL

…thus the malware appears to remain rather inactive. That is to say, (in a debugger), it
doesn’t do much - as it’s likely awaiting commands from the (offline) C&C servers.

However, a brief (static) triage of other methods found within the (malicious) application
indicate it likely supports ‘standard’ backdoor capabilities such as file exfiltration and the
(remote) execution of arbitrary commands. I’ll keep digging and update this post with any
new findings!

Conclusion

WindShift is an intriguing APT, selectively targeting individuals in the Middle East. Its macOS
capabilities are rather unique and make for a rather interesting case study!

Today, for the first time, we publicly shared samples of a malicious application that I’m highly
confident is OSX.WindTail.A (or is some variant thereof). This claim is based upon
naming-schemes, unique infection mechanism, shared AES-decryption key, and some off-
the-record insight.

In this blog post, we analyzed the OSX.WindTail to reveal its:

initial infection vector
method of persistence
capabilities
commmand & control servers

All that’s left is to talk about detection an removal.

First, good news, Objective-See’s tools such as BlockBlock and KnockKnock are able to
both detect and block this malware with no a priori knowledge 🔥

https://objective-see.com/products/blockblock.html
https://objective-see.com/products/knockknock.html

14/14

…since current anti-virus engines (at least those found on VirusTotal) currently do not detect
these threats, it’s probably best to stick to tools (such as BlockBlock and KnockKnock) that
can heuristically detect malware.

Though a tool such as KnockKnock is the suggested way to detect an infection, you can also
manually check if you’re infected. Check for a suspicious Login Item via the System
Preferences application, and/or for the presence of suspicious application in your
~/Library/ folder (likely with a Microsoft Office icon, and perhaps an invalid code

signature). Deleting any such applications and Login Item will remove the malware.

However if you were infected (which is very unlikely, unless you’re a government official in a
specific Middle Eastern country), it’s best to fully wipe your system and re-install macOS!

Love these blog posts & tools? You can support them via my Patreon page!

© 2018 objective-see llc

https://objective-see.com/products/knockknock.html
https://www.patreon.com/bePatron?c=701171

