
1/38

fumko October 15, 2018

Predator The Thief: In-depth analysis (v2.3.5)
fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/

Well, it’s been a long time without some fresh new contents on my blog. I had some
unexpected problems that kept me away from here and a lot of work (like my tracker) that
explain this. But it’s time to come back (slowly) with some stuff.

So today, this is an In-Depth analysis of one stealer: “Predator the thief”, written in C/C++.
Like dozen others malware, it’s a ready to sell malware delivered as a builder & C2 panel
package.

The goal is to explain step by step how this malware is working with a lot of extra
explanations for some parts. This post is mainly addressed for junior reverse engineers or
malware analysts who want for future purposes to understand and defeat some
techniques/tricks easily.

So here we go!

Classical life cycle

https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/

2/38

The execution order is almost the same, for most of the stealers nowadays. Changes are
mostly varying between evading techniques and how they interact with the C2. For example,
with Predator, the set up is quite simple but could vary if the attacker set up a loader on his
C2.

The life cycle of Predator the thief

Preparing the field

Before stealing sensitive data, Predator starts by setting up some basics stuff to be able to
work correctly. Almost all the configuration is loaded into memory step by step.

3/38

So let’s put a breakpoint at “0x00472866” and inspect the code…

4/38

1. EBX is set to be the length of our loop (in our case here, it will be 0x0F)
2. ESI have all functions addresses stored

5/38

3. EAX, will grab one address from ESI and moves it into EBP-8
4. EBP is called, so at this point, a config function will unpack some data and saved it into

the stack)
5. ESI position is now advanced by 4
6. EDI is incremented until reaching the same value as stored EBX
7. When the EDI == EBX, it means that all required configuration values are stored into

the stack. The main part of the malware could start

So, for example, let’s see what we have inside 0040101D at 0x00488278

So with x32dbg, let’s see what we have… with a simple command

Command: go 0x0040101D

As you can see, this is where the C2 is stored, uncovered and saved into the stack.

So what values are stored with this technique?

C2 Domain
%APPDATA% Folder
Predator Folder
temporary name of the archive predator file and position
also, the name of the archive when it will send to the C2
etc…

With the help of the %APPDATA%/Roaming path, the Predator folder is created (\ptst).
Something notable with this is that it’s hardcoded behind a Xor string and not generated
randomly. By pure speculation, It could be a shortcut for “Predator The STealer”.

This is also the same constatation for the name of the temporary archive file during the
stealing process: “zpar.zip”.

The welcome message…

6/38

When you are positioned at the main module of the stealer, a lovely text looped over
0x06400000 times is addressed for people who want to reverse it.

Obfuscation Techniques

The thief who loves XOR (a little bit too much…)

Almost all the strings from this stealer sample are XORed, even if this obfuscation technique
is really easy to understand and one of the easier to decrypt. Here, its used at multiple forms
just to slow down the analysis.

7/38

GetProcAddress Alternatives

For avoiding to call directly modules from different libraries, it uses some classic stuff to
search step by step a specific API request and stores it into a register. It permits to hide the
direct call of the module into a simple register call.

https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/xor_variant_01/
https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/xor_variant_02/
https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/xor_case_01/

8/38

So firstly, a XORed string (a DLL) is decrypted. So for this case, the kernel32.dll is required
for the specific module that the malware wants to call.

When the decryption is done, this library is loaded with the help of “LoadLibraryA“. Then, a
clear text is pushed into EDX: “CreateDirectoryA“… This will be the module that the stealer
wants to use.

The only thing that it needs now, its to retrieve the address of an exported function
“CreateDirectoryA” from kernel32.dll. Usually, this is done with the help of
GetProcAddress but this function is in fact not called and another trick is used to get the right
value.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms684175(v=vs.85).aspx
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-createdirectorya
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-createdirectorya
https://msdn.microsoft.com/fr-fr/library/windows/desktop/ms683212(v=vs.85).aspx

9/38

So this string and the IMAGE_DOS_HEADER of kernel32.dll are sent into
“func_GetProcesAddress_0”. The idea is to get manually the pointer of the function address
that we want with the help of the Export Table. So let’s see what we have in the in it…

struct IMAGE_EXPORT_DIRECTORY {
long Characteristics;
long TimeDateStamp;
short MajorVersion;
short MinorVersion;
long Name;
long Base;
long NumberOfFunctions;
long NumberOfNames;
long *AddressOfFunctions; <= This good boy
long *AddressOfNames; <= This good boy
long *AddressOfNameOrdinals; <= This good boy

}

After inspecting the structure de IMAGE_EXPORT_DIRECTORY, three fields are mandatory
:

AddressOfFunctions – An Array who contains the relative value address (RVA) of the
functions of the module.
AddressOfNames – An array who stores with the ascending order of all functions from
this module.
AddressOfNamesOrdinals – An 16 bits array who contains all the associated ordinals
of functions names based on the AddressOfNames.

source

So after saving the absolute position of these 3 arrays, the loop is simple

https://en.wikibooks.org/wiki/X86_Disassembly/Windows_Executable_Files

10/38

1. Grab the RVA of one function
2. Get the name of this function
3. Compare the string with the desired one.

So let’s see in details to understand everything :

If we dig into ds:[eax+edx*4], this where is stored all relative value address of the
kernel32.dll export table functions.

With the next instruction add eax,ecx. This remains to go at the exact position of the string
value in the “AddressOfNames” array.

11/38

DLLBaseAddress + AddressOfNameRVA[i] = Function Name
 751F0000 + 0C41D4 = CreateDirectoryA

The comparison is matching, now it needs to store the “procAddress. So First the Ordinal
Number of the function is saved. Then with the help of this value, the Function Address
position is grabbed and saved into ESI.

ADD ESI, ECX
ProcAddress = Function Address + DLLBaseAddress

In disassembly, it looks like this :

Let’s inspect the code at the specific procAddress…

So everything is done, the address of the function is now stored into EAX and it only needs
now to be called.

12/38

Anti-VM Technique

Here is used a simple Anti-VM Technique to check if this stealer is launched on a virtual
machine. This is also the only Anti-Detection trick used on Predator.

First, User32.dll (Xored) is dynamically loaded with the help of “LoadLibraryA“, Then
“EnumDisplayDevicesA” module is requested with the help of User32.dll. The idea here is to
get the value of the “Device Description” of the current display used.

When it’s done, the result is checked with some values (obviously xored too) :

https://docs.microsoft.com/fr-fr/windows/desktop/api/libloaderapi/nf-libloaderapi-loadlibrarya
https://docs.microsoft.com/en-us/windows/desktop/api/winuser/nf-winuser-enumdisplaydevicesa

13/38

Hyper-V
VMware
VirtualBox

If the string matches, you are redirected to a function renamed here
“func_VmDetectedGoodBye.

How to By-Pass this Anti-VM technique?

For avoiding this simple trick, the goal is to modify the REG_SZ value of “DriverDesc” into
{4d36e968-e325-11ce-bfc1-08002be10318} to something else.

https://docs.microsoft.com/en-us/windows-hardware/drivers/install/system-defined-device-setup-classes-available-to-vendors

14/38

And voilà!

Stealing Part

Let’s talk about the main subject… How this stealer is organized… As far I disassemble the
code, this is all the folders that the malware is setting on the “ptst” repository before sending
it as an archive on the C2.

Folder
Files: Contains all classical text/documents files at specifics paths
FileZilla: Grab one or two files from this FTP
WinFTP: Grab one file from this FTP
Cookies: Saved stolen cookies from different browsers
General: Generic Data
Steam: Steal login account data
Discord: Steal login account data

15/38

Files
Information.log
Screenshot.jpeg <= Screenshot of the current screen

Telegram

For checking if Telegram is installed on the machine, the malware is checking if the KeyPath
“Software\Microsoft\Windows\CurrentVersion\Uninstall\{53F49750-6209-4FBF-9CA8-
7A333C87D1ED}_is1” exists on the machine.

So let’s inspect what we have inside this “KeyPath”? After digging into the code, the stealer
will request the value of “InstallLocation” because of this where Telegram is installed
currently on the machine.

Step by step, the path is recreated (also always, all strings are xored) :

%TELEGRAM_PATH%
\Telegram Desktop
\tdata
\D877F783D5D3EF8C

16/38

The folder “D877F783D5D3EF8C” is where all Telegram cache is stored. This is the sensitive
data that the stealer wants to grab. Also during the process, the file map* (i.e: map1) is also
checked and this file is, in fact, the encryption key. So if someone grabs everything for this
folder, this leads the attacker to have an access (login without prompt) into the victim
account.

Steam

The technique used by the stealer to get information for one software will remain the same
for the next events (for most of the cases). This greatly facilitates the understanding of this
malware.

17/38

So first, it’s checking the “SteamPath” key value at “HKCU\Software\Valve\Steam” to grab the
correct Steam repository. This value is after concatenating with a bunch of files that are
necessary to compromise a Steam Account.

So it will check first if ssfn files are present on the machine with the help of “func_FindFiles”,
if it matches, they are duplicated into the temporary malware folder stored on
%APPDATA%/XXXX. Then do the same things with config.vdf

https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/xor_1/
https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/xor_2/

18/38

So what the point with these files? First, after some research, a post on Reddit was quite
interesting. it explained that ssfn files permit to by-pass SteamGuard during the user log-on.

19/38

Now what the point of the second file? this is where you could know some information about
the user account and all the applications that are installed on the machine. Also, if the
ConnectCache field is found on this one, it is possible to log into the stolen account without
steam authentication prompt. if you are curious, this pattern is represented just like this :

"ConnectCache"
{
 "STEAM_USERNAME_IN_CRC32_FORMAT" "SOME_HEX_STUFF"
}

The last file, that the stealer wants to grab is “loginusers.vdf”. This one could be used for
multiple purposes but mainly for setting the account in offline mode manually.

For more details on the subject there a nice report made by Kapersky for this:

Steam Stealers

Wallets

The stealer is supporting multiple digital wallets such as :

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/07191212/Steam_Stealers_research_ENG.pdf

20/38

Ethereum
Multibit
Electrum
Armory
Bytecoin
Bitcoin
Etc…

The functionality is rudimentary but it’s enough to grab specific files such as :

*.wallet
*.dat

And as usual, all the strings are XORed.

FTP software

The stealer supports two FTP software :

Filezilla
WInFTP

It’s really rudimentary because he only search for three files, and they are available a simple
copy to the predator is done :

%APPDATA%\Filezilla\sitemanager.xml
%APPDATA%\Filezilla\recentservers.xml
%PROGRAMFILES%\WinFtp Client\Favorites.dat

21/38

Browsers

It’s not necessary to have some deeper explanation about what kind of file the stealer will
focus on browsers. There is currently a dozen articles that explain how this kind of malware
manages to steal web data. I recommend you to read this article made by @coldshell about
an example of overview and well detailed.

As usual, popular Chrome-based & Firefox-based browsers and also Opera are mainly
targeted by Predator.

This is the current official list supported by this stealer :

Amigo
BlackHawk
Chromium
Comodo Dragon
Cyberfox
Epic Privacy Browser
Google Chrome
IceCat
K-Meleon
Kometa
Maxthon5
Mozilla Firefox
Nichrome
Opera
Orbitum
Pale Moon
Sputnik
Torch

https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/filezilla/
https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/winftp/
https://thisissecurity.stormshield.com/2018/08/28/acridrain-stealer/
https://twitter.com/coldshell

22/38

Vivaldi
Waterfox
Etc…

This one is also using SQLite for extracting data from browsers and using and saved them
into a temporary file name “vlmi{lulz}yg.col”.

So the task is simple :

Stole SQL Browser file
Extract data with the help of SQLite and put into a temporary file
Then read and save it into a text file with a specific name (for each browser).

When forms data or credentials are found they’re saved into two files on the General
repository :

forms.log

23/38

password.log
cards.log

Discord

If discord is detected on the machine, the stealer will search and copy the
“https_discordapp_*localstorage” file into the “ptst” folder. This file contains all sensitive
information about the account and could permit some authentication without a prompt login if
this one is pushed into the correct directory of the attacker machine.

Predator is inspecting multiple places…

This stealer is stealing data from 3 strategical folders :

Desktop
Downloads
Documents

Each time, the task will be the same, it will search 4 type of files with the help of
GetFileAttributesA :

https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-getfileattributesa

24/38

*.doc
*.docx
*.txt
*.log

When it matches, they have copied into a folder named “Files”.

Information.log

When tasks are done, the malware starts generating a summarize file, who contains some
specific and sensitive data from the machine victim beside the file “Information.log”. For
DFIR, this file is the artifact to identify the name of the malware because it contains the name
and the specific version.

So first, it writes the Username of the user that has executed the payload, the computer
name, and the OS Version.

User name: lolilol
Machine name: Computer
OS version: Windoge 10

https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/doc/
https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/docx/
https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/log/
https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/txt/

25/38

Then copy the content of the clipboard with the help of GetClipBoardData

Current clipboard:

Omelette du fromage

Let’s continue the process…

Startup folder: C:\Users\lolilol\AppData\Local\Temp\predator.exe

Some classic specification about the machine is requested and saved into the file.

CPU info: Some bad CPU | Amount of kernels: 128 (Current CPU usage: 46.112917%)
GPU info: Fumik0_ graphical display
Amount of RAM: 12 GB (Current RAM usage: 240 MB)
Screen resolution: 1900x1005

Then, all the user accounts are indicated

Computer users:
lolilol
Administrator
All Users
Default
Default User
Public

The last part is about some exotics information that is quite awkward in fact… Firstly, for
some reasons that I don’t want to understand, there is the compile time hardcoded on the
payload.

https://docs.microsoft.com/en-us/windows/desktop/api/winuser/nf-winuser-getclipboarddata

26/38

Then the second exotic data saved into Information.log is the grabbing execution time for
stealing contents from the machine… This information could be useful for debugging some
tweaks with the features.

Additional information:
Compile time: Aug 31 2018
Grabbing time: 0.359375 second(s)

C2 Communications

For finishing the information.log, a GET request is made for getting some network data about
the victim…

First, it set up the request by uncovered some Data like :

A user-agent
The content-type

27/38

The API URL (/api/info.get)

We can have for example this result :

Amsterdam;Netherlands;52.3702;4.89517;51.15.43.205;Europe/Amsterdam;1012;

When the request is done, the data is consolidated step by step with the help of different
loops and conditions.

When the task is done, there are saved into Information.log

City: Nopeland
Country: NopeCountry
Coordinates: XX.XXXX N, X.XXXX W
IP: XXX.XXX.XXX.XXX
Timezone: Nowhere
Zip code: XXXXX

The Archive is not complete, it only needs for the stealer to send it to the C2.

28/38

So now it set up some pieces of information into the gate.get request with specifics
arguments, from p1 to p7, for example :

p1: Number of accounts stolen
p2: Number of cookies stolen
p4: Number of forms stolen
etc…

results :

The POST request is now complete, the stealer will clean everything and quit.

29/38

Example of Predator C2 Panel with fancy background…

Update – v2.3.7

So during the analysis, new versions were pushed… Currently (at the time where this post
was redacted), the v3 has been released, but without possession of this specific version, I
won’t talk anything about it and will me be focus only on the 2.3.7.

It’s useless to review from scratch, the mechanic of this stealer is still the same, just some
tweak or other arrangements was done for multiple purposes… Without digging too much
into it, let’s see some changes (not all) that I found interesting.

30/38

Changelog of v2.3.7 explained by the author

As usual, this is the same patterns :

Code optimizations (Faster / Lightweight)
More features…

As you can see v2.3.7 on the right is much longer than v2.3.5 (left), but the backbone is still
the same.

https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/old/

31/38

https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/old/
https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/new/

32/38

https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/new/

33/38

Mutex

On 2.3.7, A mutex is integrated with a specific string called “SyystemServs”

Xor / Obfuscated Strings

During the C2 requests, URL arguments are generated byte per byte and unXOR.

For example :

push 04
...
push 61
...
push 70
...

leads to this
HEX : 046170692F676174652E6765743F70313D
STRING : .api/gate.get?p1=

This is basic and simple but enough to just slow down the review of the strings. but at least,
it’s really easy to uncover it, so it doesn’t matter.

https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/new/
https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/mutexcreation-2/
https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/mutexname-2/

34/38

This tweak by far is why the code is much longer than v2.3.5.

Loader

Not seen before (as far I saw), it seems on 2.3.7, it integrates a loader feature to push
another payload on the victim machine, easily recognizable with the adequate GET Request

/api/download.get

The API request permits to the malware to get an URL into text format. Then Download and
saved it into disk and execute it with the help of ShellExecuteA

https://docs.microsoft.com/en-us/windows/desktop/api/shellapi/nf-shellapi-shellexecutea

35/38

There also some other tweaks, but it’s unnecessary to detail on this review, I let you this task
by yourself if you are curious 🙂

IoC

v2.3.5

299f83d5a35f17aa97d40db667a52dcc | Sample Packed
3cb386716d7b90b4dca1610afbd5b146 | Sample Unpacked
kent-adam.myjino.ru | C2 Domain

v2.3.7

 cbcc48fe0fa0fd30cb4c088fae582118 | Sample Unpacked
 denbaliberdin.myjino.ru | C2 Domain

HTTP Patterns

GET – /api/info.get
POST – /api//gate.get?p1=X&p2=X&p3=X&p4=X&p5=X&p6=X&p7=X
GET – /api/download.get

MITRE ATT&CK

v2.3.5

36/38

Discovery – Peripheral Device Discovery
Discovery – System Information Discovery
Discovery – System Time Discovery
Discovery – Query Registry
Credential Access – Credentials in Files
Exfiltration – Data Compressed

v2.3.7

Discovery – Peripheral Device Discovery
Discovery – System Information Discovery
Discovery – System Time Discovery
Discovery – Query Registry
Credential Access – Credentials in Files
Exfiltration – Data Compressed
Execution – Execution through API

Author / Threat Actor
Alexuiop1337

Yara Rule

37/38

rule Predator_The_Thief : Predator_The_Thief {
 meta:
 description = "Yara rule for Predator The Thief v2.3.5 & +"
 author = "Fumik0_"
 date = "2018/10/12"
 update = "2018/12/19"

 strings:
 $mz = { 4D 5A }

 // V2
 $hex1 = { BF 00 00 40 06 }
 $hex2 = { C6 04 31 6B }
 $hex3 = { C6 04 31 63 }
 $hex4 = { C6 04 31 75 }
 $hex5 = { C6 04 31 66 }

 $s1 = "sqlite_" ascii wide

 // V3
 $x1 = { C6 84 24 ?? ?? 00 00 8C }
 $x2 = { C6 84 24 ?? ?? 00 00 1A }
 $x3 = { C6 84 24 ?? ?? 00 00 D4 }
 $x4 = { C6 84 24 ?? ?? 00 00 03 }
 $x5 = { C6 84 24 ?? ?? 00 00 B4 }
 $x6 = { C6 84 24 ?? ?? 00 00 80 }

 condition:
 $mz at 0 and
 ((all of ($hex*) and all of ($s*)) or (all of ($x*)))
}

Recommendations

Always running stuff inside a VM, be sure to install a lot of stuff linked to the hypervisor
(like Guest Addons tools) to trigger as much as possible all kind of possible Anti-VM
detection and closing malware. When you have done with your activities stop the VM
and restore it a Specific clean snapshot when it’s done.
Avoid storing files at a pre-destined path (Desktop, Documents, Downloads), put at a
place that is not common.
Avoiding Cracks and other stupid fake hacks, stealers are usually behind the current
game trendings (especially in those times with Fortnite…).
Use containers for software that you are using, this will reduce the risk of stealing data.
Flush your browser after each visit, never saved your passwords directly on your
browser or using auto-fill features.
Don’t use the same password for all your websites (use 2FA and it’s possible), we are
in 2018, and this still sadly everywhere like this.
Make some noise with your data, that will permit to lose some attacker minds to find
some accurate values into the junk information.
Use a Vault Password software.

38/38

Troll/Not Troll: Learn Russian and put your keyboard in Cyrillic 🙂

Conclusion

Stealers are not sophisticated malware, but they are enough effective to make some
irreversible damage for victims. Email accounts and other credentials are more and more
impactful and this will be worse with the years. Behaviors must changes for the account
management to limit this kind of scenario. Awareness and good practices are the keys and
this will not be a simple security software solution that will solve everything.

Well for me I’ve enough work, it’s time to sleep a little…

#HappyHunting

Update 2018-10-23 : Yara Rules now working also for v3

https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/what-do-hackers-do-with-your-stolen-identity

