
1/11

Cobalt Group 2.0
blog.morphisec.com/cobalt-gang-2.0

Tweet

https://blog.morphisec.com/cobalt-gang-2.0
https://twitter.com/share


2/11

 

Over the past year, Morphisec and several other endpoint protection companies have been
tracking a resurgence in activity from the Cobalt Group. Cobalt is one of the most notorious
cybercrime operations, with attacks against more than 100 banks across 40 countries
attributed to the group. The most recent attacks can be grouped into two types of campaigns.
Many of the campaigns are based on the known and prevalent ThreadKit exploit kit
generation framework. Other campaigns are more sophisticated, borrowing only some
functionality from ThreadKit builder while incorporating additional advanced techniques from
other sources.

Morphisec Labs believes that the Cobalt Group split following the arrest of one of its top
leaders in Spain in March of 2018. While Cobalt Gang 1.0 uses ThreadKit extensively, Cobalt
2.0 adds sophistication to its delivery method, borrowing some of the network infrastructures
used by both APT28  (aka Fancy Bear) and MuddyWater.

One of the Cobalt 2.0 Group’s latest campaigns, an attack that leads to a Cobalt Strike
beacon and to JavaScript backdoor, was investigated and presented by the Talos research
team. Morphisec has investigated different samples from the same campaign. The following
analysis presents our findings, focusing on the additional sophistication patterns and
attribution patterns.

Cobalt Group Technical Details

Stage 1 - Word Macro + Whitelisting Bypass

https://www.morphisec.com/products/advanced-endpoint-threat-protection
https://blog.talosintelligence.com/2018/07/multiple-cobalt-personality-disorder.html


3/11

As with many other campaigns, the victim received a document with malicious macro visual
basic code.

Although the code is heavily obfuscated, the entry point is easily identifiable. The VB code is
executed starting from the Frame1_Layout function – this method is used much less
frequently than the obvious Document_Open or the AutoOpen.

The list of additional possible execution triggers is defined here:
https://www.greyhathacker.net/?p=948

The macro is executing the legitimate Windows process cmstp.exe (connection manager
Profile Installer). This technique was previously used by the MuddyWater group when
attacking Middle East targets. The use of cmstp.exe whitelisting bypass was researched by
Oddvar Moe, where he showed how, by manipulating the inf file, cmstp can execute
scriptlets or executables.

https://www.greyhathacker.net/?p=948
https://oddvar.moe/2017/08/15/research-on-cmstp-exe/


4/11

In our case the attacker abused cmstp to execute JavaScript scriptlet (XML with JS) that is
downloaded from the e-dropbox[.]biz site. This way the group limited the exposure and the
delivery of the JavaScript to relevant targets only.

Stage 2 - JavaScript Dropper + Whitelisting Bypass

The JavaScript is well encoded with rc4 and some custom modifications:

The decrypted JavaScript has some similar functionality to the ThreadKit builder which is
heavily used by the Cobalt Gang 1.0.

https://www.proofpoint.com/us/threat-insight/post/unraveling-ThreadKit-new-document-exploit-builder-distribute-The-Trick-Formbook-Loki-Bot-malware


5/11

As can be seen from the deobfuscated code, the JavaScript yet again bypasses whitelisting
by manipulation of regsvr32.exe, another legitimate Windows process. The two dropped
artifacts – a payload DLL and a Word document – are written to the “Users\<Log on User>\”
folder (the document will replace the opened malicious document with clean stub after killing
the running Word process).

Stage 3 - PureBasic Legitimate Executable Mixed with Additional Malicious
Functions

The dropped DLL is actually a PureBasic compiled code and a legitimate application. The
application is not signed (as many other PureBasic applications) and therefore easily
manipulated to execute inserted malicious code. In this case, the exported function
DllRegisterServer wasn’t part of the legitimate application and is perfect for application flow
redirection when executed by regsvr32.exe. Because PureBasic is a full programming
language that compiles to assembly and has endless possibilities and APIs to manipulate the
memory, it also complicates the generation of patterns by security vendors that base their
detection on static or dynamic pattern signatures. Although some security solutions will block
all PureBasic programs (wrong move – there are plenty of legitimate PureBasic programs in
use today), it’s a smart move made by the attacker group.



6/11

To function properly, the malicious injected code needs to reflectively load and map to
existing core functions. The same code also applies anti-disassembly and anti-debugging
techniques. It gets the following functions from Kernel32 and Advapi32:

The code then uses the identified functions to add persistency through registry and add next
stages file names identifier through the following locations:

HKCU\Environment\UserInitMprLogonScript – next stage command (JavaScript
downloader executed through regsvr32) is registered under UserInitMprLogonScript.

HKCU\Software\Microsoft\Notepad\<$UserName$> - The code creates a new value
under Notepad Key with a pair representing randomly generated key pair. The right
side of the pair is the name of the JavaScript in the next stage (stage 4) , while the left
side of the pair represents the file that will be downloaded as part of stage 5.

Such a combination of registry manipulation was reported a year ago as part of an attack
campaign executed by the Cobalt Group against Ukrainian banks.

https://cys-centrum.com/ru/news/activity_of_cobalt_summer_2017


7/11

As part of the last execution step of the dll, the malicious code writes a JavaScript scriptlet
into the Roaming directory and then it executes CreateProcess on the regsvr32 as described
by the UserInitMprLogonScript.

Stage 4 - JavaScript  Downloader + Whitelisting Bypass

Here, the scriptlet is automatically obfuscated in a way similar to the first scriptlet:

After quick deobfuscation, we get to a clear JavaScript that is trying to download the next
stage JavaScript backdoor using the same regsvr32. Note that the name for the JavaScript is
part of the Notepad registry key that was written in a previous stage.



8/11

The script also validates that no one changed the name of the executed file that was
randomly given during the previous stage. If the name of the executed JavaScript doesn’t
match the name registered in the Notepad registry key, the script will not execute
(researchers sometimes change the names of the files to execute the different stages
separately – this will not work in this case).



9/11

This decoded JavaScript downloader is almost identical to downloader previously seen
around one year ago - https://twitter.com/ItsReallyNick/status/914894320766943232. 

Stage 5 - JavaScript Backdoor

The last stage JavaScript is downloaded from hxxps://server.vestacp[.]kz/robots.txt.

The JavaScript is obfuscated the same way as in the previous stages. After deobfuscation,
we encounter a backdoor that was used in attacks against Russian speaking businesses in
August 2017. This backdoor protocol of commands here is almost identical to the previously
described backdoor, aside from some name changes:

"d&exec" – Download an executable or a dll (if it’s a dll, use regsvr32 to execute it)
"more_eggs" – Downloads and replace the existing backdoor script with new script
"gtfo" – Clean traces, remove persistency and stage 4,5 files
"more_onion" – Execute the Backdoor script
"via_x" – execute cmd / shell commands locally

As with every communication with the C2, the script collects and sends information about the
target environment including the stack of security solutions installed on the computer and are
part of the following list:

https://twitter.com/ItsReallyNick/status/914894320766943232
https://blog.trendmicro.com/trendlabs-security-intelligence/backdoor-carrying-emails-set-sights-on-russian-speaking-businesses/
https://blog.trendmicro.com/trendlabs-security-intelligence/backdoor-carrying-emails-set-sights-on-russian-speaking-businesses/


10/11

Artifacts

https://github.com/smgorelik/Meetups/blob/master/09272018_Meetup.7z

Conclusion

As organizations improve their defenses, attackers find new ways to get around them. Threat
groups such as Cobalt are increasingly incorporating delivery techniques that allow them to
easily bypass whitelisting and AppLocker policies, and we see more and more attacks using
legitimate processes to carry out their malicious intent.

Although some of the decrypted artifacts have been seen in the wild since the beginning of
the year (or earlier), the attack is still very effective as many security solutions do not detect
the artifacts once they are obfuscated and encrypted. The need for  a different approach to
security is greater than ever. Moving Target Defense, as defined by the DHS and

https://github.com/smgorelik/Meetups/blob/master/09272018_Meetup.7z


11/11

implemented by Morphisec, breaks the assumptions made by the attackers. Morphisec
Endpoint Threat Prevention natively prevents the attack before it can perform any type of
malicious activity, no updates needed.

Organizations should expect to see much more coming from all Cobalt Group factions during
the next year. Contact one of our security experts to learn how Morphisec protects your
business from this and future Cobalt attacks.

Contact SalesInquire via Azure

https://www.morphisec.com/products/advanced-endpoint-threat-protection
https://engage.morphisec.com/contact-us
http://10.10.0.46/mailto:sales@morphisec.com
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/morphisec.morphisec_unified_threat_prevention_platform?tab=overview

