
1/20

October 2, 2018

DanaBot Gains Popularity and Targets US Organizations in
Large Campaigns

proofpoint.com/us/threat-insight/post/danabot-gains-popularity-and-targets-us-organizations-large-campaigns

https://www.proofpoint.com/us/threat-insight/post/danabot-gains-popularity-and-targets-us-organizations-large-campaigns


2/20

Blog
Threat Insight
DanaBot Gains Popularity and Targets US Organizations in Large Campaigns

https://www.proofpoint.com/us
https://www.proofpoint.com/us/blog
https://www.proofpoint.com/us/blog/threat-insight


3/20

October 02, 2018 Proofpoint Staff

Overview

Proofpoint researchers first discovered DanaBot in May of 2018 [1], describing its use by a single actor
targeting Australian organizations. As we predicted at the time, other threat actors targeting Europe and
North America have since adopted the banking Trojan, increasing its footprint and taking advantage of
its extensive anti-analysis features. In this blog we describe a campaign affecting organizations in the
United States and present new reverse engineering analysis of DanaBot.

Recent DanaBot Campaigns

Our colleagues at ESET recently blogged about DanaBot campaigns and described the latest
expansion of targeted countries to include Poland, Italy, Germany, and Austria [2]. We have also
observed several campaigns since May targeting Australia. Finally, at the end of September, an actor
that typically targets the United States with daily campaigns distributing the Panda banking Trojan
switched to delivering DanaBot for a day.

Hancitor Campaign

On September 26, Proofpoint researchers observed a campaign with hundreds of thousands of email
messages targeting US recipients. The emails used an eFax lure (Figure 1) and contained a URL
linking to the download of a document containing malicious macros (Figure 2). The macros, if enabled
by the user, executed the embedded Hancitor malware [3], which, in turn, received tasks to download
two versions of Pony stealer and the DanaBot banking malware. You can find a more in-depth analysis
of the recent macros used by this actor in a post written by 0verfl0w [4].

https://0ffset.wordpress.com/2018/08/12/post-0x16-hancitor-stage-1/


4/20

Figure 1: Message example with URLs linking to the download of a document containing macros that
download the Hancitor payload



5/20

Figure 2: Macro document that contains the Hancitor payload

Malware Analysis (v2.003)

As previously described, DanaBot is a banking malware written in the Delphi programming language.
This section continues our analysis of DanaBot by examining details of version 2.003. This is the latest
version that we have seen in the wild, first appearing in early September. The version number is based
on a version string (Figure 3) that is sometimes transmitted when the malware sends data to the
command and control (C&C) server.

Figure 3: DanaBot’s version string being sent to the C&C server along with system information



6/20

DanaBot is composed of three components:

1. Loader: downloads and loads main component
2. Main component: downloads, configures, and loads modules
3. Modules: various malware functionality

Anti-analysis

DanaBot includes a significant amount of junk code including extra instructions, conditional statements,
and loops. When combined with the use of Delphi, these features dramatically impair reverse
engineering. In addition, DanaBot uses Windows API function hashing and encrypted strings to prevent
analysts and automated tools from easily determining the code’s purpose.

A version of the API hashing algorithm written in Python [7], a list of the resolved Windows API
functions used in the loader [8] and the main component [9] are available on Github.

The characters of the encrypted strings are stored as an array of DWORDs and are decrypted using a
key and a basic substitution cipher. An IDA Pro Python script [10] and a list of decrypted strings used in
the loader [11] and the main [12] component are available on Github.

Command & Control IPs

In both the loader and main components there is a list of 10 C&C IP addresses stored as DWORDs.
Figure 4 shows an example from a memory dump of a loader component:

Figure 4: Example of C&C IP addresses in a memory dump of DanaBot’s loader component

Note: Please see the “C&C Infrastructure” section for a potential caveat about these hard-coded IP
addresses.

C&C Communications



7/20

In the previous versions we analyzed, DanaBot’s loader component used HTTP for communications
and its main component used a binary protocol. In version 2.003, both components use a binary
protocol over TCP port 443. Despite the port number, it does not use TLS.

The protocol has some quirks, but in general consists of a 183-byte header followed by optional
payload data. Most of the header values in a request are echoed back in the response header. If there
is payload data, the format depends on the particular command.

Binary Protocol Header

An example of the header is shown in Figure 5.

Figure 5: Example 183-byte header used in DanaBot’s binary protocol

It can be broken down into the following fields:

Offset 0: random values (stack junk) (DWORD)
Offset 4: hardcoded -1 (DWORD)
Offset 8: command (DWORD)
Offset 0xc: affiliate ID (DWORD)
Offset 0x10: hardcoded 1 (DWORD)
Offset 0x14: random value based on a linear congruential generator (DWORD)
Offset 0x18: unknown counter variable (DWORD)
Offset 0x1c: system architecture (DWORD)
Offset 0x20: Windows version information (DWORD)
Offset 0x24: command argument (DWORD)
Offset 0x28: admin status (DWORD)
Offset 0x2c: process integrity level (DWORD)
Offset 0x30: payload length (QWORD)

Depending on the command, this can contain random values (stack junk) instead



8/20

Offset 0x38: length of next field (BYTE)
Offset 0x39: bot ID (32 bytes)

MD5 hex digest of various system information
Offset 0x59: length of next field (BYTE)
Offset 0x5a: command-dependent (32 bytes)

Can be used as part of an encryption key; in this case, it would be the MD5 hex digest of the
bot ID (offset 0x39)
Can be used as a module identifier when requesting a module

Offset 0x7a: length of next field (BYTE)
Offset 0x7b: a nonce (32 bytes)
Offset 0x9b - end of header: random values (stack junk)

Commands

We have identified and analyzed the following commands. The first command is performed by the
loader, while the rest are performed by the main component.

Command 0x454 (1108): “Request main component”

This command is used by the loader to request the main component from the C&C server. The
command argument (offset 0x24 in the header) will contain the integer “32” or “64” to request either the
x86 version or x64 version of the component. The response payload contains encrypted data and an
encrypted 128-byte RSA signature block used to verify the data. A decryption key is generated by the
CryptDeriveKey Windows API function where it is initialized by taking the MD5 digest of the value at
offset 0x5a in the header. Data is AES-256-CBC-encrypted using an initialization vector (IV) of 16 null
(\x00) bytes. The decrypted data is the main component DLL which will be executed by rundll32.exe.

Command 0x453 (1107): “Initial beacon”

This is the first command sent by the main component to the C&C server. There is no data in the
request or the response, so we believe this is just an initial beacon.

Command 0x44c (1100): “Request module identifiers”

This command is used by the malware to request a list of module identifiers from the C&C server.
Figure 6 shows an example response listing these 6 module identifiers:

759CBB3E1B883BDCA23E9052462F641E
E0FBBC92DB9927BFC474A64DF4F9C22F
D0C851FBCA030928B535FAF3188DAFBA
A5BBBAB3A17BA2119F47F0E4316EE5BF
4F06D71C93E4105307339704D21C49A3
8C59B6C9985F983E248E27CC0BF98A2D



9/20

Figure 6: Command 0x44c response payload data containing a list of module identifiers

Command 0x44d (1101): “Request module”

This command is used to request a module from the C&C server. To indicate what module to download,
field at offset 0x5a in the header will contain a module identifier (received via command 0x44c). The
response payload data will contain a 1699-byte subheader, encrypted data, and a encrypted 128-byte
RSA signature block used to verify the data. Figure 7 shows an example subheader:

Figure 7: Command 0x44d response payload data containing 1699-byte subheader

The following fields have been identified in this subheader:

Offset 0: total length of subheader and data (QWORD)
Offset 8: hardcoded -1 (DWORD)



10/20

Offset 0x10: module name (520-byte wide string)
Offset 0x218: module filename (520-byte wide string)
Offset 0x649: length of next field (BYTE)
Offset 0x64a: module identifier (32 bytes)
Offset 0x682: module architecture (DWORD)
Offset 0x686: module type (DWORD)
Offset 0x68e: data is ZLIB-compressed flag (DWORD)
Offset 0x692: length of encrypted data (QWORD)

A decryption key (used to decrypt the module) is generated by the CryptDeriveKey Windows API
function where it is initialized by the following process:

1. Copying the 1699-byte subheader into a buffer and zeroing the following fields:
1. Offset 0: total length of subheader and data (QWORD)
2. Offset 0x692: length of encrypted data (QWORD)

2. The buffer is MD5 hashed
3. The uppercase hex digest of the hash is itself MD5 hashed

Data is AES-256-CBC-encrypted using an initialization vector (IV) of 16 null (\x00) bytes. The decrypted
data is optionally ZLIB compressed and once decompressed contains a module DLL that will be
executed by rundll32.exe

Table 1: List of modules typically seen

Module identifier Name Old
name

Functionality

759CBB3E1B883BDCA23E9052462F641E FF1 Sniffer Proxy

E0FBBC92DB9927BFC474A64DF4F9C22F FF2 Stealer Stealer module

D0C851FBCA030928B535FAF3188DAFBA FF3 NA 64-bit version of Stealer module
(new)

8C59B6C9985F983E248E27CC0BF98A2D FF4 NA RDP module (new)

A5BBBAB3A17BA2119F47F0E4316EE5BF FF5 TOR TOR proxy

4F06D71C93E4105307339704D21C49A3 FF6 VNC VNC

Command 0x44f (1103): “Get configuration files”

This command is used by the malware to request configuration files from the C&C. It has a quirk where
after the malware receives the 183-byte response header, the malware sends “\xff\xff\xff\xff\xff\xff\xff\xff”
before the C&C server responds with the response payload data. The payload data is formatted and



11/20

encrypted like a module, but multiple configuration files are sent (multiple 1699-byte subheader,
encrypted data, and signature packages).

Table 2: Configuration files typically seen

Config
filename

Variants Purpose Comments

BitVideo VVie Processes to watch For screenshots/video recording
perhaps

KeyBit BitKey, VKey Processes to watch For keylogging possibly

BitFiles Vfiles, VBit Cryptocurrency wallet files to
steal

PosWtFilter PostWFilter,
VFilter

List of websites for which to
steal requests

PosWtFilter may be a typo (in affiliate
IDs 3 and 9)

webinj33 uabanks Proxying config Incrementing versions

inj25 InjectZZ,
InjectSW

Webinjects Incrementing versions; Zeus-style
injects

This command is used by the malware to send data to the C&C such as the system information (Figure
3 above) or a screenshot. The request payload data contains a 656-byte subheader, encrypted data,
and encrypted session key (Figure 8 shows an example subheader):Command 0x44e (1102): “Send
data to C&C”

Figure 8: Command 0x44e request payload data containing 656-byte subheader

The following fields have been identified in the subheader:



12/20

Offset 0: total length (QWORD)
Offset 8: hardcoded -1 (DWORD)
Offset 0xc: affiliate ID (DWORD)
Offset 0x17: length of next field (BYTE)
Offset 0x18: bot ID (32 bytes)
Offset 0x38: length of next field (BYTE)
Offset 0x39: MD5 hex digest of plaintext data (32 bytes)
Offset 0x5a: filename (520-byte wide string)
Offset 0x264: data type (DWORD)
Offset 0x270: system time (unknown format) (QWORD)
Offset 0x280: timezone bias (DWORD)
Offset 0x288: encrypted data length (QWORD)

Data can be ZLIB-compressed and AES-256-CBC-encrypted using an initialization vector (IV) of 16 null
(\x00) bytes. The encryption key is generated using the CryptDeriveKey Windows function and RSA-
encrypted using an embedded RSA public key. The RSA-encrypted AES key is then appended to the
end of the encrypted data.

Table 3: Files typically seen sent

Filename Comments

desktopscreen.bmp Screenshot

Cookies.txt Stored web browser cookies

“System Info" Various system information

C&C Infrastructure

While we do not have specific visibility into DanaBot’s back-end infrastructure, we have observed some
noteworthy behavior that allows some speculation.

As noted above, DanaBot uses a loader to download its main component from a C&C server. The main
component contains a list of 10 hardcoded C&C IP addresses that are used for malware
communications. Our first observation was that the hardcoded C&C lists changed approximately every
hour when a main component was downloaded. We downloaded the main component in hourly
intervals for 24 hours and analyzed the C&C lists. Each sample’s list turned out to be different. Overall
we ended up with 240 IP addresses (available on Github [13]) with 194 (80%) of them being unique.
The top 10 overlapping IPs were:

158.255.215[.]31 (in 7 lists)
149.154.152[.]64 (in 7 lists)
37.235.53[.]232 (in 6 lists)
95.179.151[.]252 (in 5 lists)
178.209.51[.]227 (in 5 lists)
149.154.157[.]220 (in 5 lists)



13/20

45.77.54[.]180 (in 4 lists)
45.77.96[.]198 (in 3 lists)
45.77.51[.]69 (in 3 lists)
45.77.231[.]138 (in 3 lists)

Out of the total list of possible C&C IPs, only the following 10 (4%) seemed responsive:

149.154.152[.]64
149.154.157[.]220
158.255.215[.]31
178.209.51[.]227
37.235.53[.]232
45.77.231[.]138
45.77.51[.]69
45.77.54[.]180
45.77.96[.]198
95.179.151[.]252

Interestingly, these synced up with the overlapping IP list. We also noted that the overall IP list
contained some unrouteable IPs such as:

10.181.255[.]78
225.100.146[.]224
225.21.55[.]173
226.181.243[.]104
228.226.171[.]37
234.106.187[.]114
234.63.249[.]87
234.97.12[.]178
235.40.105[.]171
238.87.111[.]55

As a result of these observations, we can speculate that the main component may contain only a few
real C&Cs while the rest are random decoys.

Affiliate System

Based on distribution methods and targeting, we have been grouping DanaBot activity using an “affiliate
ID” that we have observed in various part of the C&C protocol (e.g., offset 0xc of the 183-byte binary
protocol header). At the time of publication, we observed the following affiliate IDs:

Affiliate
ID

Targeting Distribution

3 Poland, Austria, Germany,
Italy

Zipped-VBS attachments in email campaigns

4 Australia Links in email campaigns



14/20

5 No webinjects unknown

8 UK, Ukraine, and Canada Various email campaigns

9 Same as affiliate ID 3 Fallout Exploit Kit

11 US, No webinjects Hancitor downloader malware from links in email
campaigns

12 Australia unknown

13 Germany unknown

20 No webinjects unknown

 
We observed that DanaBot samples with different affiliate IDs seem to use some of the same C&C IP
addresses. At this point we speculate that DanaBot may be set up as a “malware as a service” system
in which one threat actor controls a global C&C panel and infrastructure system and then sells access
to other threat actors (affiliates) who distribute and target DanaBot as they see fit.

Comparison with CryptXXX Ransomware

Proofpoint blogged about CryptXXX file-encrypting ransomware in 2016 [5] and noted that it shared
many similarities with Reveton “police” ransomware. In particular, we noted that it was written in Delphi
and used a custom command and control protocol on TCP port 443.

DanaBot’s C&C traffic appears to be an evolution of this protocol, now using AES encryption in addition
to the Zlib compression. For example, in the traffic included in the Malware Traffic Analysis blog [6], the
initial CryptXXX checkin format is:

Figure 9: CryptXXX checkin format

The following fields are among those common to both CryptXXX and DanaBot:

Offset 0: length of next field (BYTE)
Offset 2: bot ID (32 bytes)



15/20

Offset 0x34 : length of compressed buffer
Offset 0x38: Zlib-compressed buffer (0x4e bytes)

The compressed buffer decodes to:

Figure 10: Decoded payload buffer

The following fields have been identified in the decoded buffer:

Offset 4: length of next field (BYTE)
Offset 5: bot ID (32 bytes)
Offset 0xce : length of next field (BYTE)
Offset 0xcf : Affiliate ID (7 bytes)
Offset 0xfc : length of next field (BYTE)
Offset 0xfd : Version string (5 bytes)
etc

Later on in the communication there is a (decoded) request to download a “Stealer” module “stiller.dll”:

Figure 11: Decoded request to download the “Stealer” module\

Thus it would seem that Danabot follows in a long line of malware from one particular group. This family
began with ransomware, to which stealer functionality was added in Reveton. The evolution continued
with CryptXXX ransomware and now with a banking Trojan with Stealer and remote access functionality
added in Danabot.

Conclusion



16/20

When we first discovered DanaBot, we predicted that it would likely be picked up by other actors.
Distribution of this malware has now extended well beyond Australia, with campaigns targeting Poland,
Italy, Germany, Austria, and, more recently, the United States. DanaBot is a banking Trojan, meaning
that it is necessarily geo-targeted to a degree. Adoption by high-volume actors, though, as we saw in
the US campaign, suggests active development, geographic expansion, and ongoing threat actor
interest in the malware. The malware itself contains a number of anti-analysis features, as well as
updated stealer and remote control modules, further increasing its attractiveness and utility to threat
actors.

References

[1] https://www.proofpoint.com/us/threat-insight/post/danabot-new-banking-trojan-surfaces-down-under-
0

[2] https://www.welivesecurity.com/2018/09/21/danabot-targeting-europe-adds-new-features/

[3] https://www.proofpoint.com/us/threat-insight/post/hancitor-ruckguv-reappear

[4] https://0ffset.wordpress.com/2018/08/12/post-0x16-hancitor-stage-1/

[5] https://www.proofpoint.com/us/threat-insight/post/cryptxxx-new-ransomware-actors-behind-reveton-
dropping-angler

[6] http://malware-traffic-analysis.net/2016/04/20/index.html

[7] https://github.com/EmergingThreats/threatresearch/blob/master/danabot/func_hashes.py

[8] https://github.com/EmergingThreats/threatresearch/blob/master/danabot/loader_func_hashes.txt

[9] https://github.com/EmergingThreats/threatresearch/blob/master/danabot/main_func_hashes.txt

[10] https://github.com/EmergingThreats/threatresearch/blob/master/danabot/decrypt_str_ida.py

[11] https://github.com/EmergingThreats/threatresearch/blob/master/danabot/loader_strings.txt

[12] https://github.com/EmergingThreats/threatresearch/blob/master/danabot/main_strings.txt

[13] https://github.com/EmergingThreats/threatresearch/blob/master/danabot/24_hours_of_ips.txt

Indicators of Compromise (IOCs)

IOC IOC
Type

Description

288615e28672e1326231186230f2bc74ea84191745cc40369d49bf385bf9669b SHA256 DanaBot
Loader
(affiliate ID
8)

https://www.proofpoint.com/us/threat-insight/post/danabot-new-banking-trojan-surfaces-down-under-0
https://www.welivesecurity.com/2018/09/21/danabot-targeting-europe-adds-new-features/
https://www.proofpoint.com/us/threat-insight/post/hancitor-ruckguv-reappear
https://0ffset.wordpress.com/2018/08/12/post-0x16-hancitor-stage-1/
https://www.proofpoint.com/us/threat-insight/post/cryptxxx-new-ransomware-actors-behind-reveton-dropping-angler
http://malware-traffic-analysis.net/2016/04/20/index.html
https://github.com/EmergingThreats/threatresearch/blob/master/danabot/func_hashes.py
https://github.com/EmergingThreats/threatresearch/blob/master/danabot/loader_func_hashes.txt
https://github.com/EmergingThreats/threatresearch/blob/master/danabot/main_func_hashes.txt
https://github.com/EmergingThreats/threatresearch/blob/master/danabot/decrypt_str_ida.py
https://github.com/EmergingThreats/threatresearch/blob/master/danabot/loader_strings.txt
https://github.com/EmergingThreats/threatresearch/blob/master/danabot/main_strings.txt
https://github.com/EmergingThreats/threatresearch/blob/master/danabot/24_hours_of_ips.txt


17/20

45.77.96.198 IP
Address

DanaBot
Loader C&C

57cac2bdc44415c6737149bda8fc4e53adfab7d35cac3de94ced9d6675f1c5db SHA256 DanaBot
Main x64
(affiliate ID
8)

1184c7936c82f1718f9e547be4a8eeaa1c16c2f16790e2b5ae66a870a17b7454 SHA256 DanaBot
Main x86
(affiliate ID
8)

149.154.152.64 IP
Address

DanaBot
Main C&C

149.154.157.220 IP
Address

DanaBot
Main C&C

158.255.215.31 IP
Address

DanaBot
Main C&C

178.209.51.227 IP
Address

DanaBot
Main C&C

37.235.53.232 IP
Address

DanaBot
Main C&C

45.77.231.138 IP
Address

DanaBot
Main C&C

45.77.51.69 IP
Address

DanaBot
Main C&C

45.77.54.180 IP
Address

DanaBot
Main C&C

45.77.96.198 IP
Address

DanaBot
Main C&C

Hancitor Campaign IOCs:



18/20

genesislouisville[.]com Domain Link to
macro
document

genesisofdallas[.]com Domain Link to
macro
document

genesisoflouisville[.]com Domain Link to
macro
document

genesisofportland[.]com Domain Link to
macro
document

kccmanufacturing[.]com Domain Link to
macro
document

louisvillegenesis[.]com Domain Link to
macro
document

louisvilleride[.]com Domain Link to
macro
document

motionscent[.]com Domain Link to
macro
document

oxmoorautomall[.]com Domain Link to
macro
document

ridesharelouisville[.]com Domain Link to
macro
document

6dcf41dd62e909876e9ef10bd376ea3a6765c2ecb281844fc4bebd70bfebeb27 SHA256 Macro
document

c82081823ba468ad2d10c4beca700a7bf0ba82b371bc57286cc721e271019080 SHA256 Hancitor



19/20

hxxp://tontheckcatan[.]ru/4/forum[.]php URL Hancitor
C&C

hxxp://onthethatsed[.]ru/4/forum[.]php URL Hancitor
C&C

hxxp://kitezona[.]ru/wp-content/plugins/redirection/modules/1 URL Hancitor
Task

hxxp://xn--hllo-bpa[.]com/guestlist/1 URL Hancitor
Task

hxxp://music-open[.]com/1 URL Hancitor
Task

hxxp://allnicolerichie[.]com/wp-content/plugins/ubh/1 URL Hancitor
Task

hxxp://mpressmedia[.]net/wp-content/plugins/ubh/1 URL Hancitor
Task

hxxp://bwc[.]ianbell[.]com/wp-content/plugins/ubh/1 URL Hancitor
Task

hxxp://kitezona[.]ru/wp-content/plugins/redirection/modules/2 URL Hancitor
Task

hxxp://xn--hllo-bpa[.]com/guestlist/2 URL Hancitor
Task

hxxp://music-open[.]com/2 URL Hancitor
Task

hxxp://allnicolerichie[.]com/wp-content/plugins/ubh/2 URL Hancitor
Task

hxxp://mpressmedia[.]net/wp-content/plugins/ubh/2 URL Hancitor
Task

hxxp://bwc[.]ianbell[.]com/wp-content/plugins/ubh/2 URL Hancitor
Task

hxxp://kitezona[.]ru/wp-content/plugins/redirection/modules/4 URL Hancitor
Task



20/20

hxxp://xn--hllo-bpa[.]com/guestlist/4 URL Hancitor
Task

hxxp://music-open[.]com/4 URL Hancitor
Task

hxxp://allnicolerichie[.]com/wp-content/plugins/ubh/4 URL Hancitor
Task

hxxp://mpressmedia[.]net/wp-content/plugins/ubh/4 URL Hancitor
Task

hxxp://bwc[.]ianbell[.]com/wp-content/plugins/ubh/4 URL Hancitor
Task

9a816d9626f870617400df384d653b02a15ad940701b4fb2296e1abe04d3777f SHA256 DanaBot

hxxp://tontheckcatan[.]ru/mlu/forum[.]php URL Pony C&C

hxxp://onthethatsed[.]ru/mlu/forum[.]php URL Pony C&C

hxxp://tontheckcatan[.]ru/d2/about[.]php URL Pony C&C

hxxp://onthethatsed[.]ru/d2/about[.]php URL Pony C&C

ET and ETPRO Suricata/Snort Signatures

2819978 | ETPRO TROJAN Tordal/Hancitor/Chanitor Checkin

2014411 | ET TROJAN Fareit/Pony Downloader Checkin 2

2831891 | ETPRO CURRENT_EVENTS Hancitor Encrypted Payload Jul 19

2832816 | ETPRO TROJAN Win32/DanaBot CnC Checkin (affid 11)

Subscribe to the Proofpoint Blog


