
1/12

Dissecting DEloader malware with obfuscation
int0xcc.svbtle.com/dissecting-obfuscated-deloader-malware

September 6, 2018
DEloader is a loader malware which is mostly used to load Zeus banking trojan .  It is a
stealth malware designed to keep the payload hidden and encrypted in the memory . A
payload is dynamically retrieved from a remote https server   So far there have been 3
versions of DEloader captured in the wild . Version 0x10E0700 , 0x1050500h and
0x1120300h. More recently in version 0x1120300h they added code obfuscation

Main loader file is a DLL with export named as ‘start’ or ‘begin’ . These exports are called
by packer . Essentially because this DLL is memory loaded image , imports and images are
relocated via the code in these exports

https://int0xcc.svbtle.com/dissecting-obfuscated-deloader-malware

2/12

https://svbtleusercontent.com/kLUj89gtBtPXZC2J4avjRg0xspap.png

3/12

Earlier version included a share file map as a marker for infection . Shared file mapping
would contain necessary information for the Deloader to run

If the mapping is found, the data from the map is fed to decoding algorithm which is based
on Rc4 and decodes using a fixed state buffer . This Algorithm is later used to decode buffer
downloaded from c2 .

https://svbtleusercontent.com/5oa7ffJPanQe5JRfL5FTd90xspap.png
https://svbtleusercontent.com/8cmebqjVSyCu8Q45VCJCV50xspap.png

4/12

Buffer can be either downloaded from c2 or the previously saved one is extracted from
registry , which is later decoded using an embedded rc4 state buffer .

C2’s are present in an embedded structure known baseconifg which consists configuration
and c2’s address necessary for the loader to operate . In both the versions static config in
encoded state

It can have single or multiple c2’s . Each of them is separated by a semi-colon ‘;’ .  
In earlier versions c2 url was present as an encoded resource on a remote https server . And
was downloaded using a get HTTP/HTTPSs request

https://svbtleusercontent.com/jKNfgcrk6fwYx1xgz3mEhX0xspap.png
https://svbtleusercontent.com/3vRXY6QFPRGXYaN3TrzZW80xspap.png
https://svbtleusercontent.com/wSnfAHoniiyMRGeQtqwyFm0xspap.png

5/12

However in the latest version, it includes a URL where encoded system internal data is
posted and in return an encoded data buff is returned back .

This data is encoded with the same rc4state buffer extracted from static config embedded in
the binary .Depending upon an internal flag it could be compressed as well . The
compression algorithm used is unrv2b which happens to be the same one used in traditional
Zeus malware .Also integrity of data is checked against a CRC32 hash DWORD present at
the end of the data packet

 raw response can represented as

struct RawResponse
{
 BYTE Data[len - 4];
 DWORD CRC32Data;

};

struct
{
 __int64 DecompressionLength;
 BYTE CompressedData[]
};

https://svbtleusercontent.com/6NhvwRRwvNtfn79uT7rWzh0xspap.png

6/12

After decompression data packet is arranged in a structure which consists of

struct InternalC2Parsed
{
 unsigned int PlaceHolder = 0x1000000;
 unsigned int Version; // 4
 void *PEBuffer_32bit;
 unsigned int PEBuffer_32bit_len;
 void *PEBuffer_64bit;
 unsigned int PEBuffer_64bit_len;
 void *C2StructDecompressed;
 int C2StructDecompressed_len;

};

Depending upon the type of system a particular type of payload(32bit or 64bit) payload in
injected in process memory . If the system happens to be 64bit , a well known technique
“heavens gate” is used to inject to 64bit process from a 32 bit running process

  

Following python script demonstrates the ability to decode and decompress

https://svbtleusercontent.com/qEiwhcJ5e35LitegaSWZN80xspap.png
https://svbtleusercontent.com/iqGb42fmLbjocYKtXu6Z3Y0xspap.png

7/12

#!/usr/bin/env python

import ucl
def PRGA(S):
 i = 0
 j = 0
 while True:
 i = (i + 1) % 256
 j = (j + S[i]) % 256
 S[i], S[j] = S[j], S[i] # swap

 K = S[(S[i] + S[j]) % 256]
 yield K

if __name__ == '__main__':
 plaintext = open("Bindata", "rb").read()
 import array

 keystream = [
 0xD7, 0x81, 0x83, 0xA6, 0x59, 0x4B, 0x88, 0x32, 0xFB, 0x8D, 0x7A, 0x64, 0x08,
0x9F, 0x6D, 0x01,
 0x2C, 0xD8, 0x50, 0xCE, 0xA3, 0x4A, 0xF9, 0x21, 0x40, 0x91, 0xE4, 0x28, 0x22,
0xAA, 0x41, 0x0D,
 0x68, 0x44, 0xA7, 0xB8, 0xA5, 0xFE, 0x3A, 0x2F, 0x7C, 0xDA, 0x37, 0x94, 0x46,
0x92, 0x86, 0x0A,
 0x25, 0xEA, 0x45, 0xB1, 0xAE, 0x7B, 0xE2, 0x3F, 0xBC, 0x7D, 0x84, 0x9A, 0xE5,
0x77, 0x0F, 0xA2,
 0xDD, 0x1A, 0x5F, 0xFA, 0x78, 0x67, 0x12, 0x02, 0x03, 0x3B, 0x65, 0x62, 0xF5,
0xBE, 0x8C, 0x27,
 0x9D, 0x69, 0xA8, 0x56, 0x5E, 0xE6, 0x61, 0xFF, 0x72, 0x5C, 0x19, 0xD6, 0xD4,
0x6A, 0x52, 0xD2,
 0xDC, 0x55, 0xDF, 0x70, 0x18, 0x0C, 0xEE, 0x87, 0x95, 0x07, 0xA1, 0x05, 0xA4,
0x5D, 0xE1, 0x06,
 0xB0, 0xC0, 0x29, 0x80, 0x53, 0xE7, 0xE3, 0x93, 0x16, 0xF2, 0x1B, 0x96, 0xDB,
0x90, 0xAC, 0xF6,
 0x7E, 0x6F, 0xF1, 0x6C, 0xB6, 0xF4, 0x63, 0xB3, 0x8A, 0xC3, 0xFC, 0x8F, 0x1F,
0x3D, 0x9C, 0x2B,
 0xB9, 0xCB, 0x35, 0x2D, 0xA0, 0xC6, 0x74, 0xFD, 0xBF, 0x23, 0xEB, 0xB5, 0x89,
0x82, 0x30, 0xBB,
 0x0B, 0x76, 0x17, 0x4F, 0x4E, 0x1E, 0xD9, 0x58, 0x13, 0x6B, 0x26, 0x9E, 0xD0,
0xE0, 0x48, 0xF0,
 0x6E, 0xB4, 0x0E, 0xC4, 0xEC, 0x00, 0xD1, 0xCF, 0xC8, 0x7F, 0x20, 0x38, 0x79,
0xCD, 0x49, 0xC7,
 0x47, 0xED, 0x31, 0xCA, 0xC1, 0x39, 0xC9, 0x98, 0x1D, 0x33, 0x5A, 0x3E, 0x51,
0x4C, 0x8B, 0x24,
 0xB2, 0xB7, 0x4D, 0xE8, 0x54, 0xEF, 0x9B, 0xC5, 0x09, 0xF7, 0x2A, 0x3C, 0xBD,
0x36, 0x71, 0x2E,
 0x15, 0xF3, 0xA9, 0x60, 0x10, 0xAF, 0xC2, 0x73, 0x97, 0x34, 0x66, 0x99, 0x8E,
0xDE, 0xAD, 0xAB,
 0xBA, 0xF8, 0x11, 0xD5, 0x75, 0x43, 0x57, 0x04, 0xCC, 0xE9, 0x42, 0x85, 0x14,
0x1C, 0x5B, 0xD3
]

8/12

 arr = array.array("B", keystream)
 keystream = PRGA(arr)
 import sys
 finBuf = array.array("B")

 i = 0
 for c in plaintext:

 finBuf.append(ord(c) ^ keystream.next())

 i = i + 1

 open("FinalData.bin", "wb").write(finBuf.tostring())

and to finally decomrpess the data we can use CTYPES to call the following subroutine in
python  
https://github.com/wt/coreboot/blob/master/payloads/bayou/nrv2b.c

https://github.com/wt/coreboot/blob/master/payloads/bayou/nrv2b.c

9/12

#ifndef ENDIAN
#define ENDIAN 0
#endif
#ifndef BITSIZE
#define BITSIZE 32
#endif

#define GETBIT_8(bb, src, ilen) \
 (((bb = bb & 0x7f ? bb*2 : ((unsigned)src[ilen++]*2+1)) >> 8) & 1)

#define GETBIT_LE16(bb, src, ilen) \
 (bb*=2,bb&0xffff ? (bb>>16)&1 : (ilen+=2,((bb=(src[ilen-2]+src[ilen-
1]*256)*2+1)>>16)&1))
#define GETBIT_LE32(bb, src, ilen) \
 (bc > 0 ? ((bb>>--bc)&1) : (bc=31,\
 bb=*(const uint32_t *)((src)+ilen),ilen+=4,(bb>>31)&1))

#if ENDIAN == 0 && BITSIZE == 8
#define GETBIT(bb, src, ilen) GETBIT_8(bb, src, ilen)
#endif
#if ENDIAN == 0 && BITSIZE == 16
#define GETBIT(bb, src, ilen) GETBIT_LE16(bb, src, ilen)
#endif
#if ENDIAN == 0 && BITSIZE == 32
#define GETBIT(bb, src, ilen) GETBIT_LE32(bb, src, ilen)
#endif

static unsigned long unrv2b(uint8_t * src, uint8_t * dst, unsigned long *ilen_p)
{
 unsigned long ilen = 0, olen = 0, last_m_off = 1;
 uint32_t bb = 0;
 unsigned bc = 0;
 const uint8_t *m_pos;

 // skip length
 src += 4;
 /* FIXME: check olen with the length stored in first 4 bytes */

 for (;;) {
 unsigned int m_off, m_len;
 while (GETBIT(bb, src, ilen)) {
 dst[olen++] = src[ilen++];
 }

 m_off = 1;
 do {
 m_off = m_off * 2 + GETBIT(bb, src, ilen);
 } while (!GETBIT(bb, src, ilen));
 if (m_off == 2) {
 m_off = last_m_off;
 } else {
 m_off = (m_off - 3) * 256 + src[ilen++];
 if (m_off == 0xffffffffU)
 break;
 last_m_off = ++m_off;

10/12

 }

 m_len = GETBIT(bb, src, ilen);
 m_len = m_len * 2 + GETBIT(bb, src, ilen);
 if (m_len == 0) {
 m_len++;
 do {
 m_len = m_len * 2 + GETBIT(bb, src, ilen);
 } while (!GETBIT(bb, src, ilen));
 m_len += 2;
 }
 m_len += (m_off > 0xd00);

 m_pos = dst + olen - m_off;
 dst[olen++] = *m_pos++;
 do {
 dst[olen++] = *m_pos++;
 } while (--m_len > 0);
 }

 *ilen_p = ilen;

 return olen;

}

Finally after decoding and decompression a vaid PE file is obtained . A file size of 1.05MB.

Source code level obfuscation . #

https://svbtleusercontent.com/dBAL6WkaR1EyN8UrRZeLQs0xspap.png

11/12

In a more recent version 0x1120300h source code level obfuscation was added . This type of
obfuscation is known as opaque predicates which makes the process of reverse engineering
bit difficult . The basic Idea behind this technique is to include calculation based comparison
instruction which end with a conditional jump , which are not the part of the original code , but
are the part of code path .

In the images below a comparison is shown between a CRC32() function in version
0x1120300h and an earlier version 0x1050500h. Which demonstrates the multiple junk
instructs and paths added with inclusion of opaque predicates

This happens to be quite evident in the entropy comparison of the binary in whole .

Even the downloaded payload which happens to be a version of traditional Zeus banking
malware is also obfuscated , which generally in its unpacked form is detected by most of
then antivirus scans , but due to code level obfuscation is marked clean by most of the major

https://svbtleusercontent.com/tjYaykaLCYVC5pHki8nWMu0xspap.png
https://svbtleusercontent.com/uRbHqF466psp66bY8XpiK70xspap.png

12/12

anti virus engines

conclusion :

Deloader is still under heavy development . DeLoader has consistently evolved since past
few years . With the addition of a hard obfuscation technique is it quite sure that the authors
of deloader want to make this analysis hard and apparently makes it slip the anti virus filter .
The use of encryption and compression make the data sent around the command and
control server cryptic and hard to detect using a pattern . The payload which s mostly being
delivered is a financial malware , designed to steal banking credentials , which makes it clear
that authors are inclined towards monetization of injecting machines .

13

Kudos

13

Kudos

https://svbtleusercontent.com/aGexP44eduShbbrHnxvDbL0xspap.png

